mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36250 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			339 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass eliminates machine instruction PHI nodes by inserting copy
 | |
| // instructions.  This destroys SSA information, but is the desired input for
 | |
| // some register allocators.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "phielim"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <set>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumAtomic, "Number of atomic phis lowered");
 | |
| //STATISTIC(NumSimple, "Number of simple phis lowered");
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
 | |
|     bool runOnMachineFunction(MachineFunction &Fn) {
 | |
|       analyzePHINodes(Fn);
 | |
| 
 | |
|       bool Changed = false;
 | |
| 
 | |
|       // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | |
|       for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|         Changed |= EliminatePHINodes(Fn, *I);
 | |
| 
 | |
|       VRegPHIUseCount.clear();
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<LiveVariables>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
 | |
|     /// in predecessor basic blocks.
 | |
|     ///
 | |
|     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
|     void LowerAtomicPHINode(MachineBasicBlock &MBB,
 | |
|                             MachineBasicBlock::iterator AfterPHIsIt);
 | |
| 
 | |
|     /// analyzePHINodes - Gather information about the PHI nodes in
 | |
|     /// here. In particular, we want to map the number of uses of a virtual
 | |
|     /// register which is used in a PHI node. We map that to the BB the
 | |
|     /// vreg is coming from. This is used later to determine when the vreg
 | |
|     /// is killed in the BB.
 | |
|     ///
 | |
|     void analyzePHINodes(const MachineFunction& Fn);
 | |
| 
 | |
|     typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
 | |
|     typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
 | |
| 
 | |
|     VRegPHIUse VRegPHIUseCount;
 | |
|   };
 | |
| 
 | |
|   RegisterPass<PNE> X("phi-node-elimination",
 | |
|                       "Eliminate PHI nodes for register allocation");
 | |
| }
 | |
| 
 | |
| const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
 | |
| 
 | |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | |
| /// predecessor basic blocks.
 | |
| ///
 | |
| bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
 | |
|   if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
 | |
|     return false;   // Quick exit for basic blocks without PHIs.
 | |
| 
 | |
|   // Get an iterator to the first instruction after the last PHI node (this may
 | |
|   // also be the end of the basic block).
 | |
|   MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
 | |
|   while (AfterPHIsIt != MBB.end() &&
 | |
|          AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
 | |
|     ++AfterPHIsIt;    // Skip over all of the PHI nodes...
 | |
| 
 | |
|   while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
 | |
|     LowerAtomicPHINode(MBB, AfterPHIsIt);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InstructionUsesRegister - Return true if the specified machine instr has a
 | |
| /// use of the specified register.
 | |
| static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | |
|     if (MI->getOperand(i).isRegister() &&
 | |
|         MI->getOperand(i).getReg() == SrcReg &&
 | |
|         MI->getOperand(i).isUse())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
 | |
| /// under the assuption that it needs to be lowered in a way that supports
 | |
| /// atomic execution of PHIs.  This lowering method is always correct all of the
 | |
| /// time.
 | |
| void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
 | |
|                              MachineBasicBlock::iterator AfterPHIsIt) {
 | |
|   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | |
|   MachineInstr *MPhi = MBB.remove(MBB.begin());
 | |
| 
 | |
|   unsigned DestReg = MPhi->getOperand(0).getReg();
 | |
| 
 | |
|   // Create a new register for the incoming PHI arguments.
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
 | |
|   unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
 | |
| 
 | |
|   // Insert a register to register copy in the top of the current block (but
 | |
|   // after any remaining phi nodes) which copies the new incoming register
 | |
|   // into the phi node destination.
 | |
|   //
 | |
|   const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
 | |
|   RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
 | |
| 
 | |
|   // Update live variable information if there is any...
 | |
|   LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
 | |
|   if (LV) {
 | |
|     MachineInstr *PHICopy = prior(AfterPHIsIt);
 | |
| 
 | |
|     // Increment use count of the newly created virtual register.
 | |
|     LV->getVarInfo(IncomingReg).NumUses++;
 | |
| 
 | |
|     // Add information to LiveVariables to know that the incoming value is
 | |
|     // killed.  Note that because the value is defined in several places (once
 | |
|     // each for each incoming block), the "def" block and instruction fields
 | |
|     // for the VarInfo is not filled in.
 | |
|     //
 | |
|     LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | |
| 
 | |
|     // Since we are going to be deleting the PHI node, if it is the last use
 | |
|     // of any registers, or if the value itself is dead, we need to move this
 | |
|     // information over to the new copy we just inserted.
 | |
|     //
 | |
|     LV->removeVirtualRegistersKilled(MPhi);
 | |
| 
 | |
|     // If the result is dead, update LV.
 | |
|     if (LV->RegisterDefIsDead(MPhi, DestReg)) {
 | |
|       LV->addVirtualRegisterDead(DestReg, PHICopy);
 | |
|       LV->removeVirtualRegistersDead(MPhi);
 | |
|     }
 | |
|     
 | |
|     // Realize that the destination register is defined by the PHI copy now, not
 | |
|     // the PHI itself.
 | |
|     LV->getVarInfo(DestReg).DefInst = PHICopy;
 | |
|   }
 | |
| 
 | |
|   // Adjust the VRegPHIUseCount map to account for the removal of this PHI
 | |
|   // node.
 | |
|   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | |
|     --VRegPHIUseCount[BBVRegPair(
 | |
|                         MPhi->getOperand(i + 1).getMachineBasicBlock(),
 | |
|                         MPhi->getOperand(i).getReg())];
 | |
| 
 | |
|   // Now loop over all of the incoming arguments, changing them to copy into
 | |
|   // the IncomingReg register in the corresponding predecessor basic block.
 | |
|   //
 | |
|   std::set<MachineBasicBlock*> MBBsInsertedInto;
 | |
|   for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
 | |
|     unsigned SrcReg = MPhi->getOperand(i-1).getReg();
 | |
|     assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|            "Machine PHI Operands must all be virtual registers!");
 | |
| 
 | |
|     // Get the MachineBasicBlock equivalent of the BasicBlock that is the
 | |
|     // source path the PHI.
 | |
|     MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
 | |
| 
 | |
|     // Check to make sure we haven't already emitted the copy for this block.
 | |
|     // This can happen because PHI nodes may have multiple entries for the
 | |
|     // same basic block.
 | |
|     if (!MBBsInsertedInto.insert(&opBlock).second)
 | |
|       continue;  // If the copy has already been emitted, we're done.
 | |
|  
 | |
|     // Get an iterator pointing to the first terminator in the block (or end()).
 | |
|     // This is the point where we can insert a copy if we'd like to.
 | |
|     MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
 | |
|     
 | |
|     // Insert the copy.
 | |
|     RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
 | |
| 
 | |
|     // Now update live variable information if we have it.  Otherwise we're done
 | |
|     if (!LV) continue;
 | |
|     
 | |
|     // We want to be able to insert a kill of the register if this PHI
 | |
|     // (aka, the copy we just inserted) is the last use of the source
 | |
|     // value.  Live variable analysis conservatively handles this by
 | |
|     // saying that the value is live until the end of the block the PHI
 | |
|     // entry lives in.  If the value really is dead at the PHI copy, there
 | |
|     // will be no successor blocks which have the value live-in.
 | |
|     //
 | |
|     // Check to see if the copy is the last use, and if so, update the
 | |
|     // live variables information so that it knows the copy source
 | |
|     // instruction kills the incoming value.
 | |
|     //
 | |
|     LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
 | |
| 
 | |
|     // Loop over all of the successors of the basic block, checking to see
 | |
|     // if the value is either live in the block, or if it is killed in the
 | |
|     // block.  Also check to see if this register is in use by another PHI
 | |
|     // node which has not yet been eliminated.  If so, it will be killed
 | |
|     // at an appropriate point later.
 | |
|     //
 | |
| 
 | |
|     // Is it used by any PHI instructions in this block?
 | |
|     bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
 | |
| 
 | |
|     std::vector<MachineBasicBlock*> OpSuccBlocks;
 | |
|     
 | |
|     // Otherwise, scan successors, including the BB the PHI node lives in.
 | |
|     for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
 | |
|            E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
 | |
|       MachineBasicBlock *SuccMBB = *SI;
 | |
| 
 | |
|       // Is it alive in this successor?
 | |
|       unsigned SuccIdx = SuccMBB->getNumber();
 | |
|       if (SuccIdx < InRegVI.AliveBlocks.size() &&
 | |
|           InRegVI.AliveBlocks[SuccIdx]) {
 | |
|         ValueIsLive = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       OpSuccBlocks.push_back(SuccMBB);
 | |
|     }
 | |
| 
 | |
|     // Check to see if this value is live because there is a use in a successor
 | |
|     // that kills it.
 | |
|     if (!ValueIsLive) {
 | |
|       switch (OpSuccBlocks.size()) {
 | |
|       case 1: {
 | |
|         MachineBasicBlock *MBB = OpSuccBlocks[0];
 | |
|         for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | |
|           if (InRegVI.Kills[i]->getParent() == MBB) {
 | |
|             ValueIsLive = true;
 | |
|             break;
 | |
|           }
 | |
|         break;
 | |
|       }
 | |
|       case 2: {
 | |
|         MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
 | |
|         for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | |
|           if (InRegVI.Kills[i]->getParent() == MBB1 || 
 | |
|               InRegVI.Kills[i]->getParent() == MBB2) {
 | |
|             ValueIsLive = true;
 | |
|             break;
 | |
|           }
 | |
|         break;        
 | |
|       }
 | |
|       default:
 | |
|         std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
 | |
|         for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | |
|           if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
 | |
|                                  InRegVI.Kills[i]->getParent())) {
 | |
|             ValueIsLive = true;
 | |
|             break;
 | |
|           }
 | |
|       }
 | |
|     }        
 | |
| 
 | |
|     // Okay, if we now know that the value is not live out of the block,
 | |
|     // we can add a kill marker in this block saying that it kills the incoming
 | |
|     // value!
 | |
|     if (!ValueIsLive) {
 | |
|       // In our final twist, we have to decide which instruction kills the
 | |
|       // register.  In most cases this is the copy, however, the first 
 | |
|       // terminator instruction at the end of the block may also use the value.
 | |
|       // In this case, we should mark *it* as being the killing block, not the
 | |
|       // copy.
 | |
|       bool FirstTerminatorUsesValue = false;
 | |
|       if (I != opBlock.end()) {
 | |
|         FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
 | |
|       
 | |
|         // Check that no other terminators use values.
 | |
| #ifndef NDEBUG
 | |
|         for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
 | |
|              ++TI) {
 | |
|           assert(!InstructionUsesRegister(TI, SrcReg) &&
 | |
|                  "Terminator instructions cannot use virtual registers unless"
 | |
|                  "they are the first terminator in a block!");
 | |
|         }
 | |
| #endif
 | |
|       }
 | |
|       
 | |
|       MachineBasicBlock::iterator KillInst;
 | |
|       if (!FirstTerminatorUsesValue) 
 | |
|         KillInst = prior(I);
 | |
|       else
 | |
|         KillInst = I;
 | |
|       
 | |
|       // Finally, mark it killed.
 | |
|       LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | |
| 
 | |
|       // This vreg no longer lives all of the way through opBlock.
 | |
|       unsigned opBlockNum = opBlock.getNumber();
 | |
|       if (opBlockNum < InRegVI.AliveBlocks.size())
 | |
|         InRegVI.AliveBlocks[opBlockNum] = false;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // Really delete the PHI instruction now!
 | |
|   delete MPhi;
 | |
|   ++NumAtomic;
 | |
| }
 | |
| 
 | |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In
 | |
| /// particular, we want to map the number of uses of a virtual register which is
 | |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | |
| /// used later to determine when the vreg is killed in the BB.
 | |
| ///
 | |
| void PNE::analyzePHINodes(const MachineFunction& Fn) {
 | |
|   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
 | |
|        I != E; ++I)
 | |
|     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
 | |
|       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | |
|         ++VRegPHIUseCount[BBVRegPair(
 | |
|                             BBI->getOperand(i + 1).getMachineBasicBlock(),
 | |
|                             BBI->getOperand(i).getReg())];
 | |
| }
 |