mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Also removes some redundant DNI comments on function declarations already using the macro. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175466 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			479 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			479 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines various classes for working with Instructions and
 | 
						|
// ConstantExprs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_IR_OPERATOR_H
 | 
						|
#define LLVM_IR_OPERATOR_H
 | 
						|
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class GetElementPtrInst;
 | 
						|
class BinaryOperator;
 | 
						|
class ConstantExpr;
 | 
						|
 | 
						|
/// Operator - This is a utility class that provides an abstraction for the
 | 
						|
/// common functionality between Instructions and ConstantExprs.
 | 
						|
///
 | 
						|
class Operator : public User {
 | 
						|
private:
 | 
						|
  // The Operator class is intended to be used as a utility, and is never itself
 | 
						|
  // instantiated.
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  void *operator new(size_t s) LLVM_DELETED_FUNCTION;
 | 
						|
  Operator() LLVM_DELETED_FUNCTION;
 | 
						|
 | 
						|
protected:
 | 
						|
  // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
 | 
						|
  // an overridden method that's not deleted in the base class. Cannot leave
 | 
						|
  // this unimplemented because that leads to an ODR-violation.
 | 
						|
  ~Operator();
 | 
						|
 | 
						|
public:
 | 
						|
  /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
 | 
						|
  ///
 | 
						|
  unsigned getOpcode() const {
 | 
						|
    if (const Instruction *I = dyn_cast<Instruction>(this))
 | 
						|
      return I->getOpcode();
 | 
						|
    return cast<ConstantExpr>(this)->getOpcode();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getOpcode - If V is an Instruction or ConstantExpr, return its
 | 
						|
  /// opcode. Otherwise return UserOp1.
 | 
						|
  ///
 | 
						|
  static unsigned getOpcode(const Value *V) {
 | 
						|
    if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
      return I->getOpcode();
 | 
						|
    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
      return CE->getOpcode();
 | 
						|
    return Instruction::UserOp1;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline bool classof(const Instruction *) { return true; }
 | 
						|
  static inline bool classof(const ConstantExpr *) { return true; }
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return isa<Instruction>(V) || isa<ConstantExpr>(V);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// OverflowingBinaryOperator - Utility class for integer arithmetic operators
 | 
						|
/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
 | 
						|
/// despite that operator having the potential for overflow.
 | 
						|
///
 | 
						|
class OverflowingBinaryOperator : public Operator {
 | 
						|
public:
 | 
						|
  enum {
 | 
						|
    NoUnsignedWrap = (1 << 0),
 | 
						|
    NoSignedWrap   = (1 << 1)
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  friend class BinaryOperator;
 | 
						|
  friend class ConstantExpr;
 | 
						|
  void setHasNoUnsignedWrap(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
 | 
						|
  }
 | 
						|
  void setHasNoSignedWrap(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// hasNoUnsignedWrap - Test whether this operation is known to never
 | 
						|
  /// undergo unsigned overflow, aka the nuw property.
 | 
						|
  bool hasNoUnsignedWrap() const {
 | 
						|
    return SubclassOptionalData & NoUnsignedWrap;
 | 
						|
  }
 | 
						|
 | 
						|
  /// hasNoSignedWrap - Test whether this operation is known to never
 | 
						|
  /// undergo signed overflow, aka the nsw property.
 | 
						|
  bool hasNoSignedWrap() const {
 | 
						|
    return (SubclassOptionalData & NoSignedWrap) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline bool classof(const Instruction *I) {
 | 
						|
    return I->getOpcode() == Instruction::Add ||
 | 
						|
           I->getOpcode() == Instruction::Sub ||
 | 
						|
           I->getOpcode() == Instruction::Mul ||
 | 
						|
           I->getOpcode() == Instruction::Shl;
 | 
						|
  }
 | 
						|
  static inline bool classof(const ConstantExpr *CE) {
 | 
						|
    return CE->getOpcode() == Instruction::Add ||
 | 
						|
           CE->getOpcode() == Instruction::Sub ||
 | 
						|
           CE->getOpcode() == Instruction::Mul ||
 | 
						|
           CE->getOpcode() == Instruction::Shl;
 | 
						|
  }
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
 | 
						|
           (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
 | 
						|
/// "exact", indicating that no bits are destroyed.
 | 
						|
class PossiblyExactOperator : public Operator {
 | 
						|
public:
 | 
						|
  enum {
 | 
						|
    IsExact = (1 << 0)
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  friend class BinaryOperator;
 | 
						|
  friend class ConstantExpr;
 | 
						|
  void setIsExact(bool B) {
 | 
						|
    SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// isExact - Test whether this division is known to be exact, with
 | 
						|
  /// zero remainder.
 | 
						|
  bool isExact() const {
 | 
						|
    return SubclassOptionalData & IsExact;
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isPossiblyExactOpcode(unsigned OpC) {
 | 
						|
    return OpC == Instruction::SDiv ||
 | 
						|
           OpC == Instruction::UDiv ||
 | 
						|
           OpC == Instruction::AShr ||
 | 
						|
           OpC == Instruction::LShr;
 | 
						|
  }
 | 
						|
  static inline bool classof(const ConstantExpr *CE) {
 | 
						|
    return isPossiblyExactOpcode(CE->getOpcode());
 | 
						|
  }
 | 
						|
  static inline bool classof(const Instruction *I) {
 | 
						|
    return isPossiblyExactOpcode(I->getOpcode());
 | 
						|
  }
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
 | 
						|
           (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Convenience struct for specifying and reasoning about fast-math flags.
 | 
						|
class FastMathFlags {
 | 
						|
private:
 | 
						|
  friend class FPMathOperator;
 | 
						|
  unsigned Flags;
 | 
						|
  FastMathFlags(unsigned F) : Flags(F) { }
 | 
						|
 | 
						|
public:
 | 
						|
  enum {
 | 
						|
    UnsafeAlgebra   = (1 << 0),
 | 
						|
    NoNaNs          = (1 << 1),
 | 
						|
    NoInfs          = (1 << 2),
 | 
						|
    NoSignedZeros   = (1 << 3),
 | 
						|
    AllowReciprocal = (1 << 4)
 | 
						|
  };
 | 
						|
 | 
						|
  FastMathFlags() : Flags(0)
 | 
						|
  { }
 | 
						|
 | 
						|
  /// Whether any flag is set
 | 
						|
  bool any() { return Flags != 0; }
 | 
						|
 | 
						|
  /// Set all the flags to false
 | 
						|
  void clear() { Flags = 0; }
 | 
						|
 | 
						|
  /// Flag queries
 | 
						|
  bool noNaNs()          { return 0 != (Flags & NoNaNs); }
 | 
						|
  bool noInfs()          { return 0 != (Flags & NoInfs); }
 | 
						|
  bool noSignedZeros()   { return 0 != (Flags & NoSignedZeros); }
 | 
						|
  bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
 | 
						|
  bool unsafeAlgebra()   { return 0 != (Flags & UnsafeAlgebra); }
 | 
						|
 | 
						|
  /// Flag setters
 | 
						|
  void setNoNaNs()          { Flags |= NoNaNs; }
 | 
						|
  void setNoInfs()          { Flags |= NoInfs; }
 | 
						|
  void setNoSignedZeros()   { Flags |= NoSignedZeros; }
 | 
						|
  void setAllowReciprocal() { Flags |= AllowReciprocal; }
 | 
						|
  void setUnsafeAlgebra() {
 | 
						|
    Flags |= UnsafeAlgebra;
 | 
						|
    setNoNaNs();
 | 
						|
    setNoInfs();
 | 
						|
    setNoSignedZeros();
 | 
						|
    setAllowReciprocal();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// FPMathOperator - Utility class for floating point operations which can have
 | 
						|
/// information about relaxed accuracy requirements attached to them.
 | 
						|
class FPMathOperator : public Operator {
 | 
						|
private:
 | 
						|
  friend class Instruction;
 | 
						|
 | 
						|
  void setHasUnsafeAlgebra(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
 | 
						|
      (B * FastMathFlags::UnsafeAlgebra);
 | 
						|
 | 
						|
    // Unsafe algebra implies all the others
 | 
						|
    if (B) {
 | 
						|
      setHasNoNaNs(true);
 | 
						|
      setHasNoInfs(true);
 | 
						|
      setHasNoSignedZeros(true);
 | 
						|
      setHasAllowReciprocal(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  void setHasNoNaNs(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
 | 
						|
      (B * FastMathFlags::NoNaNs);
 | 
						|
  }
 | 
						|
  void setHasNoInfs(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~FastMathFlags::NoInfs) |
 | 
						|
      (B * FastMathFlags::NoInfs);
 | 
						|
  }
 | 
						|
  void setHasNoSignedZeros(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
 | 
						|
      (B * FastMathFlags::NoSignedZeros);
 | 
						|
  }
 | 
						|
  void setHasAllowReciprocal(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
 | 
						|
      (B * FastMathFlags::AllowReciprocal);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Convenience function for setting all the fast-math flags
 | 
						|
  void setFastMathFlags(FastMathFlags FMF) {
 | 
						|
    SubclassOptionalData |= FMF.Flags;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// Test whether this operation is permitted to be
 | 
						|
  /// algebraically transformed, aka the 'A' fast-math property.
 | 
						|
  bool hasUnsafeAlgebra() const {
 | 
						|
    return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Test whether this operation's arguments and results are to be
 | 
						|
  /// treated as non-NaN, aka the 'N' fast-math property.
 | 
						|
  bool hasNoNaNs() const {
 | 
						|
    return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Test whether this operation's arguments and results are to be
 | 
						|
  /// treated as NoN-Inf, aka the 'I' fast-math property.
 | 
						|
  bool hasNoInfs() const {
 | 
						|
    return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Test whether this operation can treat the sign of zero
 | 
						|
  /// as insignificant, aka the 'S' fast-math property.
 | 
						|
  bool hasNoSignedZeros() const {
 | 
						|
    return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Test whether this operation is permitted to use
 | 
						|
  /// reciprocal instead of division, aka the 'R' fast-math property.
 | 
						|
  bool hasAllowReciprocal() const {
 | 
						|
    return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Convenience function for getting all the fast-math flags
 | 
						|
  FastMathFlags getFastMathFlags() const {
 | 
						|
    return FastMathFlags(SubclassOptionalData);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get the maximum error permitted by this operation in ULPs.  An
 | 
						|
  /// accuracy of 0.0 means that the operation should be performed with the
 | 
						|
  /// default precision.
 | 
						|
  float getFPAccuracy() const;
 | 
						|
 | 
						|
  static inline bool classof(const Instruction *I) {
 | 
						|
    return I->getType()->isFPOrFPVectorTy();
 | 
						|
  }
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// ConcreteOperator - A helper template for defining operators for individual
 | 
						|
/// opcodes.
 | 
						|
template<typename SuperClass, unsigned Opc>
 | 
						|
class ConcreteOperator : public SuperClass {
 | 
						|
public:
 | 
						|
  static inline bool classof(const Instruction *I) {
 | 
						|
    return I->getOpcode() == Opc;
 | 
						|
  }
 | 
						|
  static inline bool classof(const ConstantExpr *CE) {
 | 
						|
    return CE->getOpcode() == Opc;
 | 
						|
  }
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
 | 
						|
           (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class AddOperator
 | 
						|
  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
 | 
						|
};
 | 
						|
class SubOperator
 | 
						|
  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
 | 
						|
};
 | 
						|
class MulOperator
 | 
						|
  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
 | 
						|
};
 | 
						|
class ShlOperator
 | 
						|
  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class SDivOperator
 | 
						|
  : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
 | 
						|
};
 | 
						|
class UDivOperator
 | 
						|
  : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
 | 
						|
};
 | 
						|
class AShrOperator
 | 
						|
  : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
 | 
						|
};
 | 
						|
class LShrOperator
 | 
						|
  : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class GEPOperator
 | 
						|
  : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
 | 
						|
  enum {
 | 
						|
    IsInBounds = (1 << 0)
 | 
						|
  };
 | 
						|
 | 
						|
  friend class GetElementPtrInst;
 | 
						|
  friend class ConstantExpr;
 | 
						|
  void setIsInBounds(bool B) {
 | 
						|
    SubclassOptionalData =
 | 
						|
      (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// isInBounds - Test whether this is an inbounds GEP, as defined
 | 
						|
  /// by LangRef.html.
 | 
						|
  bool isInBounds() const {
 | 
						|
    return SubclassOptionalData & IsInBounds;
 | 
						|
  }
 | 
						|
 | 
						|
  inline op_iterator       idx_begin()       { return op_begin()+1; }
 | 
						|
  inline const_op_iterator idx_begin() const { return op_begin()+1; }
 | 
						|
  inline op_iterator       idx_end()         { return op_end(); }
 | 
						|
  inline const_op_iterator idx_end()   const { return op_end(); }
 | 
						|
 | 
						|
  Value *getPointerOperand() {
 | 
						|
    return getOperand(0);
 | 
						|
  }
 | 
						|
  const Value *getPointerOperand() const {
 | 
						|
    return getOperand(0);
 | 
						|
  }
 | 
						|
  static unsigned getPointerOperandIndex() {
 | 
						|
    return 0U;                      // get index for modifying correct operand
 | 
						|
  }
 | 
						|
 | 
						|
  /// getPointerOperandType - Method to return the pointer operand as a
 | 
						|
  /// PointerType.
 | 
						|
  Type *getPointerOperandType() const {
 | 
						|
    return getPointerOperand()->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getPointerAddressSpace - Method to return the address space of the
 | 
						|
  /// pointer operand.
 | 
						|
  unsigned getPointerAddressSpace() const {
 | 
						|
    return cast<PointerType>(getPointerOperandType())->getAddressSpace();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumIndices() const {  // Note: always non-negative
 | 
						|
    return getNumOperands() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasIndices() const {
 | 
						|
    return getNumOperands() > 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// hasAllZeroIndices - Return true if all of the indices of this GEP are
 | 
						|
  /// zeros.  If so, the result pointer and the first operand have the same
 | 
						|
  /// value, just potentially different types.
 | 
						|
  bool hasAllZeroIndices() const {
 | 
						|
    for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
 | 
						|
      if (ConstantInt *C = dyn_cast<ConstantInt>(I))
 | 
						|
        if (C->isZero())
 | 
						|
          continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// hasAllConstantIndices - Return true if all of the indices of this GEP are
 | 
						|
  /// constant integers.  If so, the result pointer and the first operand have
 | 
						|
  /// a constant offset between them.
 | 
						|
  bool hasAllConstantIndices() const {
 | 
						|
    for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
 | 
						|
      if (!isa<ConstantInt>(I))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Accumulate the constant address offset of this GEP if possible.
 | 
						|
  ///
 | 
						|
  /// This routine accepts an APInt into which it will accumulate the constant
 | 
						|
  /// offset of this GEP if the GEP is in fact constant. If the GEP is not
 | 
						|
  /// all-constant, it returns false and the value of the offset APInt is
 | 
						|
  /// undefined (it is *not* preserved!). The APInt passed into this routine
 | 
						|
  /// must be at least as wide as the IntPtr type for the address space of
 | 
						|
  /// the base GEP pointer.
 | 
						|
  bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
 | 
						|
    assert(Offset.getBitWidth() ==
 | 
						|
           DL.getPointerSizeInBits(getPointerAddressSpace()) &&
 | 
						|
           "The offset must have exactly as many bits as our pointer.");
 | 
						|
 | 
						|
    for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
 | 
						|
         GTI != GTE; ++GTI) {
 | 
						|
      ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | 
						|
      if (!OpC)
 | 
						|
        return false;
 | 
						|
      if (OpC->isZero())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Handle a struct index, which adds its field offset to the pointer.
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
        unsigned ElementIdx = OpC->getZExtValue();
 | 
						|
        const StructLayout *SL = DL.getStructLayout(STy);
 | 
						|
        Offset += APInt(Offset.getBitWidth(),
 | 
						|
                        SL->getElementOffset(ElementIdx));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // For array or vector indices, scale the index by the size of the type.
 | 
						|
      APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
 | 
						|
      Offset += Index * APInt(Offset.getBitWidth(),
 | 
						|
                              DL.getTypeAllocSize(GTI.getIndexedType()));
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |