mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Thank Nick for figuring out these problems. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186146 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			900 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The ScalarEvolution class is an LLVM pass which can be used to analyze and
 | |
| // categorize scalar expressions in loops.  It specializes in recognizing
 | |
| // general induction variables, representing them with the abstract and opaque
 | |
| // SCEV class.  Given this analysis, trip counts of loops and other important
 | |
| // properties can be obtained.
 | |
| //
 | |
| // This analysis is primarily useful for induction variable substitution and
 | |
| // strength reduction.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
 | |
| #define LLVM_ANALYSIS_SCALAREVOLUTION_H
 | |
| 
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
|   class APInt;
 | |
|   class Constant;
 | |
|   class ConstantInt;
 | |
|   class DominatorTree;
 | |
|   class Type;
 | |
|   class ScalarEvolution;
 | |
|   class DataLayout;
 | |
|   class TargetLibraryInfo;
 | |
|   class LLVMContext;
 | |
|   class Loop;
 | |
|   class LoopInfo;
 | |
|   class Operator;
 | |
|   class SCEVUnknown;
 | |
|   class SCEV;
 | |
|   template<> struct FoldingSetTrait<SCEV>;
 | |
| 
 | |
|   /// SCEV - This class represents an analyzed expression in the program.  These
 | |
|   /// are opaque objects that the client is not allowed to do much with
 | |
|   /// directly.
 | |
|   ///
 | |
|   class SCEV : public FoldingSetNode {
 | |
|     friend struct FoldingSetTrait<SCEV>;
 | |
| 
 | |
|     /// FastID - A reference to an Interned FoldingSetNodeID for this node.
 | |
|     /// The ScalarEvolution's BumpPtrAllocator holds the data.
 | |
|     FoldingSetNodeIDRef FastID;
 | |
| 
 | |
|     // The SCEV baseclass this node corresponds to
 | |
|     const unsigned short SCEVType;
 | |
| 
 | |
|   protected:
 | |
|     /// SubclassData - This field is initialized to zero and may be used in
 | |
|     /// subclasses to store miscellaneous information.
 | |
|     unsigned short SubclassData;
 | |
| 
 | |
|   private:
 | |
|     SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
 | |
|     void operator=(const SCEV &) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|   public:
 | |
|     /// NoWrapFlags are bitfield indices into SubclassData.
 | |
|     ///
 | |
|     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
 | |
|     /// no-signed-wrap <NSW> properties, which are derived from the IR
 | |
|     /// operator. NSW is a misnomer that we use to mean no signed overflow or
 | |
|     /// underflow.
 | |
|     ///
 | |
|     /// AddRec expression may have a no-self-wraparound <NW> property if the
 | |
|     /// result can never reach the start value. This property is independent of
 | |
|     /// the actual start value and step direction. Self-wraparound is defined
 | |
|     /// purely in terms of the recurrence's loop, step size, and
 | |
|     /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
 | |
|     /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
 | |
|     ///
 | |
|     /// Note that NUW and NSW are also valid properties of a recurrence, and
 | |
|     /// either implies NW. For convenience, NW will be set for a recurrence
 | |
|     /// whenever either NUW or NSW are set.
 | |
|     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
 | |
|                        FlagNW      = (1 << 0),   // No self-wrap.
 | |
|                        FlagNUW     = (1 << 1),   // No unsigned wrap.
 | |
|                        FlagNSW     = (1 << 2),   // No signed wrap.
 | |
|                        NoWrapMask  = (1 << 3) -1 };
 | |
| 
 | |
|     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
 | |
|       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
 | |
| 
 | |
|     unsigned getSCEVType() const { return SCEVType; }
 | |
| 
 | |
|     /// getType - Return the LLVM type of this SCEV expression.
 | |
|     ///
 | |
|     Type *getType() const;
 | |
| 
 | |
|     /// isZero - Return true if the expression is a constant zero.
 | |
|     ///
 | |
|     bool isZero() const;
 | |
| 
 | |
|     /// isOne - Return true if the expression is a constant one.
 | |
|     ///
 | |
|     bool isOne() const;
 | |
| 
 | |
|     /// isAllOnesValue - Return true if the expression is a constant
 | |
|     /// all-ones value.
 | |
|     ///
 | |
|     bool isAllOnesValue() const;
 | |
| 
 | |
|     /// isNonConstantNegative - Return true if the specified scev is negated,
 | |
|     /// but not a constant.
 | |
|     bool isNonConstantNegative() const;
 | |
| 
 | |
|     /// print - Print out the internal representation of this scalar to the
 | |
|     /// specified stream.  This should really only be used for debugging
 | |
|     /// purposes.
 | |
|     void print(raw_ostream &OS) const;
 | |
| 
 | |
|     /// dump - This method is used for debugging.
 | |
|     ///
 | |
|     void dump() const;
 | |
|   };
 | |
| 
 | |
|   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
 | |
|   // temporary FoldingSetNodeID values.
 | |
|   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
 | |
|     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
 | |
|       ID = X.FastID;
 | |
|     }
 | |
|     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
 | |
|                        unsigned IDHash, FoldingSetNodeID &TempID) {
 | |
|       return ID == X.FastID;
 | |
|     }
 | |
|     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
 | |
|       return X.FastID.ComputeHash();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
 | |
|     S.print(OS);
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   /// SCEVCouldNotCompute - An object of this class is returned by queries that
 | |
|   /// could not be answered.  For example, if you ask for the number of
 | |
|   /// iterations of a linked-list traversal loop, you will get one of these.
 | |
|   /// None of the standard SCEV operations are valid on this class, it is just a
 | |
|   /// marker.
 | |
|   struct SCEVCouldNotCompute : public SCEV {
 | |
|     SCEVCouldNotCompute();
 | |
| 
 | |
|     /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|     static bool classof(const SCEV *S);
 | |
|   };
 | |
| 
 | |
|   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
 | |
|   /// client code (intentionally) can't do much with the SCEV objects directly,
 | |
|   /// they must ask this class for services.
 | |
|   ///
 | |
|   class ScalarEvolution : public FunctionPass {
 | |
|   public:
 | |
|     /// LoopDisposition - An enum describing the relationship between a
 | |
|     /// SCEV and a loop.
 | |
|     enum LoopDisposition {
 | |
|       LoopVariant,    ///< The SCEV is loop-variant (unknown).
 | |
|       LoopInvariant,  ///< The SCEV is loop-invariant.
 | |
|       LoopComputable  ///< The SCEV varies predictably with the loop.
 | |
|     };
 | |
| 
 | |
|     /// BlockDisposition - An enum describing the relationship between a
 | |
|     /// SCEV and a basic block.
 | |
|     enum BlockDisposition {
 | |
|       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
 | |
|       DominatesBlock,        ///< The SCEV dominates the block.
 | |
|       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
 | |
|     };
 | |
| 
 | |
|     /// Convenient NoWrapFlags manipulation that hides enum casts and is
 | |
|     /// visible in the ScalarEvolution name space.
 | |
|     static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
 | |
|       return (SCEV::NoWrapFlags)(Flags & Mask);
 | |
|     }
 | |
|     static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
 | |
|                                       SCEV::NoWrapFlags OnFlags) {
 | |
|       return (SCEV::NoWrapFlags)(Flags | OnFlags);
 | |
|     }
 | |
|     static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
 | |
|                                         SCEV::NoWrapFlags OffFlags) {
 | |
|       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
 | |
|     /// notified whenever a Value is deleted.
 | |
|     class SCEVCallbackVH : public CallbackVH {
 | |
|       ScalarEvolution *SE;
 | |
|       virtual void deleted();
 | |
|       virtual void allUsesReplacedWith(Value *New);
 | |
|     public:
 | |
|       SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
 | |
|     };
 | |
| 
 | |
|     friend class SCEVCallbackVH;
 | |
|     friend class SCEVExpander;
 | |
|     friend class SCEVUnknown;
 | |
| 
 | |
|     /// F - The function we are analyzing.
 | |
|     ///
 | |
|     Function *F;
 | |
| 
 | |
|     /// LI - The loop information for the function we are currently analyzing.
 | |
|     ///
 | |
|     LoopInfo *LI;
 | |
| 
 | |
|     /// TD - The target data information for the target we are targeting.
 | |
|     ///
 | |
|     DataLayout *TD;
 | |
| 
 | |
|     /// TLI - The target library information for the target we are targeting.
 | |
|     ///
 | |
|     TargetLibraryInfo *TLI;
 | |
| 
 | |
|     /// DT - The dominator tree.
 | |
|     ///
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     /// CouldNotCompute - This SCEV is used to represent unknown trip
 | |
|     /// counts and things.
 | |
|     SCEVCouldNotCompute CouldNotCompute;
 | |
| 
 | |
|     /// ValueExprMapType - The typedef for ValueExprMap.
 | |
|     ///
 | |
|     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
 | |
|       ValueExprMapType;
 | |
| 
 | |
|     /// ValueExprMap - This is a cache of the values we have analyzed so far.
 | |
|     ///
 | |
|     ValueExprMapType ValueExprMap;
 | |
| 
 | |
|     /// Mark predicate values currently being processed by isImpliedCond.
 | |
|     DenseSet<Value*> PendingLoopPredicates;
 | |
| 
 | |
|     /// ExitLimit - Information about the number of loop iterations for
 | |
|     /// which a loop exit's branch condition evaluates to the not-taken path.
 | |
|     /// This is a temporary pair of exact and max expressions that are
 | |
|     /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
 | |
|     struct ExitLimit {
 | |
|       const SCEV *Exact;
 | |
|       const SCEV *Max;
 | |
| 
 | |
|       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
 | |
| 
 | |
|       ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
 | |
| 
 | |
|       /// hasAnyInfo - Test whether this ExitLimit contains any computed
 | |
|       /// information, or whether it's all SCEVCouldNotCompute values.
 | |
|       bool hasAnyInfo() const {
 | |
|         return !isa<SCEVCouldNotCompute>(Exact) ||
 | |
|           !isa<SCEVCouldNotCompute>(Max);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// ExitNotTakenInfo - Information about the number of times a particular
 | |
|     /// loop exit may be reached before exiting the loop.
 | |
|     struct ExitNotTakenInfo {
 | |
|       AssertingVH<BasicBlock> ExitingBlock;
 | |
|       const SCEV *ExactNotTaken;
 | |
|       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
 | |
| 
 | |
|       ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
 | |
| 
 | |
|       /// isCompleteList - Return true if all loop exits are computable.
 | |
|       bool isCompleteList() const {
 | |
|         return NextExit.getInt() == 0;
 | |
|       }
 | |
| 
 | |
|       void setIncomplete() { NextExit.setInt(1); }
 | |
| 
 | |
|       /// getNextExit - Return a pointer to the next exit's not-taken info.
 | |
|       ExitNotTakenInfo *getNextExit() const {
 | |
|         return NextExit.getPointer();
 | |
|       }
 | |
| 
 | |
|       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
 | |
|     };
 | |
| 
 | |
|     /// BackedgeTakenInfo - Information about the backedge-taken count
 | |
|     /// of a loop. This currently includes an exact count and a maximum count.
 | |
|     ///
 | |
|     class BackedgeTakenInfo {
 | |
|       /// ExitNotTaken - A list of computable exits and their not-taken counts.
 | |
|       /// Loops almost never have more than one computable exit.
 | |
|       ExitNotTakenInfo ExitNotTaken;
 | |
| 
 | |
|       /// Max - An expression indicating the least maximum backedge-taken
 | |
|       /// count of the loop that is known, or a SCEVCouldNotCompute.
 | |
|       const SCEV *Max;
 | |
| 
 | |
|     public:
 | |
|       BackedgeTakenInfo() : Max(0) {}
 | |
| 
 | |
|       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
 | |
|       BackedgeTakenInfo(
 | |
|         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
 | |
|         bool Complete, const SCEV *MaxCount);
 | |
| 
 | |
|       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
 | |
|       /// computed information, or whether it's all SCEVCouldNotCompute
 | |
|       /// values.
 | |
|       bool hasAnyInfo() const {
 | |
|         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
 | |
|       }
 | |
| 
 | |
|       /// getExact - Return an expression indicating the exact backedge-taken
 | |
|       /// count of the loop if it is known, or SCEVCouldNotCompute
 | |
|       /// otherwise. This is the number of times the loop header can be
 | |
|       /// guaranteed to execute, minus one.
 | |
|       const SCEV *getExact(ScalarEvolution *SE) const;
 | |
| 
 | |
|       /// getExact - Return the number of times this loop exit may fall through
 | |
|       /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
 | |
|       /// to exit via this block before this number of iterations, but may exit
 | |
|       /// via another block.
 | |
|       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
 | |
| 
 | |
|       /// getMax - Get the max backedge taken count for the loop.
 | |
|       const SCEV *getMax(ScalarEvolution *SE) const;
 | |
| 
 | |
|       /// Return true if any backedge taken count expressions refer to the given
 | |
|       /// subexpression.
 | |
|       bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
 | |
| 
 | |
|       /// clear - Invalidate this result and free associated memory.
 | |
|       void clear();
 | |
|     };
 | |
| 
 | |
|     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
 | |
|     /// this function as they are computed.
 | |
|     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
 | |
| 
 | |
|     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
 | |
|     /// the PHI instructions that we attempt to compute constant evolutions for.
 | |
|     /// This allows us to avoid potentially expensive recomputation of these
 | |
|     /// properties.  An instruction maps to null if we are unable to compute its
 | |
|     /// exit value.
 | |
|     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
 | |
| 
 | |
|     /// ValuesAtScopes - This map contains entries for all the expressions
 | |
|     /// that we attempt to compute getSCEVAtScope information for, which can
 | |
|     /// be expensive in extreme cases.
 | |
|     DenseMap<const SCEV *,
 | |
|              std::map<const Loop *, const SCEV *> > ValuesAtScopes;
 | |
| 
 | |
|     /// LoopDispositions - Memoized computeLoopDisposition results.
 | |
|     DenseMap<const SCEV *,
 | |
|              std::map<const Loop *, LoopDisposition> > LoopDispositions;
 | |
| 
 | |
|     /// computeLoopDisposition - Compute a LoopDisposition value.
 | |
|     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// BlockDispositions - Memoized computeBlockDisposition results.
 | |
|     DenseMap<const SCEV *,
 | |
|              std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
 | |
| 
 | |
|     /// computeBlockDisposition - Compute a BlockDisposition value.
 | |
|     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
 | |
| 
 | |
|     /// UnsignedRanges - Memoized results from getUnsignedRange
 | |
|     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
 | |
| 
 | |
|     /// SignedRanges - Memoized results from getSignedRange
 | |
|     DenseMap<const SCEV *, ConstantRange> SignedRanges;
 | |
| 
 | |
|     /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
 | |
|     const ConstantRange &setUnsignedRange(const SCEV *S,
 | |
|                                           const ConstantRange &CR) {
 | |
|       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
 | |
|         UnsignedRanges.insert(std::make_pair(S, CR));
 | |
|       if (!Pair.second)
 | |
|         Pair.first->second = CR;
 | |
|       return Pair.first->second;
 | |
|     }
 | |
| 
 | |
|     /// setUnsignedRange - Set the memoized signed range for the given SCEV.
 | |
|     const ConstantRange &setSignedRange(const SCEV *S,
 | |
|                                         const ConstantRange &CR) {
 | |
|       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
 | |
|         SignedRanges.insert(std::make_pair(S, CR));
 | |
|       if (!Pair.second)
 | |
|         Pair.first->second = CR;
 | |
|       return Pair.first->second;
 | |
|     }
 | |
| 
 | |
|     /// createSCEV - We know that there is no SCEV for the specified value.
 | |
|     /// Analyze the expression.
 | |
|     const SCEV *createSCEV(Value *V);
 | |
| 
 | |
|     /// createNodeForPHI - Provide the special handling we need to analyze PHI
 | |
|     /// SCEVs.
 | |
|     const SCEV *createNodeForPHI(PHINode *PN);
 | |
| 
 | |
|     /// createNodeForGEP - Provide the special handling we need to analyze GEP
 | |
|     /// SCEVs.
 | |
|     const SCEV *createNodeForGEP(GEPOperator *GEP);
 | |
| 
 | |
|     /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
 | |
|     /// at most once for each SCEV+Loop pair.
 | |
|     ///
 | |
|     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// ForgetSymbolicValue - This looks up computed SCEV values for all
 | |
|     /// instructions that depend on the given instruction and removes them from
 | |
|     /// the ValueExprMap map if they reference SymName. This is used during PHI
 | |
|     /// resolution.
 | |
|     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
 | |
| 
 | |
|     /// getBECount - Subtract the end and start values and divide by the step,
 | |
|     /// rounding up, to get the number of times the backedge is executed. Return
 | |
|     /// CouldNotCompute if an intermediate computation overflows.
 | |
|     const SCEV *getBECount(const SCEV *Start,
 | |
|                            const SCEV *End,
 | |
|                            const SCEV *Step,
 | |
|                            bool NoWrap);
 | |
| 
 | |
|     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
 | |
|     /// loop, lazily computing new values if the loop hasn't been analyzed
 | |
|     /// yet.
 | |
|     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
 | |
| 
 | |
|     /// ComputeBackedgeTakenCount - Compute the number of times the specified
 | |
|     /// loop will iterate.
 | |
|     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// ComputeExitLimit - Compute the number of times the backedge of the
 | |
|     /// specified loop will execute if it exits via the specified block.
 | |
|     ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
 | |
| 
 | |
|     /// ComputeExitLimitFromCond - Compute the number of times the backedge of
 | |
|     /// the specified loop will execute if its exit condition were a conditional
 | |
|     /// branch of ExitCond, TBB, and FBB.
 | |
|     ExitLimit ComputeExitLimitFromCond(const Loop *L,
 | |
|                                        Value *ExitCond,
 | |
|                                        BasicBlock *TBB,
 | |
|                                        BasicBlock *FBB,
 | |
|                                        bool IsSubExpr);
 | |
| 
 | |
|     /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
 | |
|     /// the specified loop will execute if its exit condition were a conditional
 | |
|     /// branch of the ICmpInst ExitCond, TBB, and FBB.
 | |
|     ExitLimit ComputeExitLimitFromICmp(const Loop *L,
 | |
|                                        ICmpInst *ExitCond,
 | |
|                                        BasicBlock *TBB,
 | |
|                                        BasicBlock *FBB,
 | |
|                                        bool IsSubExpr);
 | |
| 
 | |
|     /// ComputeLoadConstantCompareExitLimit - Given an exit condition
 | |
|     /// of 'icmp op load X, cst', try to see if we can compute the
 | |
|     /// backedge-taken count.
 | |
|     ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
 | |
|                                                   Constant *RHS,
 | |
|                                                   const Loop *L,
 | |
|                                                   ICmpInst::Predicate p);
 | |
| 
 | |
|     /// ComputeExitCountExhaustively - If the loop is known to execute a
 | |
|     /// constant number of times (the condition evolves only from constants),
 | |
|     /// try to evaluate a few iterations of the loop until we get the exit
 | |
|     /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
|     /// evaluate the exit count of the loop, return CouldNotCompute.
 | |
|     const SCEV *ComputeExitCountExhaustively(const Loop *L,
 | |
|                                              Value *Cond,
 | |
|                                              bool ExitWhen);
 | |
| 
 | |
|     /// HowFarToZero - Return the number of times an exit condition comparing
 | |
|     /// the specified value to zero will execute.  If not computable, return
 | |
|     /// CouldNotCompute.
 | |
|     ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
 | |
| 
 | |
|     /// HowFarToNonZero - Return the number of times an exit condition checking
 | |
|     /// the specified value for nonzero will execute.  If not computable, return
 | |
|     /// CouldNotCompute.
 | |
|     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// HowManyLessThans - Return the number of times an exit condition
 | |
|     /// containing the specified less-than comparison will execute.  If not
 | |
|     /// computable, return CouldNotCompute. isSigned specifies whether the
 | |
|     /// less-than is signed.
 | |
|     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | |
|                                const Loop *L, bool isSigned, bool IsSubExpr);
 | |
| 
 | |
|     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | |
|     /// (which may not be an immediate predecessor) which has exactly one
 | |
|     /// successor from which BB is reachable, or null if no such block is
 | |
|     /// found.
 | |
|     std::pair<BasicBlock *, BasicBlock *>
 | |
|     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
 | |
| 
 | |
|     /// isImpliedCond - Test whether the condition described by Pred, LHS, and
 | |
|     /// RHS is true whenever the given FoundCondValue value evaluates to true.
 | |
|     bool isImpliedCond(ICmpInst::Predicate Pred,
 | |
|                        const SCEV *LHS, const SCEV *RHS,
 | |
|                        Value *FoundCondValue,
 | |
|                        bool Inverse);
 | |
| 
 | |
|     /// isImpliedCondOperands - Test whether the condition described by Pred,
 | |
|     /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
 | |
|     /// and FoundRHS is true.
 | |
|     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
 | |
|                                const SCEV *LHS, const SCEV *RHS,
 | |
|                                const SCEV *FoundLHS, const SCEV *FoundRHS);
 | |
| 
 | |
|     /// isImpliedCondOperandsHelper - Test whether the condition described by
 | |
|     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
 | |
|     /// FoundLHS, and FoundRHS is true.
 | |
|     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
 | |
|                                      const SCEV *LHS, const SCEV *RHS,
 | |
|                                      const SCEV *FoundLHS,
 | |
|                                      const SCEV *FoundRHS);
 | |
| 
 | |
|     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
|     /// in the header of its containing loop, we know the loop executes a
 | |
|     /// constant number of times, and the PHI node is just a recurrence
 | |
|     /// involving constants, fold it.
 | |
|     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
 | |
|                                                 const Loop *L);
 | |
| 
 | |
|     /// isKnownPredicateWithRanges - Test if the given expression is known to
 | |
|     /// satisfy the condition described by Pred and the known constant ranges
 | |
|     /// of LHS and RHS.
 | |
|     ///
 | |
|     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
 | |
|                                     const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     /// forgetMemoizedResults - Drop memoized information computed for S.
 | |
|     void forgetMemoizedResults(const SCEV *S);
 | |
| 
 | |
|     /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
 | |
|     /// pointer.
 | |
|     bool checkValidity(const SCEV *S) const;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     ScalarEvolution();
 | |
| 
 | |
|     LLVMContext &getContext() const { return F->getContext(); }
 | |
| 
 | |
|     /// isSCEVable - Test if values of the given type are analyzable within
 | |
|     /// the SCEV framework. This primarily includes integer types, and it
 | |
|     /// can optionally include pointer types if the ScalarEvolution class
 | |
|     /// has access to target-specific information.
 | |
|     bool isSCEVable(Type *Ty) const;
 | |
| 
 | |
|     /// getTypeSizeInBits - Return the size in bits of the specified type,
 | |
|     /// for which isSCEVable must return true.
 | |
|     uint64_t getTypeSizeInBits(Type *Ty) const;
 | |
| 
 | |
|     /// getEffectiveSCEVType - Return a type with the same bitwidth as
 | |
|     /// the given type and which represents how SCEV will treat the given
 | |
|     /// type, for which isSCEVable must return true. For pointer types,
 | |
|     /// this is the pointer-sized integer type.
 | |
|     Type *getEffectiveSCEVType(Type *Ty) const;
 | |
| 
 | |
|     /// getSCEV - Return a SCEV expression for the full generality of the
 | |
|     /// specified expression.
 | |
|     const SCEV *getSCEV(Value *V);
 | |
| 
 | |
|     const SCEV *getConstant(ConstantInt *V);
 | |
|     const SCEV *getConstant(const APInt& Val);
 | |
|     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
 | |
|     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
 | |
|     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
 | |
|     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
 | |
|     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
 | |
|     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 | |
|     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
 | |
|                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
 | |
|       SmallVector<const SCEV *, 2> Ops;
 | |
|       Ops.push_back(LHS);
 | |
|       Ops.push_back(RHS);
 | |
|       return getAddExpr(Ops, Flags);
 | |
|     }
 | |
|     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
 | |
|                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
 | |
|       SmallVector<const SCEV *, 3> Ops;
 | |
|       Ops.push_back(Op0);
 | |
|       Ops.push_back(Op1);
 | |
|       Ops.push_back(Op2);
 | |
|       return getAddExpr(Ops, Flags);
 | |
|     }
 | |
|     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 | |
|     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
 | |
|                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
 | |
|     {
 | |
|       SmallVector<const SCEV *, 2> Ops;
 | |
|       Ops.push_back(LHS);
 | |
|       Ops.push_back(RHS);
 | |
|       return getMulExpr(Ops, Flags);
 | |
|     }
 | |
|     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
 | |
|                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
 | |
|       SmallVector<const SCEV *, 3> Ops;
 | |
|       Ops.push_back(Op0);
 | |
|       Ops.push_back(Op1);
 | |
|       Ops.push_back(Op2);
 | |
|       return getMulExpr(Ops, Flags);
 | |
|     }
 | |
|     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
 | |
|                               const Loop *L, SCEV::NoWrapFlags Flags);
 | |
|     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | |
|                               const Loop *L, SCEV::NoWrapFlags Flags);
 | |
|     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
 | |
|                               const Loop *L, SCEV::NoWrapFlags Flags) {
 | |
|       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
 | |
|       return getAddRecExpr(NewOp, L, Flags);
 | |
|     }
 | |
|     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | |
|     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | |
|     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getUnknown(Value *V);
 | |
|     const SCEV *getCouldNotCompute();
 | |
| 
 | |
|     /// getSizeOfExpr - Return an expression for sizeof on the given type.
 | |
|     ///
 | |
|     const SCEV *getSizeOfExpr(Type *AllocTy);
 | |
| 
 | |
|     /// getAlignOfExpr - Return an expression for alignof on the given type.
 | |
|     ///
 | |
|     const SCEV *getAlignOfExpr(Type *AllocTy);
 | |
| 
 | |
|     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
 | |
|     ///
 | |
|     const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
 | |
| 
 | |
|     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
 | |
|     ///
 | |
|     const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
 | |
| 
 | |
|     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
 | |
|     ///
 | |
|     const SCEV *getNegativeSCEV(const SCEV *V);
 | |
| 
 | |
|     /// getNotSCEV - Return the SCEV object corresponding to ~V.
 | |
|     ///
 | |
|     const SCEV *getNotSCEV(const SCEV *V);
 | |
| 
 | |
|     /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
 | |
|     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
 | |
|                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 | |
| 
 | |
|     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
 | |
|     /// of the input value to the specified type.  If the type must be
 | |
|     /// extended, it is zero extended.
 | |
|     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
 | |
| 
 | |
|     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
 | |
|     /// of the input value to the specified type.  If the type must be
 | |
|     /// extended, it is sign extended.
 | |
|     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
 | |
| 
 | |
|     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
 | |
|     /// the input value to the specified type.  If the type must be extended,
 | |
|     /// it is zero extended.  The conversion must not be narrowing.
 | |
|     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
 | |
| 
 | |
|     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
 | |
|     /// the input value to the specified type.  If the type must be extended,
 | |
|     /// it is sign extended.  The conversion must not be narrowing.
 | |
|     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
 | |
| 
 | |
|     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
 | |
|     /// the input value to the specified type. If the type must be extended,
 | |
|     /// it is extended with unspecified bits. The conversion must not be
 | |
|     /// narrowing.
 | |
|     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
 | |
| 
 | |
|     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
 | |
|     /// input value to the specified type.  The conversion must not be
 | |
|     /// widening.
 | |
|     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
 | |
| 
 | |
|     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
 | |
|     /// the types using zero-extension, and then perform a umax operation
 | |
|     /// with them.
 | |
|     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
 | |
|                                            const SCEV *RHS);
 | |
| 
 | |
|     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
 | |
|     /// the types using zero-extension, and then perform a umin operation
 | |
|     /// with them.
 | |
|     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
 | |
|                                            const SCEV *RHS);
 | |
| 
 | |
|     /// getPointerBase - Transitively follow the chain of pointer-type operands
 | |
|     /// until reaching a SCEV that does not have a single pointer operand. This
 | |
|     /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
 | |
|     /// but corner cases do exist.
 | |
|     const SCEV *getPointerBase(const SCEV *V);
 | |
| 
 | |
|     /// getSCEVAtScope - Return a SCEV expression for the specified value
 | |
|     /// at the specified scope in the program.  The L value specifies a loop
 | |
|     /// nest to evaluate the expression at, where null is the top-level or a
 | |
|     /// specified loop is immediately inside of the loop.
 | |
|     ///
 | |
|     /// This method can be used to compute the exit value for a variable defined
 | |
|     /// in a loop by querying what the value will hold in the parent loop.
 | |
|     ///
 | |
|     /// In the case that a relevant loop exit value cannot be computed, the
 | |
|     /// original value V is returned.
 | |
|     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// getSCEVAtScope - This is a convenience function which does
 | |
|     /// getSCEVAtScope(getSCEV(V), L).
 | |
|     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
 | |
| 
 | |
|     /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
 | |
|     /// by a conditional between LHS and RHS.  This is used to help avoid max
 | |
|     /// expressions in loop trip counts, and to eliminate casts.
 | |
|     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | |
|                                   const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | |
|     /// protected by a conditional between LHS and RHS.  This is used to
 | |
|     /// to eliminate casts.
 | |
|     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | |
|                                      const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     /// getSmallConstantTripCount - Returns the maximum trip count of this loop
 | |
|     /// as a normal unsigned value. Returns 0 if the trip count is unknown or
 | |
|     /// not constant. This "trip count" assumes that control exits via
 | |
|     /// ExitingBlock. More precisely, it is the number of times that control may
 | |
|     /// reach ExitingBlock before taking the branch. For loops with multiple
 | |
|     /// exits, it may not be the number times that the loop header executes if
 | |
|     /// the loop exits prematurely via another branch.
 | |
|     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
 | |
| 
 | |
|     /// getSmallConstantTripMultiple - Returns the largest constant divisor of
 | |
|     /// the trip count of this loop as a normal unsigned value, if
 | |
|     /// possible. This means that the actual trip count is always a multiple of
 | |
|     /// the returned value (don't forget the trip count could very well be zero
 | |
|     /// as well!). As explained in the comments for getSmallConstantTripCount,
 | |
|     /// this assumes that control exits the loop via ExitingBlock.
 | |
|     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
 | |
| 
 | |
|     // getExitCount - Get the expression for the number of loop iterations for
 | |
|     // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
 | |
|     // return SCEVCouldNotCompute.
 | |
|     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
 | |
| 
 | |
|     /// getBackedgeTakenCount - If the specified loop has a predictable
 | |
|     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | |
|     /// object. The backedge-taken count is the number of times the loop header
 | |
|     /// will be branched to from within the loop. This is one less than the
 | |
|     /// trip count of the loop, since it doesn't count the first iteration,
 | |
|     /// when the header is branched to from outside the loop.
 | |
|     ///
 | |
|     /// Note that it is not valid to call this method on a loop without a
 | |
|     /// loop-invariant backedge-taken count (see
 | |
|     /// hasLoopInvariantBackedgeTakenCount).
 | |
|     ///
 | |
|     const SCEV *getBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | |
|     /// return the least SCEV value that is known never to be less than the
 | |
|     /// actual backedge taken count.
 | |
|     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
 | |
|     /// has an analyzable loop-invariant backedge-taken count.
 | |
|     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// forgetLoop - This method should be called by the client when it has
 | |
|     /// changed a loop in a way that may effect ScalarEvolution's ability to
 | |
|     /// compute a trip count, or if the loop is deleted.
 | |
|     void forgetLoop(const Loop *L);
 | |
| 
 | |
|     /// forgetValue - This method should be called by the client when it has
 | |
|     /// changed a value in a way that may effect its value, or which may
 | |
|     /// disconnect it from a def-use chain linking it to a loop.
 | |
|     void forgetValue(Value *V);
 | |
| 
 | |
|     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
 | |
|     /// is guaranteed to end in (at every loop iteration).  It is, at the same
 | |
|     /// time, the minimum number of times S is divisible by 2.  For example,
 | |
|     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
 | |
|     /// bitwidth of S.
 | |
|     uint32_t GetMinTrailingZeros(const SCEV *S);
 | |
| 
 | |
|     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
 | |
|     ///
 | |
|     ConstantRange getUnsignedRange(const SCEV *S);
 | |
| 
 | |
|     /// getSignedRange - Determine the signed range for a particular SCEV.
 | |
|     ///
 | |
|     ConstantRange getSignedRange(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNegative - Test if the given expression is known to be negative.
 | |
|     ///
 | |
|     bool isKnownNegative(const SCEV *S);
 | |
| 
 | |
|     /// isKnownPositive - Test if the given expression is known to be positive.
 | |
|     ///
 | |
|     bool isKnownPositive(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonNegative - Test if the given expression is known to be
 | |
|     /// non-negative.
 | |
|     ///
 | |
|     bool isKnownNonNegative(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonPositive - Test if the given expression is known to be
 | |
|     /// non-positive.
 | |
|     ///
 | |
|     bool isKnownNonPositive(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonZero - Test if the given expression is known to be
 | |
|     /// non-zero.
 | |
|     ///
 | |
|     bool isKnownNonZero(const SCEV *S);
 | |
| 
 | |
|     /// isKnownPredicate - Test if the given expression is known to satisfy
 | |
|     /// the condition described by Pred, LHS, and RHS.
 | |
|     ///
 | |
|     bool isKnownPredicate(ICmpInst::Predicate Pred,
 | |
|                           const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
 | |
|     /// predicate Pred. Return true iff any changes were made. If the
 | |
|     /// operands are provably equal or unequal, LHS and RHS are set to
 | |
|     /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
 | |
|     ///
 | |
|     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
 | |
|                               const SCEV *&LHS,
 | |
|                               const SCEV *&RHS,
 | |
|                               unsigned Depth = 0);
 | |
| 
 | |
|     /// getLoopDisposition - Return the "disposition" of the given SCEV with
 | |
|     /// respect to the given loop.
 | |
|     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// isLoopInvariant - Return true if the value of the given SCEV is
 | |
|     /// unchanging in the specified loop.
 | |
|     bool isLoopInvariant(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// hasComputableLoopEvolution - Return true if the given SCEV changes value
 | |
|     /// in a known way in the specified loop.  This property being true implies
 | |
|     /// that the value is variant in the loop AND that we can emit an expression
 | |
|     /// to compute the value of the expression at any particular loop iteration.
 | |
|     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// getLoopDisposition - Return the "disposition" of the given SCEV with
 | |
|     /// respect to the given block.
 | |
|     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
 | |
| 
 | |
|     /// dominates - Return true if elements that makes up the given SCEV
 | |
|     /// dominate the specified basic block.
 | |
|     bool dominates(const SCEV *S, const BasicBlock *BB);
 | |
| 
 | |
|     /// properlyDominates - Return true if elements that makes up the given SCEV
 | |
|     /// properly dominate the specified basic block.
 | |
|     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
 | |
| 
 | |
|     /// hasOperand - Test whether the given SCEV has Op as a direct or
 | |
|     /// indirect operand.
 | |
|     bool hasOperand(const SCEV *S, const SCEV *Op) const;
 | |
| 
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     virtual void releaseMemory();
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     virtual void print(raw_ostream &OS, const Module* = 0) const;
 | |
|     virtual void verifyAnalysis() const;
 | |
| 
 | |
|   private:
 | |
|     FoldingSet<SCEV> UniqueSCEVs;
 | |
|     BumpPtrAllocator SCEVAllocator;
 | |
| 
 | |
|     /// FirstUnknown - The head of a linked list of all SCEVUnknown
 | |
|     /// values that have been allocated. This is used by releaseMemory
 | |
|     /// to locate them all and call their destructors.
 | |
|     SCEVUnknown *FirstUnknown;
 | |
|   };
 | |
| }
 | |
| 
 | |
| #endif
 |