mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Mostly mechanical with some manual reformatting. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135390 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			969 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			969 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LLVM module linker.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Linker.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/Path.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TypeMap implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class TypeMapTy : public ValueMapTypeRemapper {
 | 
						|
  /// MappedTypes - This is a mapping from a source type to a destination type
 | 
						|
  /// to use.
 | 
						|
  DenseMap<Type*, Type*> MappedTypes;
 | 
						|
 | 
						|
  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
 | 
						|
  /// we speculatively add types to MappedTypes, but keep track of them here in
 | 
						|
  /// case we need to roll back.
 | 
						|
  SmallVector<Type*, 16> SpeculativeTypes;
 | 
						|
  
 | 
						|
  /// DefinitionsToResolve - This is a list of non-opaque structs in the source
 | 
						|
  /// module that are mapped to an opaque struct in the destination module.
 | 
						|
  SmallVector<StructType*, 16> DefinitionsToResolve;
 | 
						|
public:
 | 
						|
  
 | 
						|
  /// addTypeMapping - Indicate that the specified type in the destination
 | 
						|
  /// module is conceptually equivalent to the specified type in the source
 | 
						|
  /// module.
 | 
						|
  void addTypeMapping(Type *DstTy, Type *SrcTy);
 | 
						|
 | 
						|
  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
 | 
						|
  /// module from a type definition in the source module.
 | 
						|
  void linkDefinedTypeBodies();
 | 
						|
  
 | 
						|
  /// get - Return the mapped type to use for the specified input type from the
 | 
						|
  /// source module.
 | 
						|
  Type *get(Type *SrcTy);
 | 
						|
 | 
						|
  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
 | 
						|
 | 
						|
private:
 | 
						|
  Type *getImpl(Type *T);
 | 
						|
  /// remapType - Implement the ValueMapTypeRemapper interface.
 | 
						|
  Type *remapType(Type *SrcTy) {
 | 
						|
    return get(SrcTy);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
 | 
						|
  Type *&Entry = MappedTypes[SrcTy];
 | 
						|
  if (Entry) return;
 | 
						|
  
 | 
						|
  if (DstTy == SrcTy) {
 | 
						|
    Entry = DstTy;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check to see if these types are recursively isomorphic and establish a
 | 
						|
  // mapping between them if so.
 | 
						|
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
 | 
						|
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
 | 
						|
    // any speculative mappings we've established.
 | 
						|
    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
 | 
						|
      MappedTypes.erase(SpeculativeTypes[i]);
 | 
						|
  }
 | 
						|
  SpeculativeTypes.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// areTypesIsomorphic - Recursively walk this pair of types, returning true
 | 
						|
/// if they are isomorphic, false if they are not.
 | 
						|
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
 | 
						|
  // Two types with differing kinds are clearly not isomorphic.
 | 
						|
  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
 | 
						|
 | 
						|
  // If we have an entry in the MappedTypes table, then we have our answer.
 | 
						|
  Type *&Entry = MappedTypes[SrcTy];
 | 
						|
  if (Entry)
 | 
						|
    return Entry == DstTy;
 | 
						|
 | 
						|
  // Two identical types are clearly isomorphic.  Remember this
 | 
						|
  // non-speculatively.
 | 
						|
  if (DstTy == SrcTy) {
 | 
						|
    Entry = DstTy;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, we have two types with identical kinds that we haven't seen before.
 | 
						|
 | 
						|
  // If this is an opaque struct type, special case it.
 | 
						|
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
 | 
						|
    // Mapping an opaque type to any struct, just keep the dest struct.
 | 
						|
    if (SSTy->isOpaque()) {
 | 
						|
      Entry = DstTy;
 | 
						|
      SpeculativeTypes.push_back(SrcTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Mapping a non-opaque source type to an opaque dest.  Keep the dest, but
 | 
						|
    // fill it in later.  This doesn't need to be speculative.
 | 
						|
    if (cast<StructType>(DstTy)->isOpaque()) {
 | 
						|
      Entry = DstTy;
 | 
						|
      DefinitionsToResolve.push_back(SSTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the number of subtypes disagree between the two types, then we fail.
 | 
						|
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Fail if any of the extra properties (e.g. array size) of the type disagree.
 | 
						|
  if (isa<IntegerType>(DstTy))
 | 
						|
    return false;  // bitwidth disagrees.
 | 
						|
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
 | 
						|
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
 | 
						|
      return false;
 | 
						|
  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
 | 
						|
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
 | 
						|
      return false;
 | 
						|
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
 | 
						|
    StructType *SSTy = cast<StructType>(SrcTy);
 | 
						|
    if (DSTy->isAnonymous() != SSTy->isAnonymous() ||
 | 
						|
        DSTy->isPacked() != SSTy->isPacked())
 | 
						|
      return false;
 | 
						|
  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
 | 
						|
    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
 | 
						|
      return false;
 | 
						|
  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
 | 
						|
    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we speculate that these two types will line up and recursively
 | 
						|
  // check the subelements.
 | 
						|
  Entry = DstTy;
 | 
						|
  SpeculativeTypes.push_back(SrcTy);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
 | 
						|
    if (!areTypesIsomorphic(DstTy->getContainedType(i),
 | 
						|
                            SrcTy->getContainedType(i)))
 | 
						|
      return false;
 | 
						|
  
 | 
						|
  // If everything seems to have lined up, then everything is great.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
 | 
						|
/// module from a type definition in the source module.
 | 
						|
void TypeMapTy::linkDefinedTypeBodies() {
 | 
						|
  SmallVector<Type*, 16> Elements;
 | 
						|
  SmallString<16> TmpName;
 | 
						|
  
 | 
						|
  // Note that processing entries in this loop (calling 'get') can add new
 | 
						|
  // entries to the DefinitionsToResolve vector.
 | 
						|
  while (!DefinitionsToResolve.empty()) {
 | 
						|
    StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
 | 
						|
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
 | 
						|
    
 | 
						|
    // TypeMap is a many-to-one mapping, if there were multiple types that
 | 
						|
    // provide a body for DstSTy then previous iterations of this loop may have
 | 
						|
    // already handled it.  Just ignore this case.
 | 
						|
    if (!DstSTy->isOpaque()) continue;
 | 
						|
    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
 | 
						|
    
 | 
						|
    // Map the body of the source type over to a new body for the dest type.
 | 
						|
    Elements.resize(SrcSTy->getNumElements());
 | 
						|
    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
 | 
						|
      Elements[i] = getImpl(SrcSTy->getElementType(i));
 | 
						|
    
 | 
						|
    DstSTy->setBody(Elements, SrcSTy->isPacked());
 | 
						|
    
 | 
						|
    // If DstSTy has no name or has a longer name than STy, then viciously steal
 | 
						|
    // STy's name.
 | 
						|
    if (!SrcSTy->hasName()) continue;
 | 
						|
    StringRef SrcName = SrcSTy->getName();
 | 
						|
    
 | 
						|
    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
 | 
						|
      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
 | 
						|
      SrcSTy->setName("");
 | 
						|
      DstSTy->setName(TmpName.str());
 | 
						|
      TmpName.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// get - Return the mapped type to use for the specified input type from the
 | 
						|
/// source module.
 | 
						|
Type *TypeMapTy::get(Type *Ty) {
 | 
						|
  Type *Result = getImpl(Ty);
 | 
						|
  
 | 
						|
  // If this caused a reference to any struct type, resolve it before returning.
 | 
						|
  if (!DefinitionsToResolve.empty())
 | 
						|
    linkDefinedTypeBodies();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// getImpl - This is the recursive version of get().
 | 
						|
Type *TypeMapTy::getImpl(Type *Ty) {
 | 
						|
  // If we already have an entry for this type, return it.
 | 
						|
  Type **Entry = &MappedTypes[Ty];
 | 
						|
  if (*Entry) return *Entry;
 | 
						|
  
 | 
						|
  // If this is not a named struct type, then just map all of the elements and
 | 
						|
  // then rebuild the type from inside out.
 | 
						|
  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isAnonymous()) {
 | 
						|
    // If there are no element types to map, then the type is itself.  This is
 | 
						|
    // true for the anonymous {} struct, things like 'float', integers, etc.
 | 
						|
    if (Ty->getNumContainedTypes() == 0)
 | 
						|
      return *Entry = Ty;
 | 
						|
    
 | 
						|
    // Remap all of the elements, keeping track of whether any of them change.
 | 
						|
    bool AnyChange = false;
 | 
						|
    SmallVector<Type*, 4> ElementTypes;
 | 
						|
    ElementTypes.resize(Ty->getNumContainedTypes());
 | 
						|
    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
 | 
						|
      ElementTypes[i] = getImpl(Ty->getContainedType(i));
 | 
						|
      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we found our type while recursively processing stuff, just use it.
 | 
						|
    Entry = &MappedTypes[Ty];
 | 
						|
    if (*Entry) return *Entry;
 | 
						|
    
 | 
						|
    // If all of the element types mapped directly over, then the type is usable
 | 
						|
    // as-is.
 | 
						|
    if (!AnyChange)
 | 
						|
      return *Entry = Ty;
 | 
						|
    
 | 
						|
    // Otherwise, rebuild a modified type.
 | 
						|
    switch (Ty->getTypeID()) {
 | 
						|
    default: assert(0 && "unknown derived type to remap");
 | 
						|
    case Type::ArrayTyID:
 | 
						|
      return *Entry = ArrayType::get(ElementTypes[0],
 | 
						|
                                     cast<ArrayType>(Ty)->getNumElements());
 | 
						|
    case Type::VectorTyID: 
 | 
						|
      return *Entry = VectorType::get(ElementTypes[0],
 | 
						|
                                      cast<VectorType>(Ty)->getNumElements());
 | 
						|
    case Type::PointerTyID:
 | 
						|
      return *Entry = PointerType::get(ElementTypes[0],
 | 
						|
                                      cast<PointerType>(Ty)->getAddressSpace());
 | 
						|
    case Type::FunctionTyID:
 | 
						|
      return *Entry = FunctionType::get(ElementTypes[0],
 | 
						|
                                        makeArrayRef(ElementTypes).slice(1),
 | 
						|
                                        cast<FunctionType>(Ty)->isVarArg());
 | 
						|
    case Type::StructTyID:
 | 
						|
      // Note that this is only reached for anonymous structs.
 | 
						|
      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
 | 
						|
                                      cast<StructType>(Ty)->isPacked());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is an unmapped named struct.  If the struct can be directly
 | 
						|
  // mapped over, just use it as-is.  This happens in a case when the linked-in
 | 
						|
  // module has something like:
 | 
						|
  //   %T = type {%T*, i32}
 | 
						|
  //   @GV = global %T* null
 | 
						|
  // where T does not exist at all in the destination module.
 | 
						|
  //
 | 
						|
  // The other case we watch for is when the type is not in the destination
 | 
						|
  // module, but that it has to be rebuilt because it refers to something that
 | 
						|
  // is already mapped.  For example, if the destination module has:
 | 
						|
  //  %A = type { i32 }
 | 
						|
  // and the source module has something like
 | 
						|
  //  %A' = type { i32 }
 | 
						|
  //  %B = type { %A'* }
 | 
						|
  //  @GV = global %B* null
 | 
						|
  // then we want to create a new type: "%B = type { %A*}" and have it take the
 | 
						|
  // pristine "%B" name from the source module.
 | 
						|
  //
 | 
						|
  // To determine which case this is, we have to recursively walk the type graph
 | 
						|
  // speculating that we'll be able to reuse it unmodified.  Only if this is
 | 
						|
  // safe would we map the entire thing over.  Because this is an optimization,
 | 
						|
  // and is not required for the prettiness of the linked module, we just skip
 | 
						|
  // it and always rebuild a type here.
 | 
						|
  StructType *STy = cast<StructType>(Ty);
 | 
						|
  
 | 
						|
  // If the type is opaque, we can just use it directly.
 | 
						|
  if (STy->isOpaque())
 | 
						|
    return *Entry = STy;
 | 
						|
  
 | 
						|
  // Otherwise we create a new type and resolve its body later.  This will be
 | 
						|
  // resolved by the top level of get().
 | 
						|
  DefinitionsToResolve.push_back(STy);
 | 
						|
  return *Entry = StructType::createNamed(STy->getContext(), "");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ModuleLinker implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// ModuleLinker - This is an implementation class for the LinkModules
 | 
						|
  /// function, which is the entrypoint for this file.
 | 
						|
  class ModuleLinker {
 | 
						|
    Module *DstM, *SrcM;
 | 
						|
    
 | 
						|
    TypeMapTy TypeMap; 
 | 
						|
 | 
						|
    /// ValueMap - Mapping of values from what they used to be in Src, to what
 | 
						|
    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
 | 
						|
    /// some overhead due to the use of Value handles which the Linker doesn't
 | 
						|
    /// actually need, but this allows us to reuse the ValueMapper code.
 | 
						|
    ValueToValueMapTy ValueMap;
 | 
						|
    
 | 
						|
    struct AppendingVarInfo {
 | 
						|
      GlobalVariable *NewGV;  // New aggregate global in dest module.
 | 
						|
      Constant *DstInit;      // Old initializer from dest module.
 | 
						|
      Constant *SrcInit;      // Old initializer from src module.
 | 
						|
    };
 | 
						|
    
 | 
						|
    std::vector<AppendingVarInfo> AppendingVars;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    std::string ErrorMsg;
 | 
						|
    
 | 
						|
    ModuleLinker(Module *dstM, Module *srcM) : DstM(dstM), SrcM(srcM) { }
 | 
						|
    
 | 
						|
    bool run();
 | 
						|
    
 | 
						|
  private:
 | 
						|
    /// emitError - Helper method for setting a message and returning an error
 | 
						|
    /// code.
 | 
						|
    bool emitError(const Twine &Message) {
 | 
						|
      ErrorMsg = Message.str();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getLinkageResult - This analyzes the two global values and determines
 | 
						|
    /// what the result will look like in the destination module.
 | 
						|
    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
 | 
						|
                          GlobalValue::LinkageTypes <, bool &LinkFromSrc);
 | 
						|
 | 
						|
    /// getLinkedToGlobal - Given a global in the source module, return the
 | 
						|
    /// global in the destination module that is being linked to, if any.
 | 
						|
    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
 | 
						|
      // If the source has no name it can't link.  If it has local linkage,
 | 
						|
      // there is no name match-up going on.
 | 
						|
      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      // Otherwise see if we have a match in the destination module's symtab.
 | 
						|
      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
 | 
						|
      if (DGV == 0) return 0;
 | 
						|
        
 | 
						|
      // If we found a global with the same name in the dest module, but it has
 | 
						|
      // internal linkage, we are really not doing any linkage here.
 | 
						|
      if (DGV->hasLocalLinkage())
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // Otherwise, we do in fact link to the destination global.
 | 
						|
      return DGV;
 | 
						|
    }
 | 
						|
    
 | 
						|
    void computeTypeMapping();
 | 
						|
    
 | 
						|
    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
 | 
						|
    bool linkGlobalProto(GlobalVariable *SrcGV);
 | 
						|
    bool linkFunctionProto(Function *SrcF);
 | 
						|
    bool linkAliasProto(GlobalAlias *SrcA);
 | 
						|
    
 | 
						|
    void linkAppendingVarInit(const AppendingVarInfo &AVI);
 | 
						|
    void linkGlobalInits();
 | 
						|
    void linkFunctionBody(Function *Dst, Function *Src);
 | 
						|
    void linkAliasBodies();
 | 
						|
    void linkNamedMDNodes();
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
 | 
						|
/// in the symbol table.  This is good for all clients except for us.  Go
 | 
						|
/// through the trouble to force this back.
 | 
						|
static void forceRenaming(GlobalValue *GV, StringRef Name) {
 | 
						|
  // If the global doesn't force its name or if it already has the right name,
 | 
						|
  // there is nothing for us to do.
 | 
						|
  if (GV->hasLocalLinkage() || GV->getName() == Name)
 | 
						|
    return;
 | 
						|
 | 
						|
  Module *M = GV->getParent();
 | 
						|
 | 
						|
  // If there is a conflict, rename the conflict.
 | 
						|
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
 | 
						|
    GV->takeName(ConflictGV);
 | 
						|
    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
 | 
						|
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
 | 
						|
  } else {
 | 
						|
    GV->setName(Name);              // Force the name back
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CopyGVAttributes - copy additional attributes (those not needed to construct
 | 
						|
/// a GlobalValue) from the SrcGV to the DestGV.
 | 
						|
static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
 | 
						|
  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
 | 
						|
  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
 | 
						|
  DestGV->copyAttributesFrom(SrcGV);
 | 
						|
  DestGV->setAlignment(Alignment);
 | 
						|
  
 | 
						|
  forceRenaming(DestGV, SrcGV->getName());
 | 
						|
}
 | 
						|
 | 
						|
/// getLinkageResult - This analyzes the two global values and determines what
 | 
						|
/// the result will look like in the destination module.  In particular, it
 | 
						|
/// computes the resultant linkage type, computes whether the global in the
 | 
						|
/// source should be copied over to the destination (replacing the existing
 | 
						|
/// one), and computes whether this linkage is an error or not. It also performs
 | 
						|
/// visibility checks: we cannot link together two symbols with different
 | 
						|
/// visibilities.
 | 
						|
bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
 | 
						|
                                    GlobalValue::LinkageTypes <, 
 | 
						|
                                    bool &LinkFromSrc) {
 | 
						|
  assert(Dest && "Must have two globals being queried");
 | 
						|
  assert(!Src->hasLocalLinkage() &&
 | 
						|
         "If Src has internal linkage, Dest shouldn't be set!");
 | 
						|
  
 | 
						|
  bool SrcIsDeclaration = Src->isDeclaration();
 | 
						|
  bool DestIsDeclaration = Dest->isDeclaration();
 | 
						|
  
 | 
						|
  if (SrcIsDeclaration) {
 | 
						|
    // If Src is external or if both Src & Dest are external..  Just link the
 | 
						|
    // external globals, we aren't adding anything.
 | 
						|
    if (Src->hasDLLImportLinkage()) {
 | 
						|
      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
 | 
						|
      if (DestIsDeclaration) {
 | 
						|
        LinkFromSrc = true;
 | 
						|
        LT = Src->getLinkage();
 | 
						|
      }
 | 
						|
    } else if (Dest->hasExternalWeakLinkage()) {
 | 
						|
      // If the Dest is weak, use the source linkage.
 | 
						|
      LinkFromSrc = true;
 | 
						|
      LT = Src->getLinkage();
 | 
						|
    } else {
 | 
						|
      LinkFromSrc = false;
 | 
						|
      LT = Dest->getLinkage();
 | 
						|
    }
 | 
						|
  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
 | 
						|
    // If Dest is external but Src is not:
 | 
						|
    LinkFromSrc = true;
 | 
						|
    LT = Src->getLinkage();
 | 
						|
  } else if (Src->isWeakForLinker()) {
 | 
						|
    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
 | 
						|
    // or DLL* linkage.
 | 
						|
    if (Dest->hasExternalWeakLinkage() ||
 | 
						|
        Dest->hasAvailableExternallyLinkage() ||
 | 
						|
        (Dest->hasLinkOnceLinkage() &&
 | 
						|
         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
 | 
						|
      LinkFromSrc = true;
 | 
						|
      LT = Src->getLinkage();
 | 
						|
    } else {
 | 
						|
      LinkFromSrc = false;
 | 
						|
      LT = Dest->getLinkage();
 | 
						|
    }
 | 
						|
  } else if (Dest->isWeakForLinker()) {
 | 
						|
    // At this point we know that Src has External* or DLL* linkage.
 | 
						|
    if (Src->hasExternalWeakLinkage()) {
 | 
						|
      LinkFromSrc = false;
 | 
						|
      LT = Dest->getLinkage();
 | 
						|
    } else {
 | 
						|
      LinkFromSrc = true;
 | 
						|
      LT = GlobalValue::ExternalLinkage;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
 | 
						|
            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
 | 
						|
           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
 | 
						|
            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
 | 
						|
           "Unexpected linkage type!");
 | 
						|
    return emitError("Linking globals named '" + Src->getName() +
 | 
						|
                 "': symbol multiply defined!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Check visibility
 | 
						|
  if (Src->getVisibility() != Dest->getVisibility() &&
 | 
						|
      !SrcIsDeclaration && !DestIsDeclaration &&
 | 
						|
      !Src->hasAvailableExternallyLinkage() &&
 | 
						|
      !Dest->hasAvailableExternallyLinkage())
 | 
						|
    return emitError("Linking globals named '" + Src->getName() +
 | 
						|
                   "': symbols have different visibilities!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// computeTypeMapping - Loop over all of the linked values to compute type
 | 
						|
/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
 | 
						|
/// we have two struct types 'Foo' but one got renamed when the module was
 | 
						|
/// loaded into the same LLVMContext.
 | 
						|
void ModuleLinker::computeTypeMapping() {
 | 
						|
  // Incorporate globals.
 | 
						|
  for (Module::global_iterator I = SrcM->global_begin(),
 | 
						|
       E = SrcM->global_end(); I != E; ++I) {
 | 
						|
    GlobalValue *DGV = getLinkedToGlobal(I);
 | 
						|
    if (DGV == 0) continue;
 | 
						|
    
 | 
						|
    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
 | 
						|
      TypeMap.addTypeMapping(DGV->getType(), I->getType());
 | 
						|
      continue;      
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Unify the element type of appending arrays.
 | 
						|
    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
 | 
						|
    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
 | 
						|
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Incorporate functions.
 | 
						|
  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
 | 
						|
    if (GlobalValue *DGV = getLinkedToGlobal(I))
 | 
						|
      TypeMap.addTypeMapping(DGV->getType(), I->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Don't bother incorporating aliases, they aren't generally typed well.
 | 
						|
  
 | 
						|
  // Now that we have discovered all of the type equivalences, get a body for
 | 
						|
  // any 'opaque' types in the dest module that are now resolved. 
 | 
						|
  TypeMap.linkDefinedTypeBodies();
 | 
						|
}
 | 
						|
 | 
						|
/// linkAppendingVarProto - If there were any appending global variables, link
 | 
						|
/// them together now.  Return true on error.
 | 
						|
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
 | 
						|
                                         GlobalVariable *SrcGV) {
 | 
						|
 
 | 
						|
  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
 | 
						|
    return emitError("Linking globals named '" + SrcGV->getName() +
 | 
						|
           "': can only link appending global with another appending global!");
 | 
						|
  
 | 
						|
  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
 | 
						|
  ArrayType *SrcTy =
 | 
						|
    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
 | 
						|
  Type *EltTy = DstTy->getElementType();
 | 
						|
  
 | 
						|
  // Check to see that they two arrays agree on type.
 | 
						|
  if (EltTy != SrcTy->getElementType())
 | 
						|
    return emitError("Appending variables with different element types!");
 | 
						|
  if (DstGV->isConstant() != SrcGV->isConstant())
 | 
						|
    return emitError("Appending variables linked with different const'ness!");
 | 
						|
  
 | 
						|
  if (DstGV->getAlignment() != SrcGV->getAlignment())
 | 
						|
    return emitError(
 | 
						|
             "Appending variables with different alignment need to be linked!");
 | 
						|
  
 | 
						|
  if (DstGV->getVisibility() != SrcGV->getVisibility())
 | 
						|
    return emitError(
 | 
						|
            "Appending variables with different visibility need to be linked!");
 | 
						|
  
 | 
						|
  if (DstGV->getSection() != SrcGV->getSection())
 | 
						|
    return emitError(
 | 
						|
          "Appending variables with different section name need to be linked!");
 | 
						|
  
 | 
						|
  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
 | 
						|
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
 | 
						|
  
 | 
						|
  // Create the new global variable.
 | 
						|
  GlobalVariable *NG =
 | 
						|
    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
 | 
						|
                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
 | 
						|
                       DstGV->isThreadLocal(),
 | 
						|
                       DstGV->getType()->getAddressSpace());
 | 
						|
  
 | 
						|
  // Propagate alignment, visibility and section info.
 | 
						|
  CopyGVAttributes(NG, DstGV);
 | 
						|
  
 | 
						|
  AppendingVarInfo AVI;
 | 
						|
  AVI.NewGV = NG;
 | 
						|
  AVI.DstInit = DstGV->getInitializer();
 | 
						|
  AVI.SrcInit = SrcGV->getInitializer();
 | 
						|
  AppendingVars.push_back(AVI);
 | 
						|
 | 
						|
  // Replace any uses of the two global variables with uses of the new
 | 
						|
  // global.
 | 
						|
  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
 | 
						|
 | 
						|
  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
 | 
						|
  DstGV->eraseFromParent();
 | 
						|
  
 | 
						|
  // Zap the initializer in the source variable so we don't try to link it.
 | 
						|
  SrcGV->setInitializer(0);
 | 
						|
  SrcGV->setLinkage(GlobalValue::ExternalLinkage);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// linkGlobalProto - Loop through the global variables in the src module and
 | 
						|
/// merge them into the dest module.
 | 
						|
bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
 | 
						|
  GlobalValue *DGV = getLinkedToGlobal(SGV);
 | 
						|
 | 
						|
  if (DGV) {
 | 
						|
    // Concatenation of appending linkage variables is magic and handled later.
 | 
						|
    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
 | 
						|
      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
 | 
						|
    
 | 
						|
    // Determine whether linkage of these two globals follows the source
 | 
						|
    // module's definition or the destination module's definition.
 | 
						|
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | 
						|
    bool LinkFromSrc = false;
 | 
						|
    if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If we're not linking from the source, then keep the definition that we
 | 
						|
    // have.
 | 
						|
    if (!LinkFromSrc) {
 | 
						|
      // Special case for const propagation.
 | 
						|
      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
 | 
						|
        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
 | 
						|
          DGVar->setConstant(true);
 | 
						|
      
 | 
						|
      // Set calculated linkage.
 | 
						|
      DGV->setLinkage(NewLinkage);
 | 
						|
      
 | 
						|
      // Make sure to remember this mapping.
 | 
						|
      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
 | 
						|
      
 | 
						|
      // Destroy the source global's initializer (and convert it to a prototype)
 | 
						|
      // so that we don't attempt to copy it over when processing global
 | 
						|
      // initializers.
 | 
						|
      SGV->setInitializer(0);
 | 
						|
      SGV->setLinkage(GlobalValue::ExternalLinkage);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // No linking to be performed or linking from the source: simply create an
 | 
						|
  // identical version of the symbol over in the dest module... the
 | 
						|
  // initializer will be filled in later by LinkGlobalInits.
 | 
						|
  GlobalVariable *NewDGV =
 | 
						|
    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
 | 
						|
                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
 | 
						|
                       SGV->getName(), /*insertbefore*/0,
 | 
						|
                       SGV->isThreadLocal(),
 | 
						|
                       SGV->getType()->getAddressSpace());
 | 
						|
  // Propagate alignment, visibility and section info.
 | 
						|
  CopyGVAttributes(NewDGV, SGV);
 | 
						|
 | 
						|
  if (DGV) {
 | 
						|
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
 | 
						|
    DGV->eraseFromParent();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Make sure to remember this mapping.
 | 
						|
  ValueMap[SGV] = NewDGV;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// linkFunctionProto - Link the function in the source module into the
 | 
						|
/// destination module if needed, setting up mapping information.
 | 
						|
bool ModuleLinker::linkFunctionProto(Function *SF) {
 | 
						|
  GlobalValue *DGV = getLinkedToGlobal(SF);
 | 
						|
 | 
						|
  if (DGV) {
 | 
						|
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | 
						|
    bool LinkFromSrc = false;
 | 
						|
    if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    if (!LinkFromSrc) {
 | 
						|
      // Set calculated linkage
 | 
						|
      DGV->setLinkage(NewLinkage);
 | 
						|
      
 | 
						|
      // Make sure to remember this mapping.
 | 
						|
      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
 | 
						|
      
 | 
						|
      // Remove the body from the source module so we don't attempt to remap it.
 | 
						|
      SF->deleteBody();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there is no linkage to be performed or we are linking from the source,
 | 
						|
  // bring SF over.
 | 
						|
  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
 | 
						|
                                     SF->getLinkage(), SF->getName(), DstM);
 | 
						|
  CopyGVAttributes(NewDF, SF);
 | 
						|
 | 
						|
  if (DGV) {
 | 
						|
    // Any uses of DF need to change to NewDF, with cast.
 | 
						|
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
 | 
						|
    DGV->eraseFromParent();
 | 
						|
  }
 | 
						|
  
 | 
						|
  ValueMap[SF] = NewDF;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// LinkAliasProto - Set up prototypes for any aliases that come over from the
 | 
						|
/// source module.
 | 
						|
bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
 | 
						|
  GlobalValue *DGV = getLinkedToGlobal(SGA);
 | 
						|
  
 | 
						|
  if (DGV) {
 | 
						|
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | 
						|
    bool LinkFromSrc = false;
 | 
						|
    if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    if (!LinkFromSrc) {
 | 
						|
      // Set calculated linkage.
 | 
						|
      DGV->setLinkage(NewLinkage);
 | 
						|
      
 | 
						|
      // Make sure to remember this mapping.
 | 
						|
      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
 | 
						|
      
 | 
						|
      // Remove the body from the source module so we don't attempt to remap it.
 | 
						|
      SGA->setAliasee(0);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there is no linkage to be performed or we're linking from the source,
 | 
						|
  // bring over SGA.
 | 
						|
  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
 | 
						|
                                       SGA->getLinkage(), SGA->getName(),
 | 
						|
                                       /*aliasee*/0, DstM);
 | 
						|
  CopyGVAttributes(NewDA, SGA);
 | 
						|
 | 
						|
  if (DGV) {
 | 
						|
    // Any uses of DGV need to change to NewDA, with cast.
 | 
						|
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
 | 
						|
    DGV->eraseFromParent();
 | 
						|
  }
 | 
						|
  
 | 
						|
  ValueMap[SGA] = NewDA;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
 | 
						|
  // Merge the initializer.
 | 
						|
  SmallVector<Constant*, 16> Elements;
 | 
						|
  if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
      Elements.push_back(I->getOperand(i));
 | 
						|
  } else {
 | 
						|
    assert(isa<ConstantAggregateZero>(AVI.DstInit));
 | 
						|
    ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
 | 
						|
    Type *EltTy = DstAT->getElementType();
 | 
						|
    Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
 | 
						|
  if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
      Elements.push_back(I->getOperand(i));
 | 
						|
  } else {
 | 
						|
    assert(isa<ConstantAggregateZero>(SrcInit));
 | 
						|
    ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
 | 
						|
    Type *EltTy = SrcAT->getElementType();
 | 
						|
    Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
 | 
						|
  }
 | 
						|
  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
 | 
						|
  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// linkGlobalInits - Update the initializers in the Dest module now that all
 | 
						|
// globals that may be referenced are in Dest.
 | 
						|
void ModuleLinker::linkGlobalInits() {
 | 
						|
  // Loop over all of the globals in the src module, mapping them over as we go
 | 
						|
  for (Module::const_global_iterator I = SrcM->global_begin(),
 | 
						|
       E = SrcM->global_end(); I != E; ++I) {
 | 
						|
    if (!I->hasInitializer()) continue;      // Only process initialized GV's.
 | 
						|
    
 | 
						|
    // Grab destination global variable.
 | 
						|
    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
 | 
						|
    // Figure out what the initializer looks like in the dest module.
 | 
						|
    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
 | 
						|
                                 RF_None, &TypeMap));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// linkFunctionBody - Copy the source function over into the dest function and
 | 
						|
// fix up references to values.  At this point we know that Dest is an external
 | 
						|
// function, and that Src is not.
 | 
						|
void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
 | 
						|
  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
 | 
						|
 | 
						|
  // Go through and convert function arguments over, remembering the mapping.
 | 
						|
  Function::arg_iterator DI = Dst->arg_begin();
 | 
						|
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | 
						|
       I != E; ++I, ++DI) {
 | 
						|
    DI->setName(I->getName());  // Copy the name over.
 | 
						|
 | 
						|
    // Add a mapping to our mapping.
 | 
						|
    ValueMap[I] = DI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Splice the body of the source function into the dest function.
 | 
						|
  Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
 | 
						|
 | 
						|
  // At this point, all of the instructions and values of the function are now
 | 
						|
  // copied over.  The only problem is that they are still referencing values in
 | 
						|
  // the Source function as operands.  Loop through all of the operands of the
 | 
						|
  // functions and patch them up to point to the local versions.
 | 
						|
  for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
 | 
						|
 | 
						|
  // There is no need to map the arguments anymore.
 | 
						|
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | 
						|
       I != E; ++I)
 | 
						|
    ValueMap.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuleLinker::linkAliasBodies() {
 | 
						|
  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (Constant *Aliasee = I->getAliasee()) {
 | 
						|
      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
 | 
						|
      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
 | 
						|
/// module.
 | 
						|
void ModuleLinker::linkNamedMDNodes() {
 | 
						|
  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
 | 
						|
       E = SrcM->named_metadata_end(); I != E; ++I) {
 | 
						|
    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
 | 
						|
    // Add Src elements into Dest node.
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
 | 
						|
                                   RF_None, &TypeMap));
 | 
						|
  }
 | 
						|
}
 | 
						|
  
 | 
						|
bool ModuleLinker::run() {
 | 
						|
  assert(DstM && "Null Destination module");
 | 
						|
  assert(SrcM && "Null Source Module");
 | 
						|
 | 
						|
  // Inherit the target data from the source module if the destination module
 | 
						|
  // doesn't have one already.
 | 
						|
  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
 | 
						|
    DstM->setDataLayout(SrcM->getDataLayout());
 | 
						|
 | 
						|
  // Copy the target triple from the source to dest if the dest's is empty.
 | 
						|
  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
 | 
						|
    DstM->setTargetTriple(SrcM->getTargetTriple());
 | 
						|
 | 
						|
  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
 | 
						|
      SrcM->getDataLayout() != DstM->getDataLayout())
 | 
						|
    errs() << "WARNING: Linking two modules of different data layouts!\n";
 | 
						|
  if (!SrcM->getTargetTriple().empty() &&
 | 
						|
      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
 | 
						|
    errs() << "WARNING: Linking two modules of different target triples: ";
 | 
						|
    if (!SrcM->getModuleIdentifier().empty())
 | 
						|
      errs() << SrcM->getModuleIdentifier() << ": ";
 | 
						|
    errs() << "'" << SrcM->getTargetTriple() << "' and '" 
 | 
						|
           << DstM->getTargetTriple() << "'\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Append the module inline asm string.
 | 
						|
  if (!SrcM->getModuleInlineAsm().empty()) {
 | 
						|
    if (DstM->getModuleInlineAsm().empty())
 | 
						|
      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
 | 
						|
    else
 | 
						|
      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
 | 
						|
                               SrcM->getModuleInlineAsm());
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the destination module's dependent libraries list with the libraries
 | 
						|
  // from the source module. There's no opportunity for duplicates here as the
 | 
						|
  // Module ensures that duplicate insertions are discarded.
 | 
						|
  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
 | 
						|
       SI != SE; ++SI)
 | 
						|
    DstM->addLibrary(*SI);
 | 
						|
  
 | 
						|
  // If the source library's module id is in the dependent library list of the
 | 
						|
  // destination library, remove it since that module is now linked in.
 | 
						|
  StringRef ModuleId = SrcM->getModuleIdentifier();
 | 
						|
  if (!ModuleId.empty())
 | 
						|
    DstM->removeLibrary(sys::path::stem(ModuleId));
 | 
						|
 | 
						|
  
 | 
						|
  // Loop over all of the linked values to compute type mappings.
 | 
						|
  computeTypeMapping();
 | 
						|
 | 
						|
  // Remap all of the named mdnoes in Src into the DstM module. We do this
 | 
						|
  // after linking GlobalValues so that MDNodes that reference GlobalValues
 | 
						|
  // are properly remapped.
 | 
						|
  linkNamedMDNodes();
 | 
						|
 | 
						|
  // Insert all of the globals in src into the DstM module... without linking
 | 
						|
  // initializers (which could refer to functions not yet mapped over).
 | 
						|
  for (Module::global_iterator I = SrcM->global_begin(),
 | 
						|
       E = SrcM->global_end(); I != E; ++I)
 | 
						|
    if (linkGlobalProto(I))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Link the functions together between the two modules, without doing function
 | 
						|
  // bodies... this just adds external function prototypes to the DstM
 | 
						|
  // function...  We do this so that when we begin processing function bodies,
 | 
						|
  // all of the global values that may be referenced are available in our
 | 
						|
  // ValueMap.
 | 
						|
  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
 | 
						|
    if (linkFunctionProto(I))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // If there were any aliases, link them now.
 | 
						|
  for (Module::alias_iterator I = SrcM->alias_begin(),
 | 
						|
       E = SrcM->alias_end(); I != E; ++I)
 | 
						|
    if (linkAliasProto(I))
 | 
						|
      return true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
 | 
						|
    linkAppendingVarInit(AppendingVars[i]);
 | 
						|
  
 | 
						|
  // Update the initializers in the DstM module now that all globals that may
 | 
						|
  // be referenced are in DstM.
 | 
						|
  linkGlobalInits();
 | 
						|
 | 
						|
  // Link in the function bodies that are defined in the source module into
 | 
						|
  // DstM.
 | 
						|
  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
 | 
						|
    if (SF->isDeclaration()) continue;      // No body if function is external.
 | 
						|
    
 | 
						|
    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
 | 
						|
  }
 | 
						|
 | 
						|
  // Resolve all uses of aliases with aliasees.
 | 
						|
  linkAliasBodies();
 | 
						|
 | 
						|
  // Now that all of the types from the source are used, resolve any structs
 | 
						|
  // copied over to the dest that didn't exist there.
 | 
						|
  TypeMap.linkDefinedTypeBodies();
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LinkModules entrypoint.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// LinkModules - This function links two modules together, with the resulting
 | 
						|
// left module modified to be the composite of the two input modules.  If an
 | 
						|
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
 | 
						|
// the problem.  Upon failure, the Dest module could be in a modified state, and
 | 
						|
// shouldn't be relied on to be consistent.
 | 
						|
bool Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
 | 
						|
  ModuleLinker TheLinker(Dest, Src);
 | 
						|
  if (TheLinker.run()) {
 | 
						|
    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 |