mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
b289f19eae
For the short CALL/INVOKE syntax, the signedness of the result type is two extractions away from the type argument because its a POINTER to function type, not a function type. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35735 91177308-0d34-0410-b5e6-96231b3b80d8
3886 lines
135 KiB
Plaintext
3886 lines
135 KiB
Plaintext
//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the bison parser for LLVM assembly languages files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
%{
|
|
#include "UpgradeInternals.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ValueSymbolTable.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <list>
|
|
#include <utility>
|
|
|
|
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
|
|
// relating to upreferences in the input stream.
|
|
//
|
|
//#define DEBUG_UPREFS 1
|
|
#ifdef DEBUG_UPREFS
|
|
#define UR_OUT(X) std::cerr << X
|
|
#else
|
|
#define UR_OUT(X)
|
|
#endif
|
|
|
|
#define YYERROR_VERBOSE 1
|
|
#define YYINCLUDED_STDLIB_H
|
|
#define YYDEBUG 1
|
|
|
|
int yylex();
|
|
int yyparse();
|
|
|
|
int yyerror(const char*);
|
|
static void warning(const std::string& WarningMsg);
|
|
|
|
namespace llvm {
|
|
|
|
std::istream* LexInput;
|
|
static std::string CurFilename;
|
|
|
|
// This bool controls whether attributes are ever added to function declarations
|
|
// definitions and calls.
|
|
static bool AddAttributes = false;
|
|
|
|
static Module *ParserResult;
|
|
static bool ObsoleteVarArgs;
|
|
static bool NewVarArgs;
|
|
static BasicBlock *CurBB;
|
|
static GlobalVariable *CurGV;
|
|
|
|
// This contains info used when building the body of a function. It is
|
|
// destroyed when the function is completed.
|
|
//
|
|
typedef std::vector<Value *> ValueList; // Numbered defs
|
|
|
|
typedef std::pair<std::string,TypeInfo> RenameMapKey;
|
|
typedef std::map<RenameMapKey,std::string> RenameMapType;
|
|
|
|
static void
|
|
ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
|
|
std::map<const Type *,ValueList> *FutureLateResolvers = 0);
|
|
|
|
static struct PerModuleInfo {
|
|
Module *CurrentModule;
|
|
std::map<const Type *, ValueList> Values; // Module level numbered definitions
|
|
std::map<const Type *,ValueList> LateResolveValues;
|
|
std::vector<PATypeHolder> Types;
|
|
std::vector<Signedness> TypeSigns;
|
|
std::map<std::string,Signedness> NamedTypeSigns;
|
|
std::map<std::string,Signedness> NamedValueSigns;
|
|
std::map<ValID, PATypeHolder> LateResolveTypes;
|
|
static Module::Endianness Endian;
|
|
static Module::PointerSize PointerSize;
|
|
RenameMapType RenameMap;
|
|
|
|
/// PlaceHolderInfo - When temporary placeholder objects are created, remember
|
|
/// how they were referenced and on which line of the input they came from so
|
|
/// that we can resolve them later and print error messages as appropriate.
|
|
std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
|
|
|
|
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
|
|
// references to global values. Global values may be referenced before they
|
|
// are defined, and if so, the temporary object that they represent is held
|
|
// here. This is used for forward references of GlobalValues.
|
|
//
|
|
typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*>
|
|
GlobalRefsType;
|
|
GlobalRefsType GlobalRefs;
|
|
|
|
void ModuleDone() {
|
|
// If we could not resolve some functions at function compilation time
|
|
// (calls to functions before they are defined), resolve them now... Types
|
|
// are resolved when the constant pool has been completely parsed.
|
|
//
|
|
ResolveDefinitions(LateResolveValues);
|
|
|
|
// Check to make sure that all global value forward references have been
|
|
// resolved!
|
|
//
|
|
if (!GlobalRefs.empty()) {
|
|
std::string UndefinedReferences = "Unresolved global references exist:\n";
|
|
|
|
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
|
|
I != E; ++I) {
|
|
UndefinedReferences += " " + I->first.first->getDescription() + " " +
|
|
I->first.second.getName() + "\n";
|
|
}
|
|
error(UndefinedReferences);
|
|
return;
|
|
}
|
|
|
|
if (CurrentModule->getDataLayout().empty()) {
|
|
std::string dataLayout;
|
|
if (Endian != Module::AnyEndianness)
|
|
dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
|
|
if (PointerSize != Module::AnyPointerSize) {
|
|
if (!dataLayout.empty())
|
|
dataLayout += "-";
|
|
dataLayout.append(PointerSize == Module::Pointer64 ?
|
|
"p:64:64" : "p:32:32");
|
|
}
|
|
CurrentModule->setDataLayout(dataLayout);
|
|
}
|
|
|
|
Values.clear(); // Clear out function local definitions
|
|
Types.clear();
|
|
TypeSigns.clear();
|
|
NamedTypeSigns.clear();
|
|
NamedValueSigns.clear();
|
|
CurrentModule = 0;
|
|
}
|
|
|
|
// GetForwardRefForGlobal - Check to see if there is a forward reference
|
|
// for this global. If so, remove it from the GlobalRefs map and return it.
|
|
// If not, just return null.
|
|
GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
|
|
// Check to see if there is a forward reference to this global variable...
|
|
// if there is, eliminate it and patch the reference to use the new def'n.
|
|
GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
|
|
GlobalValue *Ret = 0;
|
|
if (I != GlobalRefs.end()) {
|
|
Ret = I->second;
|
|
GlobalRefs.erase(I);
|
|
}
|
|
return Ret;
|
|
}
|
|
void setEndianness(Module::Endianness E) { Endian = E; }
|
|
void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
|
|
} CurModule;
|
|
|
|
Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness;
|
|
Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;
|
|
|
|
static struct PerFunctionInfo {
|
|
Function *CurrentFunction; // Pointer to current function being created
|
|
|
|
std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
|
|
std::map<const Type*, ValueList> LateResolveValues;
|
|
bool isDeclare; // Is this function a forward declararation?
|
|
GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.
|
|
|
|
/// BBForwardRefs - When we see forward references to basic blocks, keep
|
|
/// track of them here.
|
|
std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
|
|
std::vector<BasicBlock*> NumberedBlocks;
|
|
RenameMapType RenameMap;
|
|
unsigned NextBBNum;
|
|
|
|
inline PerFunctionInfo() {
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
Linkage = GlobalValue::ExternalLinkage;
|
|
}
|
|
|
|
inline void FunctionStart(Function *M) {
|
|
CurrentFunction = M;
|
|
NextBBNum = 0;
|
|
}
|
|
|
|
void FunctionDone() {
|
|
NumberedBlocks.clear();
|
|
|
|
// Any forward referenced blocks left?
|
|
if (!BBForwardRefs.empty()) {
|
|
error("Undefined reference to label " +
|
|
BBForwardRefs.begin()->first->getName());
|
|
return;
|
|
}
|
|
|
|
// Resolve all forward references now.
|
|
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
|
|
|
|
Values.clear(); // Clear out function local definitions
|
|
RenameMap.clear();
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
Linkage = GlobalValue::ExternalLinkage;
|
|
}
|
|
} CurFun; // Info for the current function...
|
|
|
|
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
|
|
|
|
/// This function is just a utility to make a Key value for the rename map.
|
|
/// The Key is a combination of the name, type, Signedness of the original
|
|
/// value (global/function). This just constructs the key and ensures that
|
|
/// named Signedness values are resolved to the actual Signedness.
|
|
/// @brief Make a key for the RenameMaps
|
|
static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty,
|
|
const Signedness &Sign) {
|
|
TypeInfo TI;
|
|
TI.T = Ty;
|
|
if (Sign.isNamed())
|
|
// Don't allow Named Signedness nodes because they won't match. The actual
|
|
// Signedness must be looked up in the NamedTypeSigns map.
|
|
TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]);
|
|
else
|
|
TI.S.copy(Sign);
|
|
return std::make_pair(Name, TI);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle definitions of all the types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static int InsertValue(Value *V,
|
|
std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
|
|
if (V->hasName()) return -1; // Is this a numbered definition?
|
|
|
|
// Yes, insert the value into the value table...
|
|
ValueList &List = ValueTab[V->getType()];
|
|
List.push_back(V);
|
|
return List.size()-1;
|
|
}
|
|
|
|
static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
|
|
switch (D.Type) {
|
|
case ValID::NumberVal: // Is it a numbered definition?
|
|
// Module constants occupy the lowest numbered slots...
|
|
if ((unsigned)D.Num < CurModule.Types.size()) {
|
|
return CurModule.Types[(unsigned)D.Num];
|
|
}
|
|
break;
|
|
case ValID::NameVal: // Is it a named definition?
|
|
if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
|
|
return N;
|
|
}
|
|
break;
|
|
default:
|
|
error("Internal parser error: Invalid symbol type reference");
|
|
return 0;
|
|
}
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
|
|
|
|
if (inFunctionScope()) {
|
|
if (D.Type == ValID::NameVal) {
|
|
error("Reference to an undefined type: '" + D.getName() + "'");
|
|
return 0;
|
|
} else {
|
|
error("Reference to an undefined type: #" + itostr(D.Num));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
|
|
if (I != CurModule.LateResolveTypes.end())
|
|
return I->second;
|
|
|
|
Type *Typ = OpaqueType::get();
|
|
CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
|
|
return Typ;
|
|
}
|
|
|
|
/// This is like the getType method except that instead of looking up the type
|
|
/// for a given ID, it looks up that type's sign.
|
|
/// @brief Get the signedness of a referenced type
|
|
static Signedness getTypeSign(const ValID &D) {
|
|
switch (D.Type) {
|
|
case ValID::NumberVal: // Is it a numbered definition?
|
|
// Module constants occupy the lowest numbered slots...
|
|
if ((unsigned)D.Num < CurModule.TypeSigns.size()) {
|
|
return CurModule.TypeSigns[(unsigned)D.Num];
|
|
}
|
|
break;
|
|
case ValID::NameVal: { // Is it a named definition?
|
|
std::map<std::string,Signedness>::const_iterator I =
|
|
CurModule.NamedTypeSigns.find(D.Name);
|
|
if (I != CurModule.NamedTypeSigns.end())
|
|
return I->second;
|
|
// Perhaps its a named forward .. just cache the name
|
|
Signedness S;
|
|
S.makeNamed(D.Name);
|
|
return S;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
// If we don't find it, its signless
|
|
Signedness S;
|
|
S.makeSignless();
|
|
return S;
|
|
}
|
|
|
|
/// This function is analagous to getElementType in LLVM. It provides the same
|
|
/// function except that it looks up the Signedness instead of the type. This is
|
|
/// used when processing GEP instructions that need to extract the type of an
|
|
/// indexed struct/array/ptr member.
|
|
/// @brief Look up an element's sign.
|
|
static Signedness getElementSign(const ValueInfo& VI,
|
|
const std::vector<Value*> &Indices) {
|
|
const Type *Ptr = VI.V->getType();
|
|
assert(isa<PointerType>(Ptr) && "Need pointer type");
|
|
|
|
unsigned CurIdx = 0;
|
|
Signedness S(VI.S);
|
|
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
|
|
if (CurIdx == Indices.size())
|
|
break;
|
|
|
|
Value *Index = Indices[CurIdx++];
|
|
assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type");
|
|
Ptr = CT->getTypeAtIndex(Index);
|
|
if (const Type* Ty = Ptr->getForwardedType())
|
|
Ptr = Ty;
|
|
assert(S.isComposite() && "Bad Signedness type");
|
|
if (isa<StructType>(CT)) {
|
|
S = S.get(cast<ConstantInt>(Index)->getZExtValue());
|
|
} else {
|
|
S = S.get(0UL);
|
|
}
|
|
if (S.isNamed())
|
|
S = CurModule.NamedTypeSigns[S.getName()];
|
|
}
|
|
Signedness Result;
|
|
Result.makeComposite(S);
|
|
return Result;
|
|
}
|
|
|
|
/// This function just translates a ConstantInfo into a ValueInfo and calls
|
|
/// getElementSign(ValueInfo,...). Its just a convenience.
|
|
/// @brief ConstantInfo version of getElementSign.
|
|
static Signedness getElementSign(const ConstInfo& CI,
|
|
const std::vector<Constant*> &Indices) {
|
|
ValueInfo VI;
|
|
VI.V = CI.C;
|
|
VI.S.copy(CI.S);
|
|
std::vector<Value*> Idx;
|
|
for (unsigned i = 0; i < Indices.size(); ++i)
|
|
Idx.push_back(Indices[i]);
|
|
Signedness result = getElementSign(VI, Idx);
|
|
VI.destroy();
|
|
return result;
|
|
}
|
|
|
|
/// This function determines if two function types differ only in their use of
|
|
/// the sret parameter attribute in the first argument. If they are identical
|
|
/// in all other respects, it returns true. Otherwise, it returns false.
|
|
static bool FuncTysDifferOnlyBySRet(const FunctionType *F1,
|
|
const FunctionType *F2) {
|
|
if (F1->getReturnType() != F2->getReturnType() ||
|
|
F1->getNumParams() != F2->getNumParams() ||
|
|
F1->getParamAttrs(0) != F2->getParamAttrs(0))
|
|
return false;
|
|
unsigned SRetMask = ~unsigned(FunctionType::StructRetAttribute);
|
|
for (unsigned i = 0; i < F1->getNumParams(); ++i) {
|
|
if (F1->getParamType(i) != F2->getParamType(i) ||
|
|
unsigned(F1->getParamAttrs(i+1)) & SRetMask !=
|
|
unsigned(F2->getParamAttrs(i+1)) & SRetMask)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// This function determines if the type of V and Ty differ only by the SRet
|
|
/// parameter attribute. This is a more generalized case of
|
|
/// FuncTysDIfferOnlyBySRet since it doesn't require FunctionType arguments.
|
|
static bool TypesDifferOnlyBySRet(Value *V, const Type* Ty) {
|
|
if (V->getType() == Ty)
|
|
return true;
|
|
const PointerType *PF1 = dyn_cast<PointerType>(Ty);
|
|
const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
|
|
if (PF1 && PF2) {
|
|
const FunctionType* FT1 = dyn_cast<FunctionType>(PF1->getElementType());
|
|
const FunctionType* FT2 = dyn_cast<FunctionType>(PF2->getElementType());
|
|
if (FT1 && FT2)
|
|
return FuncTysDifferOnlyBySRet(FT1, FT2);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// The upgrade of csretcc to sret param attribute may have caused a function
|
|
// to not be found because the param attribute changed the type of the called
|
|
// function. This helper function, used in getExistingValue, detects that
|
|
// situation and bitcasts the function to the correct type.
|
|
static Value* handleSRetFuncTypeMerge(Value *V, const Type* Ty) {
|
|
// Handle degenerate cases
|
|
if (!V)
|
|
return 0;
|
|
if (V->getType() == Ty)
|
|
return V;
|
|
|
|
const PointerType *PF1 = dyn_cast<PointerType>(Ty);
|
|
const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
|
|
if (PF1 && PF2) {
|
|
const FunctionType *FT1 = dyn_cast<FunctionType>(PF1->getElementType());
|
|
const FunctionType *FT2 = dyn_cast<FunctionType>(PF2->getElementType());
|
|
if (FT1 && FT2 && FuncTysDifferOnlyBySRet(FT1, FT2))
|
|
if (FT2->paramHasAttr(1, FunctionType::StructRetAttribute))
|
|
return V;
|
|
else if (Constant *C = dyn_cast<Constant>(V))
|
|
return ConstantExpr::getBitCast(C, PF1);
|
|
else
|
|
return new BitCastInst(V, PF1, "upgrd.cast", CurBB);
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// getExistingValue - Look up the value specified by the provided type and
|
|
// the provided ValID. If the value exists and has already been defined, return
|
|
// it. Otherwise return null.
|
|
//
|
|
static Value *getExistingValue(const Type *Ty, const ValID &D) {
|
|
if (isa<FunctionType>(Ty)) {
|
|
error("Functions are not values and must be referenced as pointers");
|
|
}
|
|
|
|
switch (D.Type) {
|
|
case ValID::NumberVal: { // Is it a numbered definition?
|
|
unsigned Num = (unsigned)D.Num;
|
|
|
|
// Module constants occupy the lowest numbered slots...
|
|
std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
|
|
if (VI != CurModule.Values.end()) {
|
|
if (Num < VI->second.size())
|
|
return VI->second[Num];
|
|
Num -= VI->second.size();
|
|
}
|
|
|
|
// Make sure that our type is within bounds
|
|
VI = CurFun.Values.find(Ty);
|
|
if (VI == CurFun.Values.end()) return 0;
|
|
|
|
// Check that the number is within bounds...
|
|
if (VI->second.size() <= Num) return 0;
|
|
|
|
return VI->second[Num];
|
|
}
|
|
|
|
case ValID::NameVal: { // Is it a named definition?
|
|
// Get the name out of the ID
|
|
RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S);
|
|
Value *V = 0;
|
|
if (inFunctionScope()) {
|
|
// See if the name was renamed
|
|
RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
|
|
std::string LookupName;
|
|
if (I != CurFun.RenameMap.end())
|
|
LookupName = I->second;
|
|
else
|
|
LookupName = D.Name;
|
|
ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
|
|
V = SymTab.lookup(LookupName);
|
|
if (V && V->getType() != Ty)
|
|
V = handleSRetFuncTypeMerge(V, Ty);
|
|
assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
|
|
}
|
|
if (!V) {
|
|
RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
|
|
std::string LookupName;
|
|
if (I != CurModule.RenameMap.end())
|
|
LookupName = I->second;
|
|
else
|
|
LookupName = D.Name;
|
|
V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
|
|
if (V && V->getType() != Ty)
|
|
V = handleSRetFuncTypeMerge(V, Ty);
|
|
assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
|
|
}
|
|
if (!V)
|
|
return 0;
|
|
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return V;
|
|
}
|
|
|
|
// Check to make sure that "Ty" is an integral type, and that our
|
|
// value will fit into the specified type...
|
|
case ValID::ConstSIntVal: // Is it a constant pool reference??
|
|
if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
|
|
error("Signed integral constant '" + itostr(D.ConstPool64) +
|
|
"' is invalid for type '" + Ty->getDescription() + "'");
|
|
}
|
|
return ConstantInt::get(Ty, D.ConstPool64);
|
|
|
|
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
|
|
if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
|
|
if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
|
|
error("Integral constant '" + utostr(D.UConstPool64) +
|
|
"' is invalid or out of range");
|
|
else // This is really a signed reference. Transmogrify.
|
|
return ConstantInt::get(Ty, D.ConstPool64);
|
|
} else
|
|
return ConstantInt::get(Ty, D.UConstPool64);
|
|
|
|
case ValID::ConstFPVal: // Is it a floating point const pool reference?
|
|
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
|
|
error("FP constant invalid for type");
|
|
return ConstantFP::get(Ty, D.ConstPoolFP);
|
|
|
|
case ValID::ConstNullVal: // Is it a null value?
|
|
if (!isa<PointerType>(Ty))
|
|
error("Cannot create a a non pointer null");
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
|
|
case ValID::ConstUndefVal: // Is it an undef value?
|
|
return UndefValue::get(Ty);
|
|
|
|
case ValID::ConstZeroVal: // Is it a zero value?
|
|
return Constant::getNullValue(Ty);
|
|
|
|
case ValID::ConstantVal: // Fully resolved constant?
|
|
if (D.ConstantValue->getType() != Ty)
|
|
error("Constant expression type different from required type");
|
|
return D.ConstantValue;
|
|
|
|
case ValID::InlineAsmVal: { // Inline asm expression
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ty);
|
|
const FunctionType *FTy =
|
|
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
|
|
if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
|
|
error("Invalid type for asm constraint string");
|
|
InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
|
|
D.IAD->HasSideEffects);
|
|
D.destroy(); // Free InlineAsmDescriptor.
|
|
return IA;
|
|
}
|
|
default:
|
|
assert(0 && "Unhandled case");
|
|
return 0;
|
|
} // End of switch
|
|
|
|
assert(0 && "Unhandled case");
|
|
return 0;
|
|
}
|
|
|
|
// getVal - This function is identical to getExistingValue, except that if a
|
|
// value is not already defined, it "improvises" by creating a placeholder var
|
|
// that looks and acts just like the requested variable. When the value is
|
|
// defined later, all uses of the placeholder variable are replaced with the
|
|
// real thing.
|
|
//
|
|
static Value *getVal(const Type *Ty, const ValID &ID) {
|
|
if (Ty == Type::LabelTy)
|
|
error("Cannot use a basic block here");
|
|
|
|
// See if the value has already been defined.
|
|
Value *V = getExistingValue(Ty, ID);
|
|
if (V) return V;
|
|
|
|
if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
|
|
error("Invalid use of a composite type");
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
V = new Argument(Ty);
|
|
|
|
// Remember where this forward reference came from. FIXME, shouldn't we try
|
|
// to recycle these things??
|
|
CurModule.PlaceHolderInfo.insert(
|
|
std::make_pair(V, std::make_pair(ID, Upgradelineno)));
|
|
|
|
if (inFunctionScope())
|
|
InsertValue(V, CurFun.LateResolveValues);
|
|
else
|
|
InsertValue(V, CurModule.LateResolveValues);
|
|
return V;
|
|
}
|
|
|
|
/// @brief This just makes any name given to it unique, up to MAX_UINT times.
|
|
static std::string makeNameUnique(const std::string& Name) {
|
|
static unsigned UniqueNameCounter = 1;
|
|
std::string Result(Name);
|
|
Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
|
|
return Result;
|
|
}
|
|
|
|
/// getBBVal - This is used for two purposes:
|
|
/// * If isDefinition is true, a new basic block with the specified ID is being
|
|
/// defined.
|
|
/// * If isDefinition is true, this is a reference to a basic block, which may
|
|
/// or may not be a forward reference.
|
|
///
|
|
static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
|
|
assert(inFunctionScope() && "Can't get basic block at global scope");
|
|
|
|
std::string Name;
|
|
BasicBlock *BB = 0;
|
|
switch (ID.Type) {
|
|
default:
|
|
error("Illegal label reference " + ID.getName());
|
|
break;
|
|
case ValID::NumberVal: // Is it a numbered definition?
|
|
if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
|
|
CurFun.NumberedBlocks.resize(ID.Num+1);
|
|
BB = CurFun.NumberedBlocks[ID.Num];
|
|
break;
|
|
case ValID::NameVal: // Is it a named definition?
|
|
Name = ID.Name;
|
|
if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) {
|
|
if (N->getType() != Type::LabelTy) {
|
|
// Register names didn't use to conflict with basic block names
|
|
// because of type planes. Now they all have to be unique. So, we just
|
|
// rename the register and treat this name as if no basic block
|
|
// had been found.
|
|
RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S);
|
|
N->setName(makeNameUnique(N->getName()));
|
|
CurModule.RenameMap[Key] = N->getName();
|
|
BB = 0;
|
|
} else {
|
|
BB = cast<BasicBlock>(N);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// See if the block has already been defined.
|
|
if (BB) {
|
|
// If this is the definition of the block, make sure the existing value was
|
|
// just a forward reference. If it was a forward reference, there will be
|
|
// an entry for it in the PlaceHolderInfo map.
|
|
if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
|
|
// The existing value was a definition, not a forward reference.
|
|
error("Redefinition of label " + ID.getName());
|
|
|
|
ID.destroy(); // Free strdup'd memory.
|
|
return BB;
|
|
}
|
|
|
|
// Otherwise this block has not been seen before.
|
|
BB = new BasicBlock("", CurFun.CurrentFunction);
|
|
if (ID.Type == ValID::NameVal) {
|
|
BB->setName(ID.Name);
|
|
} else {
|
|
CurFun.NumberedBlocks[ID.Num] = BB;
|
|
}
|
|
|
|
// If this is not a definition, keep track of it so we can use it as a forward
|
|
// reference.
|
|
if (!isDefinition) {
|
|
// Remember where this forward reference came from.
|
|
CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
|
|
} else {
|
|
// The forward declaration could have been inserted anywhere in the
|
|
// function: insert it into the correct place now.
|
|
CurFun.CurrentFunction->getBasicBlockList().remove(BB);
|
|
CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
|
|
}
|
|
ID.destroy();
|
|
return BB;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle forward references in instructions
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This code handles the late binding needed with statements that reference
|
|
// values not defined yet... for example, a forward branch, or the PHI node for
|
|
// a loop body.
|
|
//
|
|
// This keeps a table (CurFun.LateResolveValues) of all such forward references
|
|
// and back patchs after we are done.
|
|
//
|
|
|
|
// ResolveDefinitions - If we could not resolve some defs at parsing
|
|
// time (forward branches, phi functions for loops, etc...) resolve the
|
|
// defs now...
|
|
//
|
|
static void
|
|
ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
|
|
std::map<const Type*,ValueList> *FutureLateResolvers) {
|
|
|
|
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
|
|
for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
|
|
E = LateResolvers.end(); LRI != E; ++LRI) {
|
|
const Type* Ty = LRI->first;
|
|
ValueList &List = LRI->second;
|
|
while (!List.empty()) {
|
|
Value *V = List.back();
|
|
List.pop_back();
|
|
|
|
std::map<Value*, std::pair<ValID, int> >::iterator PHI =
|
|
CurModule.PlaceHolderInfo.find(V);
|
|
assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");
|
|
|
|
ValID &DID = PHI->second.first;
|
|
|
|
Value *TheRealValue = getExistingValue(Ty, DID);
|
|
if (TheRealValue) {
|
|
V->replaceAllUsesWith(TheRealValue);
|
|
delete V;
|
|
CurModule.PlaceHolderInfo.erase(PHI);
|
|
} else if (FutureLateResolvers) {
|
|
// Functions have their unresolved items forwarded to the module late
|
|
// resolver table
|
|
InsertValue(V, *FutureLateResolvers);
|
|
} else {
|
|
if (DID.Type == ValID::NameVal) {
|
|
error("Reference to an invalid definition: '" + DID.getName() +
|
|
"' of type '" + V->getType()->getDescription() + "'",
|
|
PHI->second.second);
|
|
return;
|
|
} else {
|
|
error("Reference to an invalid definition: #" +
|
|
itostr(DID.Num) + " of type '" +
|
|
V->getType()->getDescription() + "'", PHI->second.second);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LateResolvers.clear();
|
|
}
|
|
|
|
/// This function is used for type resolution and upref handling. When a type
|
|
/// becomes concrete, this function is called to adjust the signedness for the
|
|
/// concrete type.
|
|
static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) {
|
|
std::string TyName = CurModule.CurrentModule->getTypeName(oldTy);
|
|
if (!TyName.empty())
|
|
CurModule.NamedTypeSigns[TyName] = Sign;
|
|
}
|
|
|
|
/// ResolveTypeTo - A brand new type was just declared. This means that (if
|
|
/// name is not null) things referencing Name can be resolved. Otherwise,
|
|
/// things refering to the number can be resolved. Do this now.
|
|
static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){
|
|
ValID D;
|
|
if (Name)
|
|
D = ValID::create(Name);
|
|
else
|
|
D = ValID::create((int)CurModule.Types.size());
|
|
D.S.copy(Sign);
|
|
|
|
CurModule.NamedTypeSigns[Name] = Sign;
|
|
|
|
std::map<ValID, PATypeHolder>::iterator I =
|
|
CurModule.LateResolveTypes.find(D);
|
|
if (I != CurModule.LateResolveTypes.end()) {
|
|
const Type *OldTy = I->second.get();
|
|
((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy);
|
|
CurModule.LateResolveTypes.erase(I);
|
|
}
|
|
}
|
|
|
|
/// This is the implementation portion of TypeHasInteger. It traverses the
|
|
/// type given, avoiding recursive types, and returns true as soon as it finds
|
|
/// an integer type. If no integer type is found, it returns false.
|
|
static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) {
|
|
// Handle some easy cases
|
|
if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID))
|
|
return false;
|
|
if (Ty->isInteger())
|
|
return true;
|
|
if (const SequentialType *STy = dyn_cast<SequentialType>(Ty))
|
|
return STy->getElementType()->isInteger();
|
|
|
|
// Avoid type structure recursion
|
|
for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end();
|
|
I != E; ++I)
|
|
if (Ty == *I)
|
|
return false;
|
|
|
|
// Push us on the type stack
|
|
Stack.push_back(Ty);
|
|
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
|
|
if (TypeHasIntegerI(FTy->getReturnType(), Stack))
|
|
return true;
|
|
FunctionType::param_iterator I = FTy->param_begin();
|
|
FunctionType::param_iterator E = FTy->param_end();
|
|
for (; I != E; ++I)
|
|
if (TypeHasIntegerI(*I, Stack))
|
|
return true;
|
|
return false;
|
|
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
StructType::element_iterator I = STy->element_begin();
|
|
StructType::element_iterator E = STy->element_end();
|
|
for (; I != E; ++I) {
|
|
if (TypeHasIntegerI(*I, Stack))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
// There shouldn't be anything else, but its definitely not integer
|
|
assert(0 && "What type is this?");
|
|
return false;
|
|
}
|
|
|
|
/// This is the interface to TypeHasIntegerI. It just provides the type stack,
|
|
/// to avoid recursion, and then calls TypeHasIntegerI.
|
|
static inline bool TypeHasInteger(const Type *Ty) {
|
|
std::vector<const Type*> TyStack;
|
|
return TypeHasIntegerI(Ty, TyStack);
|
|
}
|
|
|
|
// setValueName - Set the specified value to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is free'd by this function.
|
|
//
|
|
static void setValueName(const ValueInfo &V, char *NameStr) {
|
|
if (NameStr) {
|
|
std::string Name(NameStr); // Copy string
|
|
free(NameStr); // Free old string
|
|
|
|
if (V.V->getType() == Type::VoidTy) {
|
|
error("Can't assign name '" + Name + "' to value with void type");
|
|
return;
|
|
}
|
|
|
|
assert(inFunctionScope() && "Must be in function scope");
|
|
|
|
// Search the function's symbol table for an existing value of this name
|
|
ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
|
|
Value* Existing = ST.lookup(Name);
|
|
if (Existing) {
|
|
// An existing value of the same name was found. This might have happened
|
|
// because of the integer type planes collapsing in LLVM 2.0.
|
|
if (Existing->getType() == V.V->getType() &&
|
|
!TypeHasInteger(Existing->getType())) {
|
|
// If the type does not contain any integers in them then this can't be
|
|
// a type plane collapsing issue. It truly is a redefinition and we
|
|
// should error out as the assembly is invalid.
|
|
error("Redefinition of value named '" + Name + "' of type '" +
|
|
V.V->getType()->getDescription() + "'");
|
|
return;
|
|
}
|
|
// In LLVM 2.0 we don't allow names to be re-used for any values in a
|
|
// function, regardless of Type. Previously re-use of names was okay as
|
|
// long as they were distinct types. With type planes collapsing because
|
|
// of the signedness change and because of PR411, this can no longer be
|
|
// supported. We must search the entire symbol table for a conflicting
|
|
// name and make the name unique. No warning is needed as this can't
|
|
// cause a problem.
|
|
std::string NewName = makeNameUnique(Name);
|
|
// We're changing the name but it will probably be used by other
|
|
// instructions as operands later on. Consequently we have to retain
|
|
// a mapping of the renaming that we're doing.
|
|
RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S);
|
|
CurFun.RenameMap[Key] = NewName;
|
|
Name = NewName;
|
|
}
|
|
|
|
// Set the name.
|
|
V.V->setName(Name);
|
|
}
|
|
}
|
|
|
|
/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
|
|
/// this is a declaration, otherwise it is a definition.
|
|
static GlobalVariable *
|
|
ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
|
|
bool isConstantGlobal, const Type *Ty,
|
|
Constant *Initializer,
|
|
const Signedness &Sign) {
|
|
if (isa<FunctionType>(Ty))
|
|
error("Cannot declare global vars of function type");
|
|
|
|
const PointerType *PTy = PointerType::get(Ty);
|
|
|
|
std::string Name;
|
|
if (NameStr) {
|
|
Name = NameStr; // Copy string
|
|
free(NameStr); // Free old string
|
|
}
|
|
|
|
// See if this global value was forward referenced. If so, recycle the
|
|
// object.
|
|
ValID ID;
|
|
if (!Name.empty()) {
|
|
ID = ValID::create((char*)Name.c_str());
|
|
} else {
|
|
ID = ValID::create((int)CurModule.Values[PTy].size());
|
|
}
|
|
ID.S.makeComposite(Sign);
|
|
|
|
if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
|
|
// Move the global to the end of the list, from whereever it was
|
|
// previously inserted.
|
|
GlobalVariable *GV = cast<GlobalVariable>(FWGV);
|
|
CurModule.CurrentModule->getGlobalList().remove(GV);
|
|
CurModule.CurrentModule->getGlobalList().push_back(GV);
|
|
GV->setInitializer(Initializer);
|
|
GV->setLinkage(Linkage);
|
|
GV->setConstant(isConstantGlobal);
|
|
InsertValue(GV, CurModule.Values);
|
|
return GV;
|
|
}
|
|
|
|
// If this global has a name, check to see if there is already a definition
|
|
// of this global in the module and emit warnings if there are conflicts.
|
|
if (!Name.empty()) {
|
|
// The global has a name. See if there's an existing one of the same name.
|
|
if (CurModule.CurrentModule->getNamedGlobal(Name)) {
|
|
// We found an existing global ov the same name. This isn't allowed
|
|
// in LLVM 2.0. Consequently, we must alter the name of the global so it
|
|
// can at least compile. This can happen because of type planes
|
|
// There is alread a global of the same name which means there is a
|
|
// conflict. Let's see what we can do about it.
|
|
std::string NewName(makeNameUnique(Name));
|
|
if (Linkage != GlobalValue::InternalLinkage) {
|
|
// The linkage of this gval is external so we can't reliably rename
|
|
// it because it could potentially create a linking problem.
|
|
// However, we can't leave the name conflict in the output either or
|
|
// it won't assemble with LLVM 2.0. So, all we can do is rename
|
|
// this one to something unique and emit a warning about the problem.
|
|
warning("Renaming global variable '" + Name + "' to '" + NewName +
|
|
"' may cause linkage errors");
|
|
}
|
|
|
|
// Put the renaming in the global rename map
|
|
RenameMapKey Key = makeRenameMapKey(Name, PointerType::get(Ty), ID.S);
|
|
CurModule.RenameMap[Key] = NewName;
|
|
|
|
// Rename it
|
|
Name = NewName;
|
|
}
|
|
}
|
|
|
|
// Otherwise there is no existing GV to use, create one now.
|
|
GlobalVariable *GV =
|
|
new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
|
|
CurModule.CurrentModule);
|
|
InsertValue(GV, CurModule.Values);
|
|
// Remember the sign of this global.
|
|
CurModule.NamedValueSigns[Name] = ID.S;
|
|
return GV;
|
|
}
|
|
|
|
// setTypeName - Set the specified type to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is freed by this function.
|
|
//
|
|
// This function returns true if the type has already been defined, but is
|
|
// allowed to be redefined in the specified context. If the name is a new name
|
|
// for the type plane, it is inserted and false is returned.
|
|
static bool setTypeName(const PATypeInfo& TI, char *NameStr) {
|
|
assert(!inFunctionScope() && "Can't give types function-local names");
|
|
if (NameStr == 0) return false;
|
|
|
|
std::string Name(NameStr); // Copy string
|
|
free(NameStr); // Free old string
|
|
|
|
const Type* Ty = TI.PAT->get();
|
|
|
|
// We don't allow assigning names to void type
|
|
if (Ty == Type::VoidTy) {
|
|
error("Can't assign name '" + Name + "' to the void type");
|
|
return false;
|
|
}
|
|
|
|
// Set the type name, checking for conflicts as we do so.
|
|
bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty);
|
|
|
|
// Save the sign information for later use
|
|
CurModule.NamedTypeSigns[Name] = TI.S;
|
|
|
|
if (AlreadyExists) { // Inserting a name that is already defined???
|
|
const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
|
|
assert(Existing && "Conflict but no matching type?");
|
|
|
|
// There is only one case where this is allowed: when we are refining an
|
|
// opaque type. In this case, Existing will be an opaque type.
|
|
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
|
|
// We ARE replacing an opaque type!
|
|
const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, this is an attempt to redefine a type. That's okay if
|
|
// the redefinition is identical to the original. This will be so if
|
|
// Existing and T point to the same Type object. In this one case we
|
|
// allow the equivalent redefinition.
|
|
if (Existing == Ty) return true; // Yes, it's equal.
|
|
|
|
// Any other kind of (non-equivalent) redefinition is an error.
|
|
error("Redefinition of type named '" + Name + "' in the '" +
|
|
Ty->getDescription() + "' type plane");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code for handling upreferences in type names...
|
|
//
|
|
|
|
// TypeContains - Returns true if Ty directly contains E in it.
|
|
//
|
|
static bool TypeContains(const Type *Ty, const Type *E) {
|
|
return std::find(Ty->subtype_begin(), Ty->subtype_end(),
|
|
E) != Ty->subtype_end();
|
|
}
|
|
|
|
namespace {
|
|
struct UpRefRecord {
|
|
// NestingLevel - The number of nesting levels that need to be popped before
|
|
// this type is resolved.
|
|
unsigned NestingLevel;
|
|
|
|
// LastContainedTy - This is the type at the current binding level for the
|
|
// type. Every time we reduce the nesting level, this gets updated.
|
|
const Type *LastContainedTy;
|
|
|
|
// UpRefTy - This is the actual opaque type that the upreference is
|
|
// represented with.
|
|
OpaqueType *UpRefTy;
|
|
|
|
UpRefRecord(unsigned NL, OpaqueType *URTy)
|
|
: NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { }
|
|
};
|
|
}
|
|
|
|
// UpRefs - A list of the outstanding upreferences that need to be resolved.
|
|
static std::vector<UpRefRecord> UpRefs;
|
|
|
|
/// HandleUpRefs - Every time we finish a new layer of types, this function is
|
|
/// called. It loops through the UpRefs vector, which is a list of the
|
|
/// currently active types. For each type, if the up reference is contained in
|
|
/// the newly completed type, we decrement the level count. When the level
|
|
/// count reaches zero, the upreferenced type is the type that is passed in:
|
|
/// thus we can complete the cycle.
|
|
///
|
|
static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) {
|
|
// If Ty isn't abstract, or if there are no up-references in it, then there is
|
|
// nothing to resolve here.
|
|
if (!ty->isAbstract() || UpRefs.empty()) return ty;
|
|
|
|
PATypeHolder Ty(ty);
|
|
UR_OUT("Type '" << Ty->getDescription() <<
|
|
"' newly formed. Resolving upreferences.\n" <<
|
|
UpRefs.size() << " upreferences active!\n");
|
|
|
|
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
|
|
// to zero), we resolve them all together before we resolve them to Ty. At
|
|
// the end of the loop, if there is anything to resolve to Ty, it will be in
|
|
// this variable.
|
|
OpaqueType *TypeToResolve = 0;
|
|
|
|
unsigned i = 0;
|
|
for (; i != UpRefs.size(); ++i) {
|
|
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
|
|
<< UpRefs[i].UpRefTy->getDescription() << ") = "
|
|
<< (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n");
|
|
if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
|
|
// Decrement level of upreference
|
|
unsigned Level = --UpRefs[i].NestingLevel;
|
|
UpRefs[i].LastContainedTy = Ty;
|
|
UR_OUT(" Uplevel Ref Level = " << Level << "\n");
|
|
if (Level == 0) { // Upreference should be resolved!
|
|
if (!TypeToResolve) {
|
|
TypeToResolve = UpRefs[i].UpRefTy;
|
|
} else {
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].UpRefTy->getDescription() << "\n";
|
|
std::string OldName = UpRefs[i].UpRefTy->getDescription());
|
|
ResolveTypeSign(UpRefs[i].UpRefTy, Sign);
|
|
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
|
|
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
|
|
<< (const void*)Ty << ", " << Ty->getDescription() << "\n");
|
|
}
|
|
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
|
|
--i; // Do not skip the next element...
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TypeToResolve) {
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].UpRefTy->getDescription() << "\n";
|
|
std::string OldName = TypeToResolve->getDescription());
|
|
ResolveTypeSign(TypeToResolve, Sign);
|
|
TypeToResolve->refineAbstractTypeTo(Ty);
|
|
}
|
|
|
|
return Ty;
|
|
}
|
|
|
|
bool Signedness::operator<(const Signedness &that) const {
|
|
if (isNamed()) {
|
|
if (that.isNamed())
|
|
return *(this->name) < *(that.name);
|
|
else
|
|
return CurModule.NamedTypeSigns[*name] < that;
|
|
} else if (that.isNamed()) {
|
|
return *this < CurModule.NamedTypeSigns[*that.name];
|
|
}
|
|
|
|
if (isComposite() && that.isComposite()) {
|
|
if (sv->size() == that.sv->size()) {
|
|
SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
|
|
SignVector::const_iterator thatI = that.sv->begin(),
|
|
thatE = that.sv->end();
|
|
for (; thisI != thisE; ++thisI, ++thatI) {
|
|
if (*thisI < *thatI)
|
|
return true;
|
|
else if (!(*thisI == *thatI))
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
return sv->size() < that.sv->size();
|
|
}
|
|
return kind < that.kind;
|
|
}
|
|
|
|
bool Signedness::operator==(const Signedness &that) const {
|
|
if (isNamed())
|
|
if (that.isNamed())
|
|
return *(this->name) == *(that.name);
|
|
else
|
|
return CurModule.NamedTypeSigns[*(this->name)] == that;
|
|
else if (that.isNamed())
|
|
return *this == CurModule.NamedTypeSigns[*(that.name)];
|
|
if (isComposite() && that.isComposite()) {
|
|
if (sv->size() == that.sv->size()) {
|
|
SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
|
|
SignVector::const_iterator thatI = that.sv->begin(),
|
|
thatE = that.sv->end();
|
|
for (; thisI != thisE; ++thisI, ++thatI) {
|
|
if (!(*thisI == *thatI))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
return kind == that.kind;
|
|
}
|
|
|
|
void Signedness::copy(const Signedness &that) {
|
|
if (that.isNamed()) {
|
|
kind = Named;
|
|
name = new std::string(*that.name);
|
|
} else if (that.isComposite()) {
|
|
kind = Composite;
|
|
sv = new SignVector();
|
|
*sv = *that.sv;
|
|
} else {
|
|
kind = that.kind;
|
|
sv = 0;
|
|
}
|
|
}
|
|
|
|
void Signedness::destroy() {
|
|
if (isNamed()) {
|
|
delete name;
|
|
} else if (isComposite()) {
|
|
delete sv;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void Signedness::dump() const {
|
|
if (isComposite()) {
|
|
if (sv->size() == 1) {
|
|
(*sv)[0].dump();
|
|
std::cerr << "*";
|
|
} else {
|
|
std::cerr << "{ " ;
|
|
for (unsigned i = 0; i < sv->size(); ++i) {
|
|
if (i != 0)
|
|
std::cerr << ", ";
|
|
(*sv)[i].dump();
|
|
}
|
|
std::cerr << "} " ;
|
|
}
|
|
} else if (isNamed()) {
|
|
std::cerr << *name;
|
|
} else if (isSigned()) {
|
|
std::cerr << "S";
|
|
} else if (isUnsigned()) {
|
|
std::cerr << "U";
|
|
} else
|
|
std::cerr << ".";
|
|
}
|
|
#endif
|
|
|
|
static inline Instruction::TermOps
|
|
getTermOp(TermOps op) {
|
|
switch (op) {
|
|
default : assert(0 && "Invalid OldTermOp");
|
|
case RetOp : return Instruction::Ret;
|
|
case BrOp : return Instruction::Br;
|
|
case SwitchOp : return Instruction::Switch;
|
|
case InvokeOp : return Instruction::Invoke;
|
|
case UnwindOp : return Instruction::Unwind;
|
|
case UnreachableOp: return Instruction::Unreachable;
|
|
}
|
|
}
|
|
|
|
static inline Instruction::BinaryOps
|
|
getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) {
|
|
switch (op) {
|
|
default : assert(0 && "Invalid OldBinaryOps");
|
|
case SetEQ :
|
|
case SetNE :
|
|
case SetLE :
|
|
case SetGE :
|
|
case SetLT :
|
|
case SetGT : assert(0 && "Should use getCompareOp");
|
|
case AddOp : return Instruction::Add;
|
|
case SubOp : return Instruction::Sub;
|
|
case MulOp : return Instruction::Mul;
|
|
case DivOp : {
|
|
// This is an obsolete instruction so we must upgrade it based on the
|
|
// types of its operands.
|
|
bool isFP = Ty->isFloatingPoint();
|
|
if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
|
|
// If its a vector type we want to use the element type
|
|
isFP = PTy->getElementType()->isFloatingPoint();
|
|
if (isFP)
|
|
return Instruction::FDiv;
|
|
else if (Sign.isSigned())
|
|
return Instruction::SDiv;
|
|
return Instruction::UDiv;
|
|
}
|
|
case UDivOp : return Instruction::UDiv;
|
|
case SDivOp : return Instruction::SDiv;
|
|
case FDivOp : return Instruction::FDiv;
|
|
case RemOp : {
|
|
// This is an obsolete instruction so we must upgrade it based on the
|
|
// types of its operands.
|
|
bool isFP = Ty->isFloatingPoint();
|
|
if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
|
|
// If its a vector type we want to use the element type
|
|
isFP = PTy->getElementType()->isFloatingPoint();
|
|
// Select correct opcode
|
|
if (isFP)
|
|
return Instruction::FRem;
|
|
else if (Sign.isSigned())
|
|
return Instruction::SRem;
|
|
return Instruction::URem;
|
|
}
|
|
case URemOp : return Instruction::URem;
|
|
case SRemOp : return Instruction::SRem;
|
|
case FRemOp : return Instruction::FRem;
|
|
case LShrOp : return Instruction::LShr;
|
|
case AShrOp : return Instruction::AShr;
|
|
case ShlOp : return Instruction::Shl;
|
|
case ShrOp :
|
|
if (Sign.isSigned())
|
|
return Instruction::AShr;
|
|
return Instruction::LShr;
|
|
case AndOp : return Instruction::And;
|
|
case OrOp : return Instruction::Or;
|
|
case XorOp : return Instruction::Xor;
|
|
}
|
|
}
|
|
|
|
static inline Instruction::OtherOps
|
|
getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
|
|
const Signedness &Sign) {
|
|
bool isSigned = Sign.isSigned();
|
|
bool isFP = Ty->isFloatingPoint();
|
|
switch (op) {
|
|
default : assert(0 && "Invalid OldSetCC");
|
|
case SetEQ :
|
|
if (isFP) {
|
|
predicate = FCmpInst::FCMP_OEQ;
|
|
return Instruction::FCmp;
|
|
} else {
|
|
predicate = ICmpInst::ICMP_EQ;
|
|
return Instruction::ICmp;
|
|
}
|
|
case SetNE :
|
|
if (isFP) {
|
|
predicate = FCmpInst::FCMP_UNE;
|
|
return Instruction::FCmp;
|
|
} else {
|
|
predicate = ICmpInst::ICMP_NE;
|
|
return Instruction::ICmp;
|
|
}
|
|
case SetLE :
|
|
if (isFP) {
|
|
predicate = FCmpInst::FCMP_OLE;
|
|
return Instruction::FCmp;
|
|
} else {
|
|
if (isSigned)
|
|
predicate = ICmpInst::ICMP_SLE;
|
|
else
|
|
predicate = ICmpInst::ICMP_ULE;
|
|
return Instruction::ICmp;
|
|
}
|
|
case SetGE :
|
|
if (isFP) {
|
|
predicate = FCmpInst::FCMP_OGE;
|
|
return Instruction::FCmp;
|
|
} else {
|
|
if (isSigned)
|
|
predicate = ICmpInst::ICMP_SGE;
|
|
else
|
|
predicate = ICmpInst::ICMP_UGE;
|
|
return Instruction::ICmp;
|
|
}
|
|
case SetLT :
|
|
if (isFP) {
|
|
predicate = FCmpInst::FCMP_OLT;
|
|
return Instruction::FCmp;
|
|
} else {
|
|
if (isSigned)
|
|
predicate = ICmpInst::ICMP_SLT;
|
|
else
|
|
predicate = ICmpInst::ICMP_ULT;
|
|
return Instruction::ICmp;
|
|
}
|
|
case SetGT :
|
|
if (isFP) {
|
|
predicate = FCmpInst::FCMP_OGT;
|
|
return Instruction::FCmp;
|
|
} else {
|
|
if (isSigned)
|
|
predicate = ICmpInst::ICMP_SGT;
|
|
else
|
|
predicate = ICmpInst::ICMP_UGT;
|
|
return Instruction::ICmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
|
|
switch (op) {
|
|
default : assert(0 && "Invalid OldMemoryOps");
|
|
case MallocOp : return Instruction::Malloc;
|
|
case FreeOp : return Instruction::Free;
|
|
case AllocaOp : return Instruction::Alloca;
|
|
case LoadOp : return Instruction::Load;
|
|
case StoreOp : return Instruction::Store;
|
|
case GetElementPtrOp : return Instruction::GetElementPtr;
|
|
}
|
|
}
|
|
|
|
static inline Instruction::OtherOps
|
|
getOtherOp(OtherOps op, const Signedness &Sign) {
|
|
switch (op) {
|
|
default : assert(0 && "Invalid OldOtherOps");
|
|
case PHIOp : return Instruction::PHI;
|
|
case CallOp : return Instruction::Call;
|
|
case SelectOp : return Instruction::Select;
|
|
case UserOp1 : return Instruction::UserOp1;
|
|
case UserOp2 : return Instruction::UserOp2;
|
|
case VAArg : return Instruction::VAArg;
|
|
case ExtractElementOp : return Instruction::ExtractElement;
|
|
case InsertElementOp : return Instruction::InsertElement;
|
|
case ShuffleVectorOp : return Instruction::ShuffleVector;
|
|
case ICmpOp : return Instruction::ICmp;
|
|
case FCmpOp : return Instruction::FCmp;
|
|
};
|
|
}
|
|
|
|
static inline Value*
|
|
getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy,
|
|
const Signedness &DstSign, bool ForceInstruction = false) {
|
|
Instruction::CastOps Opcode;
|
|
const Type* SrcTy = Src->getType();
|
|
if (op == CastOp) {
|
|
if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
|
|
// fp -> ptr cast is no longer supported but we must upgrade this
|
|
// by doing a double cast: fp -> int -> ptr
|
|
SrcTy = Type::Int64Ty;
|
|
Opcode = Instruction::IntToPtr;
|
|
if (isa<Constant>(Src)) {
|
|
Src = ConstantExpr::getCast(Instruction::FPToUI,
|
|
cast<Constant>(Src), SrcTy);
|
|
} else {
|
|
std::string NewName(makeNameUnique(Src->getName()));
|
|
Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
|
|
}
|
|
} else if (isa<IntegerType>(DstTy) &&
|
|
cast<IntegerType>(DstTy)->getBitWidth() == 1) {
|
|
// cast type %x to bool was previously defined as setne type %x, null
|
|
// The cast semantic is now to truncate, not compare so we must retain
|
|
// the original intent by replacing the cast with a setne
|
|
Constant* Null = Constant::getNullValue(SrcTy);
|
|
Instruction::OtherOps Opcode = Instruction::ICmp;
|
|
unsigned short predicate = ICmpInst::ICMP_NE;
|
|
if (SrcTy->isFloatingPoint()) {
|
|
Opcode = Instruction::FCmp;
|
|
predicate = FCmpInst::FCMP_ONE;
|
|
} else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
|
|
error("Invalid cast to bool");
|
|
}
|
|
if (isa<Constant>(Src) && !ForceInstruction)
|
|
return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
|
|
else
|
|
return CmpInst::create(Opcode, predicate, Src, Null);
|
|
}
|
|
// Determine the opcode to use by calling CastInst::getCastOpcode
|
|
Opcode =
|
|
CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy,
|
|
DstSign.isSigned());
|
|
|
|
} else switch (op) {
|
|
default: assert(0 && "Invalid cast token");
|
|
case TruncOp: Opcode = Instruction::Trunc; break;
|
|
case ZExtOp: Opcode = Instruction::ZExt; break;
|
|
case SExtOp: Opcode = Instruction::SExt; break;
|
|
case FPTruncOp: Opcode = Instruction::FPTrunc; break;
|
|
case FPExtOp: Opcode = Instruction::FPExt; break;
|
|
case FPToUIOp: Opcode = Instruction::FPToUI; break;
|
|
case FPToSIOp: Opcode = Instruction::FPToSI; break;
|
|
case UIToFPOp: Opcode = Instruction::UIToFP; break;
|
|
case SIToFPOp: Opcode = Instruction::SIToFP; break;
|
|
case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
|
|
case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
|
|
case BitCastOp: Opcode = Instruction::BitCast; break;
|
|
}
|
|
|
|
if (isa<Constant>(Src) && !ForceInstruction)
|
|
return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
|
|
return CastInst::create(Opcode, Src, DstTy);
|
|
}
|
|
|
|
static Instruction *
|
|
upgradeIntrinsicCall(const Type* RetTy, const ValID &ID,
|
|
std::vector<Value*>& Args) {
|
|
|
|
std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
|
|
switch (Name[5]) {
|
|
case 'i':
|
|
if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
|
|
if (Args.size() != 2)
|
|
error("Invalid prototype for " + Name);
|
|
return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
|
|
}
|
|
break;
|
|
case 'b':
|
|
if (Name.length() == 14 && !memcmp(&Name[5], "bswap.i", 7)) {
|
|
const Type* ArgTy = Args[0]->getType();
|
|
Name += ".i" + utostr(cast<IntegerType>(ArgTy)->getBitWidth());
|
|
Function *F = cast<Function>(
|
|
CurModule.CurrentModule->getOrInsertFunction(Name, RetTy, ArgTy,
|
|
(void*)0));
|
|
return new CallInst(F, Args[0]);
|
|
}
|
|
break;
|
|
case 'c':
|
|
if ((Name.length() <= 14 && !memcmp(&Name[5], "ctpop.i", 7)) ||
|
|
(Name.length() <= 13 && !memcmp(&Name[5], "ctlz.i", 6)) ||
|
|
(Name.length() <= 13 && !memcmp(&Name[5], "cttz.i", 6))) {
|
|
// These intrinsics changed their result type.
|
|
const Type* ArgTy = Args[0]->getType();
|
|
Function *OldF = CurModule.CurrentModule->getFunction(Name);
|
|
if (OldF)
|
|
OldF->setName("upgrd.rm." + Name);
|
|
|
|
Function *NewF = cast<Function>(
|
|
CurModule.CurrentModule->getOrInsertFunction(Name, Type::Int32Ty,
|
|
ArgTy, (void*)0));
|
|
|
|
Instruction *Call = new CallInst(NewF, Args[0], "", CurBB);
|
|
return CastInst::createIntegerCast(Call, RetTy, false);
|
|
}
|
|
break;
|
|
|
|
case 'v' : {
|
|
const Type* PtrTy = PointerType::get(Type::Int8Ty);
|
|
std::vector<const Type*> Params;
|
|
if (Name == "llvm.va_start" || Name == "llvm.va_end") {
|
|
if (Args.size() != 1)
|
|
error("Invalid prototype for " + Name + " prototype");
|
|
Params.push_back(PtrTy);
|
|
const FunctionType *FTy =
|
|
FunctionType::get(Type::VoidTy, Params, false);
|
|
const PointerType *PFTy = PointerType::get(FTy);
|
|
Value* Func = getVal(PFTy, ID);
|
|
Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB);
|
|
return new CallInst(Func, &Args[0], Args.size());
|
|
} else if (Name == "llvm.va_copy") {
|
|
if (Args.size() != 2)
|
|
error("Invalid prototype for " + Name + " prototype");
|
|
Params.push_back(PtrTy);
|
|
Params.push_back(PtrTy);
|
|
const FunctionType *FTy =
|
|
FunctionType::get(Type::VoidTy, Params, false);
|
|
const PointerType *PFTy = PointerType::get(FTy);
|
|
Value* Func = getVal(PFTy, ID);
|
|
std::string InstName0(makeNameUnique("va0"));
|
|
std::string InstName1(makeNameUnique("va1"));
|
|
Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
|
|
Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
|
|
return new CallInst(Func, &Args[0], Args.size());
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const Type* upgradeGEPIndices(const Type* PTy,
|
|
std::vector<ValueInfo> *Indices,
|
|
std::vector<Value*> &VIndices,
|
|
std::vector<Constant*> *CIndices = 0) {
|
|
// Traverse the indices with a gep_type_iterator so we can build the list
|
|
// of constant and value indices for use later. Also perform upgrades
|
|
VIndices.clear();
|
|
if (CIndices) CIndices->clear();
|
|
for (unsigned i = 0, e = Indices->size(); i != e; ++i)
|
|
VIndices.push_back((*Indices)[i].V);
|
|
generic_gep_type_iterator<std::vector<Value*>::iterator>
|
|
GTI = gep_type_begin(PTy, VIndices.begin(), VIndices.end()),
|
|
GTE = gep_type_end(PTy, VIndices.begin(), VIndices.end());
|
|
for (unsigned i = 0, e = Indices->size(); i != e && GTI != GTE; ++i, ++GTI) {
|
|
Value *Index = VIndices[i];
|
|
if (CIndices && !isa<Constant>(Index))
|
|
error("Indices to constant getelementptr must be constants");
|
|
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
|
|
// struct indices to i32 struct indices with ZExt for compatibility.
|
|
else if (isa<StructType>(*GTI)) { // Only change struct indices
|
|
if (ConstantInt *CUI = dyn_cast<ConstantInt>(Index))
|
|
if (CUI->getType()->getBitWidth() == 8)
|
|
Index =
|
|
ConstantExpr::getCast(Instruction::ZExt, CUI, Type::Int32Ty);
|
|
} else {
|
|
// Make sure that unsigned SequentialType indices are zext'd to
|
|
// 64-bits if they were smaller than that because LLVM 2.0 will sext
|
|
// all indices for SequentialType elements. We must retain the same
|
|
// semantic (zext) for unsigned types.
|
|
if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType()))
|
|
if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
|
|
if (CIndices)
|
|
Index = ConstantExpr::getCast(Instruction::ZExt,
|
|
cast<Constant>(Index), Type::Int64Ty);
|
|
else
|
|
Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
|
|
makeNameUnique("gep"), CurBB);
|
|
VIndices[i] = Index;
|
|
}
|
|
}
|
|
// Add to the CIndices list, if requested.
|
|
if (CIndices)
|
|
CIndices->push_back(cast<Constant>(Index));
|
|
}
|
|
|
|
const Type *IdxTy =
|
|
GetElementPtrInst::getIndexedType(PTy, &VIndices[0], VIndices.size(), true);
|
|
if (!IdxTy)
|
|
error("Index list invalid for constant getelementptr");
|
|
return IdxTy;
|
|
}
|
|
|
|
unsigned upgradeCallingConv(unsigned CC) {
|
|
switch (CC) {
|
|
case OldCallingConv::C : return CallingConv::C;
|
|
case OldCallingConv::CSRet : return CallingConv::C;
|
|
case OldCallingConv::Fast : return CallingConv::Fast;
|
|
case OldCallingConv::Cold : return CallingConv::Cold;
|
|
case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall;
|
|
case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall;
|
|
default:
|
|
return CC;
|
|
}
|
|
}
|
|
|
|
Module* UpgradeAssembly(const std::string &infile, std::istream& in,
|
|
bool debug, bool addAttrs)
|
|
{
|
|
Upgradelineno = 1;
|
|
CurFilename = infile;
|
|
LexInput = ∈
|
|
yydebug = debug;
|
|
AddAttributes = addAttrs;
|
|
ObsoleteVarArgs = false;
|
|
NewVarArgs = false;
|
|
|
|
CurModule.CurrentModule = new Module(CurFilename);
|
|
|
|
// Check to make sure the parser succeeded
|
|
if (yyparse()) {
|
|
if (ParserResult)
|
|
delete ParserResult;
|
|
std::cerr << "llvm-upgrade: parse failed.\n";
|
|
return 0;
|
|
}
|
|
|
|
// Check to make sure that parsing produced a result
|
|
if (!ParserResult) {
|
|
std::cerr << "llvm-upgrade: no parse result.\n";
|
|
return 0;
|
|
}
|
|
|
|
// Reset ParserResult variable while saving its value for the result.
|
|
Module *Result = ParserResult;
|
|
ParserResult = 0;
|
|
|
|
//Not all functions use vaarg, so make a second check for ObsoleteVarArgs
|
|
{
|
|
Function* F;
|
|
if ((F = Result->getFunction("llvm.va_start"))
|
|
&& F->getFunctionType()->getNumParams() == 0)
|
|
ObsoleteVarArgs = true;
|
|
if((F = Result->getFunction("llvm.va_copy"))
|
|
&& F->getFunctionType()->getNumParams() == 1)
|
|
ObsoleteVarArgs = true;
|
|
}
|
|
|
|
if (ObsoleteVarArgs && NewVarArgs) {
|
|
error("This file is corrupt: it uses both new and old style varargs");
|
|
return 0;
|
|
}
|
|
|
|
if(ObsoleteVarArgs) {
|
|
if(Function* F = Result->getFunction("llvm.va_start")) {
|
|
if (F->arg_size() != 0) {
|
|
error("Obsolete va_start takes 0 argument");
|
|
return 0;
|
|
}
|
|
|
|
//foo = va_start()
|
|
// ->
|
|
//bar = alloca typeof(foo)
|
|
//va_start(bar)
|
|
//foo = load bar
|
|
|
|
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
|
|
const Type* ArgTy = F->getFunctionType()->getReturnType();
|
|
const Type* ArgTyPtr = PointerType::get(ArgTy);
|
|
Function* NF = cast<Function>(Result->getOrInsertFunction(
|
|
"llvm.va_start", RetTy, ArgTyPtr, (Type *)0));
|
|
|
|
while (!F->use_empty()) {
|
|
CallInst* CI = cast<CallInst>(F->use_back());
|
|
AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
|
|
new CallInst(NF, bar, "", CI);
|
|
Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
|
|
CI->replaceAllUsesWith(foo);
|
|
CI->getParent()->getInstList().erase(CI);
|
|
}
|
|
Result->getFunctionList().erase(F);
|
|
}
|
|
|
|
if(Function* F = Result->getFunction("llvm.va_end")) {
|
|
if(F->arg_size() != 1) {
|
|
error("Obsolete va_end takes 1 argument");
|
|
return 0;
|
|
}
|
|
|
|
//vaend foo
|
|
// ->
|
|
//bar = alloca 1 of typeof(foo)
|
|
//vaend bar
|
|
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
|
|
const Type* ArgTy = F->getFunctionType()->getParamType(0);
|
|
const Type* ArgTyPtr = PointerType::get(ArgTy);
|
|
Function* NF = cast<Function>(Result->getOrInsertFunction(
|
|
"llvm.va_end", RetTy, ArgTyPtr, (Type *)0));
|
|
|
|
while (!F->use_empty()) {
|
|
CallInst* CI = cast<CallInst>(F->use_back());
|
|
AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
|
|
new StoreInst(CI->getOperand(1), bar, CI);
|
|
new CallInst(NF, bar, "", CI);
|
|
CI->getParent()->getInstList().erase(CI);
|
|
}
|
|
Result->getFunctionList().erase(F);
|
|
}
|
|
|
|
if(Function* F = Result->getFunction("llvm.va_copy")) {
|
|
if(F->arg_size() != 1) {
|
|
error("Obsolete va_copy takes 1 argument");
|
|
return 0;
|
|
}
|
|
//foo = vacopy(bar)
|
|
// ->
|
|
//a = alloca 1 of typeof(foo)
|
|
//b = alloca 1 of typeof(foo)
|
|
//store bar -> b
|
|
//vacopy(a, b)
|
|
//foo = load a
|
|
|
|
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
|
|
const Type* ArgTy = F->getFunctionType()->getReturnType();
|
|
const Type* ArgTyPtr = PointerType::get(ArgTy);
|
|
Function* NF = cast<Function>(Result->getOrInsertFunction(
|
|
"llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));
|
|
|
|
while (!F->use_empty()) {
|
|
CallInst* CI = cast<CallInst>(F->use_back());
|
|
AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
|
|
AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
|
|
new StoreInst(CI->getOperand(1), b, CI);
|
|
new CallInst(NF, a, b, "", CI);
|
|
Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
|
|
CI->replaceAllUsesWith(foo);
|
|
CI->getParent()->getInstList().erase(CI);
|
|
}
|
|
Result->getFunctionList().erase(F);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
} // end llvm namespace
|
|
|
|
using namespace llvm;
|
|
|
|
%}
|
|
|
|
%union {
|
|
llvm::Module *ModuleVal;
|
|
llvm::Function *FunctionVal;
|
|
std::pair<llvm::PATypeInfo, char*> *ArgVal;
|
|
llvm::BasicBlock *BasicBlockVal;
|
|
llvm::TermInstInfo TermInstVal;
|
|
llvm::InstrInfo InstVal;
|
|
llvm::ConstInfo ConstVal;
|
|
llvm::ValueInfo ValueVal;
|
|
llvm::PATypeInfo TypeVal;
|
|
llvm::TypeInfo PrimType;
|
|
llvm::PHIListInfo PHIList;
|
|
std::list<llvm::PATypeInfo> *TypeList;
|
|
std::vector<llvm::ValueInfo> *ValueList;
|
|
std::vector<llvm::ConstInfo> *ConstVector;
|
|
|
|
|
|
std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
|
|
// Represent the RHS of PHI node
|
|
std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
|
|
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
int64_t SInt64Val;
|
|
uint64_t UInt64Val;
|
|
int SIntVal;
|
|
unsigned UIntVal;
|
|
double FPVal;
|
|
bool BoolVal;
|
|
|
|
char *StrVal; // This memory is strdup'd!
|
|
llvm::ValID ValIDVal; // strdup'd memory maybe!
|
|
|
|
llvm::BinaryOps BinaryOpVal;
|
|
llvm::TermOps TermOpVal;
|
|
llvm::MemoryOps MemOpVal;
|
|
llvm::OtherOps OtherOpVal;
|
|
llvm::CastOps CastOpVal;
|
|
llvm::ICmpInst::Predicate IPred;
|
|
llvm::FCmpInst::Predicate FPred;
|
|
llvm::Module::Endianness Endianness;
|
|
}
|
|
|
|
%type <ModuleVal> Module FunctionList
|
|
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
|
|
%type <BasicBlockVal> BasicBlock InstructionList
|
|
%type <TermInstVal> BBTerminatorInst
|
|
%type <InstVal> Inst InstVal MemoryInst
|
|
%type <ConstVal> ConstVal ConstExpr
|
|
%type <ConstVector> ConstVector
|
|
%type <ArgList> ArgList ArgListH
|
|
%type <ArgVal> ArgVal
|
|
%type <PHIList> PHIList
|
|
%type <ValueList> ValueRefList ValueRefListE // For call param lists
|
|
%type <ValueList> IndexList // For GEP derived indices
|
|
%type <TypeList> TypeListI ArgTypeListI
|
|
%type <JumpTable> JumpTable
|
|
%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
|
|
%type <BoolVal> OptVolatile // 'volatile' or not
|
|
%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
|
|
%type <BoolVal> OptSideEffect // 'sideeffect' or not.
|
|
%type <Linkage> OptLinkage FnDeclareLinkage
|
|
%type <Endianness> BigOrLittle
|
|
|
|
// ValueRef - Unresolved reference to a definition or BB
|
|
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
|
|
%type <ValueVal> ResolvedVal // <type> <valref> pair
|
|
|
|
// Tokens and types for handling constant integer values
|
|
//
|
|
// ESINT64VAL - A negative number within long long range
|
|
%token <SInt64Val> ESINT64VAL
|
|
|
|
// EUINT64VAL - A positive number within uns. long long range
|
|
%token <UInt64Val> EUINT64VAL
|
|
%type <SInt64Val> EINT64VAL
|
|
|
|
%token <SIntVal> SINTVAL // Signed 32 bit ints...
|
|
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
|
|
%type <SIntVal> INTVAL
|
|
%token <FPVal> FPVAL // Float or Double constant
|
|
|
|
// Built in types...
|
|
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
|
|
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
|
|
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
|
|
%token <PrimType> FLOAT DOUBLE TYPE LABEL
|
|
|
|
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
|
|
%type <StrVal> Name OptName OptAssign
|
|
%type <UIntVal> OptAlign OptCAlign
|
|
%type <StrVal> OptSection SectionString
|
|
|
|
%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
|
|
%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
|
|
%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
|
|
%token DLLIMPORT DLLEXPORT EXTERN_WEAK
|
|
%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
|
|
%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
|
|
%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
|
|
%token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
|
|
%token DATALAYOUT
|
|
%type <UIntVal> OptCallingConv
|
|
|
|
// Basic Block Terminating Operators
|
|
%token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
|
|
%token UNWIND EXCEPT
|
|
|
|
// Binary Operators
|
|
%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
|
|
%type <BinaryOpVal> ShiftOps
|
|
%token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM
|
|
%token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR
|
|
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators
|
|
%token <OtherOpVal> ICMP FCMP
|
|
|
|
// Memory Instructions
|
|
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
|
|
|
|
// Other Operators
|
|
%token <OtherOpVal> PHI_TOK SELECT VAARG
|
|
%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
|
|
%token VAARG_old VANEXT_old //OBSOLETE
|
|
|
|
// Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
|
|
%type <IPred> IPredicates
|
|
%type <FPred> FPredicates
|
|
%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
|
|
%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
|
|
|
|
%token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI
|
|
%token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST
|
|
%type <CastOpVal> CastOps
|
|
|
|
%start Module
|
|
|
|
%%
|
|
|
|
// Handle constant integer size restriction and conversion...
|
|
//
|
|
INTVAL
|
|
: SINTVAL
|
|
| UINTVAL {
|
|
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
|
|
error("Value too large for type");
|
|
$$ = (int32_t)$1;
|
|
}
|
|
;
|
|
|
|
EINT64VAL
|
|
: ESINT64VAL // These have same type and can't cause problems...
|
|
| EUINT64VAL {
|
|
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
|
|
error("Value too large for type");
|
|
$$ = (int64_t)$1;
|
|
};
|
|
|
|
// Operations that are notably excluded from this list include:
|
|
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
|
|
//
|
|
ArithmeticOps
|
|
: ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
|
|
;
|
|
|
|
LogicalOps
|
|
: AND | OR | XOR
|
|
;
|
|
|
|
SetCondOps
|
|
: SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
|
|
;
|
|
|
|
IPredicates
|
|
: EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
|
|
| SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
|
|
| SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
|
|
| ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
|
|
| ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
|
|
;
|
|
|
|
FPredicates
|
|
: OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
|
|
| OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
|
|
| OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
|
|
| ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
|
|
| UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
|
|
| ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
|
|
| ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
|
|
| TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
|
|
| FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
|
|
;
|
|
ShiftOps
|
|
: SHL | SHR | ASHR | LSHR
|
|
;
|
|
|
|
CastOps
|
|
: TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI
|
|
| UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
|
|
;
|
|
|
|
// These are some types that allow classification if we only want a particular
|
|
// thing... for example, only a signed, unsigned, or integral type.
|
|
SIntType
|
|
: LONG | INT | SHORT | SBYTE
|
|
;
|
|
|
|
UIntType
|
|
: ULONG | UINT | USHORT | UBYTE
|
|
;
|
|
|
|
IntType
|
|
: SIntType | UIntType
|
|
;
|
|
|
|
FPType
|
|
: FLOAT | DOUBLE
|
|
;
|
|
|
|
// OptAssign - Value producing statements have an optional assignment component
|
|
OptAssign
|
|
: Name '=' {
|
|
$$ = $1;
|
|
}
|
|
| /*empty*/ {
|
|
$$ = 0;
|
|
};
|
|
|
|
OptLinkage
|
|
: INTERNAL { $$ = GlobalValue::InternalLinkage; }
|
|
| LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
|
|
| WEAK { $$ = GlobalValue::WeakLinkage; }
|
|
| APPENDING { $$ = GlobalValue::AppendingLinkage; }
|
|
| DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
|
|
| DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
|
|
| EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
|
|
| /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
|
|
;
|
|
|
|
OptCallingConv
|
|
: /*empty*/ { $$ = OldCallingConv::C; }
|
|
| CCC_TOK { $$ = OldCallingConv::C; }
|
|
| CSRETCC_TOK { $$ = OldCallingConv::CSRet; }
|
|
| FASTCC_TOK { $$ = OldCallingConv::Fast; }
|
|
| COLDCC_TOK { $$ = OldCallingConv::Cold; }
|
|
| X86_STDCALLCC_TOK { $$ = OldCallingConv::X86_StdCall; }
|
|
| X86_FASTCALLCC_TOK { $$ = OldCallingConv::X86_FastCall; }
|
|
| CC_TOK EUINT64VAL {
|
|
if ((unsigned)$2 != $2)
|
|
error("Calling conv too large");
|
|
$$ = $2;
|
|
}
|
|
;
|
|
|
|
// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
|
|
// a comma before it.
|
|
OptAlign
|
|
: /*empty*/ { $$ = 0; }
|
|
| ALIGN EUINT64VAL {
|
|
$$ = $2;
|
|
if ($$ != 0 && !isPowerOf2_32($$))
|
|
error("Alignment must be a power of two");
|
|
}
|
|
;
|
|
|
|
OptCAlign
|
|
: /*empty*/ { $$ = 0; }
|
|
| ',' ALIGN EUINT64VAL {
|
|
$$ = $3;
|
|
if ($$ != 0 && !isPowerOf2_32($$))
|
|
error("Alignment must be a power of two");
|
|
}
|
|
;
|
|
|
|
SectionString
|
|
: SECTION STRINGCONSTANT {
|
|
for (unsigned i = 0, e = strlen($2); i != e; ++i)
|
|
if ($2[i] == '"' || $2[i] == '\\')
|
|
error("Invalid character in section name");
|
|
$$ = $2;
|
|
}
|
|
;
|
|
|
|
OptSection
|
|
: /*empty*/ { $$ = 0; }
|
|
| SectionString { $$ = $1; }
|
|
;
|
|
|
|
// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
|
|
// is set to be the global we are processing.
|
|
//
|
|
GlobalVarAttributes
|
|
: /* empty */ {}
|
|
| ',' GlobalVarAttribute GlobalVarAttributes {}
|
|
;
|
|
|
|
GlobalVarAttribute
|
|
: SectionString {
|
|
CurGV->setSection($1);
|
|
free($1);
|
|
}
|
|
| ALIGN EUINT64VAL {
|
|
if ($2 != 0 && !isPowerOf2_32($2))
|
|
error("Alignment must be a power of two");
|
|
CurGV->setAlignment($2);
|
|
|
|
}
|
|
;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Types includes all predefined types... except void, because it can only be
|
|
// used in specific contexts (function returning void for example). To have
|
|
// access to it, a user must explicitly use TypesV.
|
|
//
|
|
|
|
// TypesV includes all of 'Types', but it also includes the void type.
|
|
TypesV
|
|
: Types
|
|
| VOID {
|
|
$$.PAT = new PATypeHolder($1.T);
|
|
$$.S.makeSignless();
|
|
}
|
|
;
|
|
|
|
UpRTypesV
|
|
: UpRTypes
|
|
| VOID {
|
|
$$.PAT = new PATypeHolder($1.T);
|
|
$$.S.makeSignless();
|
|
}
|
|
;
|
|
|
|
Types
|
|
: UpRTypes {
|
|
if (!UpRefs.empty())
|
|
error("Invalid upreference in type: " + (*$1.PAT)->getDescription());
|
|
$$ = $1;
|
|
}
|
|
;
|
|
|
|
PrimType
|
|
: BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
|
|
| LONG | ULONG | FLOAT | DOUBLE | LABEL
|
|
;
|
|
|
|
// Derived types are added later...
|
|
UpRTypes
|
|
: PrimType {
|
|
$$.PAT = new PATypeHolder($1.T);
|
|
$$.S.copy($1.S);
|
|
}
|
|
| OPAQUE {
|
|
$$.PAT = new PATypeHolder(OpaqueType::get());
|
|
$$.S.makeSignless();
|
|
}
|
|
| SymbolicValueRef { // Named types are also simple types...
|
|
$$.S.copy(getTypeSign($1));
|
|
const Type* tmp = getType($1);
|
|
$$.PAT = new PATypeHolder(tmp);
|
|
}
|
|
| '\\' EUINT64VAL { // Type UpReference
|
|
if ($2 > (uint64_t)~0U)
|
|
error("Value out of range");
|
|
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
|
|
UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
|
|
$$.PAT = new PATypeHolder(OT);
|
|
$$.S.makeSignless();
|
|
UR_OUT("New Upreference!\n");
|
|
}
|
|
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
|
|
$$.S.makeComposite($1.S);
|
|
std::vector<const Type*> Params;
|
|
for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
|
|
E = $3->end(); I != E; ++I) {
|
|
Params.push_back(I->PAT->get());
|
|
$$.S.add(I->S);
|
|
}
|
|
FunctionType::ParamAttrsList ParamAttrs;
|
|
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
|
|
if (isVarArg) Params.pop_back();
|
|
|
|
$$.PAT = new PATypeHolder(
|
|
HandleUpRefs(FunctionType::get($1.PAT->get(), Params, isVarArg,
|
|
ParamAttrs), $$.S));
|
|
delete $1.PAT; // Delete the return type handle
|
|
delete $3; // Delete the argument list
|
|
}
|
|
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
|
|
$$.S.makeComposite($4.S);
|
|
$$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(),
|
|
(unsigned)$2), $$.S));
|
|
delete $4.PAT;
|
|
}
|
|
| '<' EUINT64VAL 'x' UpRTypes '>' { // Vector type?
|
|
const llvm::Type* ElemTy = $4.PAT->get();
|
|
if ((unsigned)$2 != $2)
|
|
error("Unsigned result not equal to signed result");
|
|
if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
|
|
error("Elements of a VectorType must be integer or floating point");
|
|
if (!isPowerOf2_32($2))
|
|
error("VectorType length should be a power of 2");
|
|
$$.S.makeComposite($4.S);
|
|
$$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy,
|
|
(unsigned)$2), $$.S));
|
|
delete $4.PAT;
|
|
}
|
|
| '{' TypeListI '}' { // Structure type?
|
|
std::vector<const Type*> Elements;
|
|
$$.S.makeComposite();
|
|
for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
|
|
E = $2->end(); I != E; ++I) {
|
|
Elements.push_back(I->PAT->get());
|
|
$$.S.add(I->S);
|
|
}
|
|
$$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S));
|
|
delete $2;
|
|
}
|
|
| '{' '}' { // Empty structure type?
|
|
$$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>()));
|
|
$$.S.makeComposite();
|
|
}
|
|
| '<' '{' TypeListI '}' '>' { // Packed Structure type?
|
|
$$.S.makeComposite();
|
|
std::vector<const Type*> Elements;
|
|
for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
|
|
E = $3->end(); I != E; ++I) {
|
|
Elements.push_back(I->PAT->get());
|
|
$$.S.add(I->S);
|
|
delete I->PAT;
|
|
}
|
|
$$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true),
|
|
$$.S));
|
|
delete $3;
|
|
}
|
|
| '<' '{' '}' '>' { // Empty packed structure type?
|
|
$$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
|
|
$$.S.makeComposite();
|
|
}
|
|
| UpRTypes '*' { // Pointer type?
|
|
if ($1.PAT->get() == Type::LabelTy)
|
|
error("Cannot form a pointer to a basic block");
|
|
$$.S.makeComposite($1.S);
|
|
$$.PAT = new PATypeHolder(HandleUpRefs(PointerType::get($1.PAT->get()),
|
|
$$.S));
|
|
delete $1.PAT;
|
|
}
|
|
;
|
|
|
|
// TypeList - Used for struct declarations and as a basis for function type
|
|
// declaration type lists
|
|
//
|
|
TypeListI
|
|
: UpRTypes {
|
|
$$ = new std::list<PATypeInfo>();
|
|
$$->push_back($1);
|
|
}
|
|
| TypeListI ',' UpRTypes {
|
|
($$=$1)->push_back($3);
|
|
}
|
|
;
|
|
|
|
// ArgTypeList - List of types for a function type declaration...
|
|
ArgTypeListI
|
|
: TypeListI
|
|
| TypeListI ',' DOTDOTDOT {
|
|
PATypeInfo VoidTI;
|
|
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
|
|
VoidTI.S.makeSignless();
|
|
($$=$1)->push_back(VoidTI);
|
|
}
|
|
| DOTDOTDOT {
|
|
$$ = new std::list<PATypeInfo>();
|
|
PATypeInfo VoidTI;
|
|
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
|
|
VoidTI.S.makeSignless();
|
|
$$->push_back(VoidTI);
|
|
}
|
|
| /*empty*/ {
|
|
$$ = new std::list<PATypeInfo>();
|
|
}
|
|
;
|
|
|
|
// ConstVal - The various declarations that go into the constant pool. This
|
|
// production is used ONLY to represent constants that show up AFTER a 'const',
|
|
// 'constant' or 'global' token at global scope. Constants that can be inlined
|
|
// into other expressions (such as integers and constexprs) are handled by the
|
|
// ResolvedVal, ValueRef and ConstValueRef productions.
|
|
//
|
|
ConstVal
|
|
: Types '[' ConstVector ']' { // Nonempty unsized arr
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
|
|
if (ATy == 0)
|
|
error("Cannot make array constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
const Type *ETy = ATy->getElementType();
|
|
int NumElements = ATy->getNumElements();
|
|
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
error("Type mismatch: constant sized array initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "");
|
|
|
|
// Verify all elements are correct type!
|
|
std::vector<Constant*> Elems;
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
Constant *C = (*$3)[i].C;
|
|
const Type* ValTy = C->getType();
|
|
if (ETy != ValTy)
|
|
error("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
ValTy->getDescription() + "'");
|
|
Elems.push_back(C);
|
|
}
|
|
$$.C = ConstantArray::get(ATy, Elems);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
delete $3;
|
|
}
|
|
| Types '[' ']' {
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
|
|
if (ATy == 0)
|
|
error("Cannot make array constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
int NumElements = ATy->getNumElements();
|
|
if (NumElements != -1 && NumElements != 0)
|
|
error("Type mismatch: constant sized array initialized with 0"
|
|
" arguments, but has size of " + itostr(NumElements) +"");
|
|
$$.C = ConstantArray::get(ATy, std::vector<Constant*>());
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types 'c' STRINGCONSTANT {
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
|
|
if (ATy == 0)
|
|
error("Cannot make array constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
int NumElements = ATy->getNumElements();
|
|
const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
|
|
if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
|
|
error("String arrays require type i8, not '" + ETy->getDescription() +
|
|
"'");
|
|
char *EndStr = UnEscapeLexed($3, true);
|
|
if (NumElements != -1 && NumElements != (EndStr-$3))
|
|
error("Can't build string constant of size " +
|
|
itostr((int)(EndStr-$3)) + " when array has size " +
|
|
itostr(NumElements) + "");
|
|
std::vector<Constant*> Vals;
|
|
for (char *C = (char *)$3; C != (char *)EndStr; ++C)
|
|
Vals.push_back(ConstantInt::get(ETy, *C));
|
|
free($3);
|
|
$$.C = ConstantArray::get(ATy, Vals);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types '<' ConstVector '>' { // Nonempty unsized arr
|
|
const VectorType *PTy = dyn_cast<VectorType>($1.PAT->get());
|
|
if (PTy == 0)
|
|
error("Cannot make packed constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
const Type *ETy = PTy->getElementType();
|
|
int NumElements = PTy->getNumElements();
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
error("Type mismatch: constant sized packed initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "");
|
|
// Verify all elements are correct type!
|
|
std::vector<Constant*> Elems;
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
Constant *C = (*$3)[i].C;
|
|
const Type* ValTy = C->getType();
|
|
if (ETy != ValTy)
|
|
error("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
ValTy->getDescription() + "'");
|
|
Elems.push_back(C);
|
|
}
|
|
$$.C = ConstantVector::get(PTy, Elems);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
delete $3;
|
|
}
|
|
| Types '{' ConstVector '}' {
|
|
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
|
|
if (STy == 0)
|
|
error("Cannot make struct constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
if ($3->size() != STy->getNumContainedTypes())
|
|
error("Illegal number of initializers for structure type");
|
|
|
|
// Check to ensure that constants are compatible with the type initializer!
|
|
std::vector<Constant*> Fields;
|
|
for (unsigned i = 0, e = $3->size(); i != e; ++i) {
|
|
Constant *C = (*$3)[i].C;
|
|
if (C->getType() != STy->getElementType(i))
|
|
error("Expected type '" + STy->getElementType(i)->getDescription() +
|
|
"' for element #" + utostr(i) + " of structure initializer");
|
|
Fields.push_back(C);
|
|
}
|
|
$$.C = ConstantStruct::get(STy, Fields);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
delete $3;
|
|
}
|
|
| Types '{' '}' {
|
|
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
|
|
if (STy == 0)
|
|
error("Cannot make struct constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
if (STy->getNumContainedTypes() != 0)
|
|
error("Illegal number of initializers for structure type");
|
|
$$.C = ConstantStruct::get(STy, std::vector<Constant*>());
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types '<' '{' ConstVector '}' '>' {
|
|
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
|
|
if (STy == 0)
|
|
error("Cannot make packed struct constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
if ($4->size() != STy->getNumContainedTypes())
|
|
error("Illegal number of initializers for packed structure type");
|
|
|
|
// Check to ensure that constants are compatible with the type initializer!
|
|
std::vector<Constant*> Fields;
|
|
for (unsigned i = 0, e = $4->size(); i != e; ++i) {
|
|
Constant *C = (*$4)[i].C;
|
|
if (C->getType() != STy->getElementType(i))
|
|
error("Expected type '" + STy->getElementType(i)->getDescription() +
|
|
"' for element #" + utostr(i) + " of packed struct initializer");
|
|
Fields.push_back(C);
|
|
}
|
|
$$.C = ConstantStruct::get(STy, Fields);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
delete $4;
|
|
}
|
|
| Types '<' '{' '}' '>' {
|
|
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
|
|
if (STy == 0)
|
|
error("Cannot make packed struct constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
if (STy->getNumContainedTypes() != 0)
|
|
error("Illegal number of initializers for packed structure type");
|
|
$$.C = ConstantStruct::get(STy, std::vector<Constant*>());
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types NULL_TOK {
|
|
const PointerType *PTy = dyn_cast<PointerType>($1.PAT->get());
|
|
if (PTy == 0)
|
|
error("Cannot make null pointer constant with type: '" +
|
|
$1.PAT->get()->getDescription() + "'");
|
|
$$.C = ConstantPointerNull::get(PTy);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types UNDEF {
|
|
$$.C = UndefValue::get($1.PAT->get());
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types SymbolicValueRef {
|
|
const PointerType *Ty = dyn_cast<PointerType>($1.PAT->get());
|
|
if (Ty == 0)
|
|
error("Global const reference must be a pointer type, not" +
|
|
$1.PAT->get()->getDescription());
|
|
|
|
// ConstExprs can exist in the body of a function, thus creating
|
|
// GlobalValues whenever they refer to a variable. Because we are in
|
|
// the context of a function, getExistingValue will search the functions
|
|
// symbol table instead of the module symbol table for the global symbol,
|
|
// which throws things all off. To get around this, we just tell
|
|
// getExistingValue that we are at global scope here.
|
|
//
|
|
Function *SavedCurFn = CurFun.CurrentFunction;
|
|
CurFun.CurrentFunction = 0;
|
|
$2.S.copy($1.S);
|
|
Value *V = getExistingValue(Ty, $2);
|
|
CurFun.CurrentFunction = SavedCurFn;
|
|
|
|
// If this is an initializer for a constant pointer, which is referencing a
|
|
// (currently) undefined variable, create a stub now that shall be replaced
|
|
// in the future with the right type of variable.
|
|
//
|
|
if (V == 0) {
|
|
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
|
|
const PointerType *PT = cast<PointerType>(Ty);
|
|
|
|
// First check to see if the forward references value is already created!
|
|
PerModuleInfo::GlobalRefsType::iterator I =
|
|
CurModule.GlobalRefs.find(std::make_pair(PT, $2));
|
|
|
|
if (I != CurModule.GlobalRefs.end()) {
|
|
V = I->second; // Placeholder already exists, use it...
|
|
$2.destroy();
|
|
} else {
|
|
std::string Name;
|
|
if ($2.Type == ValID::NameVal) Name = $2.Name;
|
|
|
|
// Create the forward referenced global.
|
|
GlobalValue *GV;
|
|
if (const FunctionType *FTy =
|
|
dyn_cast<FunctionType>(PT->getElementType())) {
|
|
GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
|
|
CurModule.CurrentModule);
|
|
} else {
|
|
GV = new GlobalVariable(PT->getElementType(), false,
|
|
GlobalValue::ExternalLinkage, 0,
|
|
Name, CurModule.CurrentModule);
|
|
}
|
|
|
|
// Keep track of the fact that we have a forward ref to recycle it
|
|
CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
|
|
V = GV;
|
|
}
|
|
}
|
|
$$.C = cast<GlobalValue>(V);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT; // Free the type handle
|
|
}
|
|
| Types ConstExpr {
|
|
if ($1.PAT->get() != $2.C->getType())
|
|
error("Mismatched types for constant expression");
|
|
$$ = $2;
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| Types ZEROINITIALIZER {
|
|
const Type *Ty = $1.PAT->get();
|
|
if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
|
|
error("Cannot create a null initialized value of this type");
|
|
$$.C = Constant::getNullValue(Ty);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
| SIntType EINT64VAL { // integral constants
|
|
const Type *Ty = $1.T;
|
|
if (!ConstantInt::isValueValidForType(Ty, $2))
|
|
error("Constant value doesn't fit in type");
|
|
$$.C = ConstantInt::get(Ty, $2);
|
|
$$.S.makeSigned();
|
|
}
|
|
| UIntType EUINT64VAL { // integral constants
|
|
const Type *Ty = $1.T;
|
|
if (!ConstantInt::isValueValidForType(Ty, $2))
|
|
error("Constant value doesn't fit in type");
|
|
$$.C = ConstantInt::get(Ty, $2);
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| BOOL TRUETOK { // Boolean constants
|
|
$$.C = ConstantInt::get(Type::Int1Ty, true);
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| BOOL FALSETOK { // Boolean constants
|
|
$$.C = ConstantInt::get(Type::Int1Ty, false);
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| FPType FPVAL { // Float & Double constants
|
|
if (!ConstantFP::isValueValidForType($1.T, $2))
|
|
error("Floating point constant invalid for type");
|
|
$$.C = ConstantFP::get($1.T, $2);
|
|
$$.S.makeSignless();
|
|
}
|
|
;
|
|
|
|
ConstExpr
|
|
: CastOps '(' ConstVal TO Types ')' {
|
|
const Type* SrcTy = $3.C->getType();
|
|
const Type* DstTy = $5.PAT->get();
|
|
Signedness SrcSign($3.S);
|
|
Signedness DstSign($5.S);
|
|
if (!SrcTy->isFirstClassType())
|
|
error("cast constant expression from a non-primitive type: '" +
|
|
SrcTy->getDescription() + "'");
|
|
if (!DstTy->isFirstClassType())
|
|
error("cast constant expression to a non-primitive type: '" +
|
|
DstTy->getDescription() + "'");
|
|
$$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
|
|
$$.S.copy(DstSign);
|
|
delete $5.PAT;
|
|
}
|
|
| GETELEMENTPTR '(' ConstVal IndexList ')' {
|
|
const Type *Ty = $3.C->getType();
|
|
if (!isa<PointerType>(Ty))
|
|
error("GetElementPtr requires a pointer operand");
|
|
|
|
std::vector<Value*> VIndices;
|
|
std::vector<Constant*> CIndices;
|
|
upgradeGEPIndices($3.C->getType(), $4, VIndices, &CIndices);
|
|
|
|
delete $4;
|
|
$$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size());
|
|
$$.S.copy(getElementSign($3, CIndices));
|
|
}
|
|
| SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if (!$3.C->getType()->isInteger() ||
|
|
cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
|
|
error("Select condition must be bool type");
|
|
if ($5.C->getType() != $7.C->getType())
|
|
error("Select operand types must match");
|
|
$$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
|
|
$$.S.copy($5.S);
|
|
}
|
|
| ArithmeticOps '(' ConstVal ',' ConstVal ')' {
|
|
const Type *Ty = $3.C->getType();
|
|
if (Ty != $5.C->getType())
|
|
error("Binary operator types must match");
|
|
// First, make sure we're dealing with the right opcode by upgrading from
|
|
// obsolete versions.
|
|
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
|
|
|
|
// HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
|
|
// To retain backward compatibility with these early compilers, we emit a
|
|
// cast to the appropriate integer type automatically if we are in the
|
|
// broken case. See PR424 for more information.
|
|
if (!isa<PointerType>(Ty)) {
|
|
$$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
|
|
} else {
|
|
const Type *IntPtrTy = 0;
|
|
switch (CurModule.CurrentModule->getPointerSize()) {
|
|
case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
|
|
case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
|
|
default: error("invalid pointer binary constant expr");
|
|
}
|
|
$$.C = ConstantExpr::get(Opcode,
|
|
ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
|
|
ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
|
|
$$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
|
|
}
|
|
$$.S.copy($3.S);
|
|
}
|
|
| LogicalOps '(' ConstVal ',' ConstVal ')' {
|
|
const Type* Ty = $3.C->getType();
|
|
if (Ty != $5.C->getType())
|
|
error("Logical operator types must match");
|
|
if (!Ty->isInteger()) {
|
|
if (!isa<VectorType>(Ty) ||
|
|
!cast<VectorType>(Ty)->getElementType()->isInteger())
|
|
error("Logical operator requires integer operands");
|
|
}
|
|
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
|
|
$$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
|
|
$$.S.copy($3.S);
|
|
}
|
|
| SetCondOps '(' ConstVal ',' ConstVal ')' {
|
|
const Type* Ty = $3.C->getType();
|
|
if (Ty != $5.C->getType())
|
|
error("setcc operand types must match");
|
|
unsigned short pred;
|
|
Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
|
|
$$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
|
|
if ($4.C->getType() != $6.C->getType())
|
|
error("icmp operand types must match");
|
|
$$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
|
|
if ($4.C->getType() != $6.C->getType())
|
|
error("fcmp operand types must match");
|
|
$$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| ShiftOps '(' ConstVal ',' ConstVal ')' {
|
|
if (!$5.C->getType()->isInteger() ||
|
|
cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
|
|
error("Shift count for shift constant must be unsigned byte");
|
|
const Type* Ty = $3.C->getType();
|
|
if (!$3.C->getType()->isInteger())
|
|
error("Shift constant expression requires integer operand");
|
|
Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty);
|
|
$$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt);
|
|
$$.S.copy($3.S);
|
|
}
|
|
| EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
|
|
if (!ExtractElementInst::isValidOperands($3.C, $5.C))
|
|
error("Invalid extractelement operands");
|
|
$$.C = ConstantExpr::getExtractElement($3.C, $5.C);
|
|
$$.S.copy($3.S.get(0));
|
|
}
|
|
| INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
|
|
error("Invalid insertelement operands");
|
|
$$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
|
|
$$.S.copy($3.S);
|
|
}
|
|
| SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
|
|
error("Invalid shufflevector operands");
|
|
$$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
|
|
$$.S.copy($3.S);
|
|
}
|
|
;
|
|
|
|
|
|
// ConstVector - A list of comma separated constants.
|
|
ConstVector
|
|
: ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
|
|
| ConstVal {
|
|
$$ = new std::vector<ConstInfo>();
|
|
$$->push_back($1);
|
|
}
|
|
;
|
|
|
|
|
|
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
|
|
GlobalType
|
|
: GLOBAL { $$ = false; }
|
|
| CONSTANT { $$ = true; }
|
|
;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Modules
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Module rule: Capture the result of parsing the whole file into a result
|
|
// variable...
|
|
//
|
|
Module
|
|
: FunctionList {
|
|
$$ = ParserResult = $1;
|
|
CurModule.ModuleDone();
|
|
}
|
|
;
|
|
|
|
// FunctionList - A list of functions, preceeded by a constant pool.
|
|
//
|
|
FunctionList
|
|
: FunctionList Function { $$ = $1; CurFun.FunctionDone(); }
|
|
| FunctionList FunctionProto { $$ = $1; }
|
|
| FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }
|
|
| FunctionList IMPLEMENTATION { $$ = $1; }
|
|
| ConstPool {
|
|
$$ = CurModule.CurrentModule;
|
|
// Emit an error if there are any unresolved types left.
|
|
if (!CurModule.LateResolveTypes.empty()) {
|
|
const ValID &DID = CurModule.LateResolveTypes.begin()->first;
|
|
if (DID.Type == ValID::NameVal) {
|
|
error("Reference to an undefined type: '"+DID.getName() + "'");
|
|
} else {
|
|
error("Reference to an undefined type: #" + itostr(DID.Num));
|
|
}
|
|
}
|
|
}
|
|
;
|
|
|
|
// ConstPool - Constants with optional names assigned to them.
|
|
ConstPool
|
|
: ConstPool OptAssign TYPE TypesV {
|
|
// Eagerly resolve types. This is not an optimization, this is a
|
|
// requirement that is due to the fact that we could have this:
|
|
//
|
|
// %list = type { %list * }
|
|
// %list = type { %list * } ; repeated type decl
|
|
//
|
|
// If types are not resolved eagerly, then the two types will not be
|
|
// determined to be the same type!
|
|
//
|
|
ResolveTypeTo($2, $4.PAT->get(), $4.S);
|
|
|
|
if (!setTypeName($4, $2) && !$2) {
|
|
// If this is a numbered type that is not a redefinition, add it to the
|
|
// slot table.
|
|
CurModule.Types.push_back($4.PAT->get());
|
|
CurModule.TypeSigns.push_back($4.S);
|
|
}
|
|
delete $4.PAT;
|
|
}
|
|
| ConstPool FunctionProto { // Function prototypes can be in const pool
|
|
}
|
|
| ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
|
|
}
|
|
| ConstPool OptAssign OptLinkage GlobalType ConstVal {
|
|
if ($5.C == 0)
|
|
error("Global value initializer is not a constant");
|
|
CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S);
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
}
|
|
| ConstPool OptAssign EXTERNAL GlobalType Types {
|
|
const Type *Ty = $5.PAT->get();
|
|
CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0,
|
|
$5.S);
|
|
delete $5.PAT;
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
}
|
|
| ConstPool OptAssign DLLIMPORT GlobalType Types {
|
|
const Type *Ty = $5.PAT->get();
|
|
CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0,
|
|
$5.S);
|
|
delete $5.PAT;
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
}
|
|
| ConstPool OptAssign EXTERN_WEAK GlobalType Types {
|
|
const Type *Ty = $5.PAT->get();
|
|
CurGV =
|
|
ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0,
|
|
$5.S);
|
|
delete $5.PAT;
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
}
|
|
| ConstPool TARGET TargetDefinition {
|
|
}
|
|
| ConstPool DEPLIBS '=' LibrariesDefinition {
|
|
}
|
|
| /* empty: end of list */ {
|
|
}
|
|
;
|
|
|
|
AsmBlock
|
|
: STRINGCONSTANT {
|
|
const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
|
|
char *EndStr = UnEscapeLexed($1, true);
|
|
std::string NewAsm($1, EndStr);
|
|
free($1);
|
|
|
|
if (AsmSoFar.empty())
|
|
CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
|
|
else
|
|
CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
|
|
}
|
|
;
|
|
|
|
BigOrLittle
|
|
: BIG { $$ = Module::BigEndian; }
|
|
| LITTLE { $$ = Module::LittleEndian; }
|
|
;
|
|
|
|
TargetDefinition
|
|
: ENDIAN '=' BigOrLittle {
|
|
CurModule.setEndianness($3);
|
|
}
|
|
| POINTERSIZE '=' EUINT64VAL {
|
|
if ($3 == 32)
|
|
CurModule.setPointerSize(Module::Pointer32);
|
|
else if ($3 == 64)
|
|
CurModule.setPointerSize(Module::Pointer64);
|
|
else
|
|
error("Invalid pointer size: '" + utostr($3) + "'");
|
|
}
|
|
| TRIPLE '=' STRINGCONSTANT {
|
|
CurModule.CurrentModule->setTargetTriple($3);
|
|
free($3);
|
|
}
|
|
| DATALAYOUT '=' STRINGCONSTANT {
|
|
CurModule.CurrentModule->setDataLayout($3);
|
|
free($3);
|
|
}
|
|
;
|
|
|
|
LibrariesDefinition
|
|
: '[' LibList ']'
|
|
;
|
|
|
|
LibList
|
|
: LibList ',' STRINGCONSTANT {
|
|
CurModule.CurrentModule->addLibrary($3);
|
|
free($3);
|
|
}
|
|
| STRINGCONSTANT {
|
|
CurModule.CurrentModule->addLibrary($1);
|
|
free($1);
|
|
}
|
|
| /* empty: end of list */ { }
|
|
;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Function Headers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Name
|
|
: VAR_ID | STRINGCONSTANT
|
|
;
|
|
|
|
OptName
|
|
: Name
|
|
| /*empty*/ { $$ = 0; }
|
|
;
|
|
|
|
ArgVal
|
|
: Types OptName {
|
|
if ($1.PAT->get() == Type::VoidTy)
|
|
error("void typed arguments are invalid");
|
|
$$ = new std::pair<PATypeInfo, char*>($1, $2);
|
|
}
|
|
;
|
|
|
|
ArgListH
|
|
: ArgListH ',' ArgVal {
|
|
$$ = $1;
|
|
$$->push_back(*$3);
|
|
delete $3;
|
|
}
|
|
| ArgVal {
|
|
$$ = new std::vector<std::pair<PATypeInfo,char*> >();
|
|
$$->push_back(*$1);
|
|
delete $1;
|
|
}
|
|
;
|
|
|
|
ArgList
|
|
: ArgListH { $$ = $1; }
|
|
| ArgListH ',' DOTDOTDOT {
|
|
$$ = $1;
|
|
PATypeInfo VoidTI;
|
|
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
|
|
VoidTI.S.makeSignless();
|
|
$$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
|
|
}
|
|
| DOTDOTDOT {
|
|
$$ = new std::vector<std::pair<PATypeInfo,char*> >();
|
|
PATypeInfo VoidTI;
|
|
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
|
|
VoidTI.S.makeSignless();
|
|
$$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
|
|
}
|
|
| /* empty */ { $$ = 0; }
|
|
;
|
|
|
|
FunctionHeaderH
|
|
: OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
|
|
UnEscapeLexed($3);
|
|
std::string FunctionName($3);
|
|
free($3); // Free strdup'd memory!
|
|
|
|
const Type* RetTy = $2.PAT->get();
|
|
|
|
if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
|
|
error("LLVM functions cannot return aggregate types");
|
|
|
|
Signedness FTySign;
|
|
FTySign.makeComposite($2.S);
|
|
std::vector<const Type*> ParamTyList;
|
|
|
|
// In LLVM 2.0 the signatures of three varargs intrinsics changed to take
|
|
// i8*. We check here for those names and override the parameter list
|
|
// types to ensure the prototype is correct.
|
|
if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
|
|
ParamTyList.push_back(PointerType::get(Type::Int8Ty));
|
|
} else if (FunctionName == "llvm.va_copy") {
|
|
ParamTyList.push_back(PointerType::get(Type::Int8Ty));
|
|
ParamTyList.push_back(PointerType::get(Type::Int8Ty));
|
|
} else if ($5) { // If there are arguments...
|
|
for (std::vector<std::pair<PATypeInfo,char*> >::iterator
|
|
I = $5->begin(), E = $5->end(); I != E; ++I) {
|
|
const Type *Ty = I->first.PAT->get();
|
|
ParamTyList.push_back(Ty);
|
|
FTySign.add(I->first.S);
|
|
}
|
|
}
|
|
|
|
bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy;
|
|
if (isVarArg)
|
|
ParamTyList.pop_back();
|
|
|
|
// Convert the CSRet calling convention into the corresponding parameter
|
|
// attribute.
|
|
FunctionType::ParamAttrsList ParamAttrs;
|
|
if ($1 == OldCallingConv::CSRet) {
|
|
ParamAttrs.push_back(FunctionType::NoAttributeSet); // result
|
|
ParamAttrs.push_back(FunctionType::StructRetAttribute); // first arg
|
|
}
|
|
|
|
const FunctionType *FT = FunctionType::get(RetTy, ParamTyList, isVarArg,
|
|
ParamAttrs);
|
|
const PointerType *PFT = PointerType::get(FT);
|
|
delete $2.PAT;
|
|
|
|
ValID ID;
|
|
if (!FunctionName.empty()) {
|
|
ID = ValID::create((char*)FunctionName.c_str());
|
|
} else {
|
|
ID = ValID::create((int)CurModule.Values[PFT].size());
|
|
}
|
|
ID.S.makeComposite(FTySign);
|
|
|
|
Function *Fn = 0;
|
|
Module* M = CurModule.CurrentModule;
|
|
|
|
// See if this function was forward referenced. If so, recycle the object.
|
|
if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
|
|
// Move the function to the end of the list, from whereever it was
|
|
// previously inserted.
|
|
Fn = cast<Function>(FWRef);
|
|
M->getFunctionList().remove(Fn);
|
|
M->getFunctionList().push_back(Fn);
|
|
} else if (!FunctionName.empty()) {
|
|
GlobalValue *Conflict = M->getFunction(FunctionName);
|
|
if (!Conflict)
|
|
Conflict = M->getNamedGlobal(FunctionName);
|
|
if (Conflict && PFT == Conflict->getType()) {
|
|
if (!CurFun.isDeclare && !Conflict->isDeclaration()) {
|
|
// We have two function definitions that conflict, same type, same
|
|
// name. We should really check to make sure that this is the result
|
|
// of integer type planes collapsing and generate an error if it is
|
|
// not, but we'll just rename on the assumption that it is. However,
|
|
// let's do it intelligently and rename the internal linkage one
|
|
// if there is one.
|
|
std::string NewName(makeNameUnique(FunctionName));
|
|
if (Conflict->hasInternalLinkage()) {
|
|
Conflict->setName(NewName);
|
|
RenameMapKey Key =
|
|
makeRenameMapKey(FunctionName, Conflict->getType(), ID.S);
|
|
CurModule.RenameMap[Key] = NewName;
|
|
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
|
|
InsertValue(Fn, CurModule.Values);
|
|
} else {
|
|
Fn = new Function(FT, CurFun.Linkage, NewName, M);
|
|
InsertValue(Fn, CurModule.Values);
|
|
RenameMapKey Key =
|
|
makeRenameMapKey(FunctionName, PFT, ID.S);
|
|
CurModule.RenameMap[Key] = NewName;
|
|
}
|
|
} else {
|
|
// If they are not both definitions, then just use the function we
|
|
// found since the types are the same.
|
|
Fn = cast<Function>(Conflict);
|
|
|
|
// Make sure to strip off any argument names so we can't get
|
|
// conflicts.
|
|
if (Fn->isDeclaration())
|
|
for (Function::arg_iterator AI = Fn->arg_begin(),
|
|
AE = Fn->arg_end(); AI != AE; ++AI)
|
|
AI->setName("");
|
|
}
|
|
} else if (Conflict) {
|
|
// We have two globals with the same name and different types.
|
|
// Previously, this was permitted because the symbol table had
|
|
// "type planes" and names only needed to be distinct within a
|
|
// type plane. After PR411 was fixed, this is no loner the case.
|
|
// To resolve this we must rename one of the two.
|
|
if (Conflict->hasInternalLinkage()) {
|
|
// We can safely rename the Conflict.
|
|
RenameMapKey Key =
|
|
makeRenameMapKey(Conflict->getName(), Conflict->getType(),
|
|
CurModule.NamedValueSigns[Conflict->getName()]);
|
|
Conflict->setName(makeNameUnique(Conflict->getName()));
|
|
CurModule.RenameMap[Key] = Conflict->getName();
|
|
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
|
|
InsertValue(Fn, CurModule.Values);
|
|
} else {
|
|
// We can't quietly rename either of these things, but we must
|
|
// rename one of them. Only if the function's linkage is internal can
|
|
// we forgo a warning message about the renamed function.
|
|
std::string NewName = makeNameUnique(FunctionName);
|
|
if (CurFun.Linkage != GlobalValue::InternalLinkage) {
|
|
warning("Renaming function '" + FunctionName + "' as '" + NewName +
|
|
"' may cause linkage errors");
|
|
}
|
|
// Elect to rename the thing we're now defining.
|
|
Fn = new Function(FT, CurFun.Linkage, NewName, M);
|
|
InsertValue(Fn, CurModule.Values);
|
|
RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S);
|
|
CurModule.RenameMap[Key] = NewName;
|
|
}
|
|
} else {
|
|
// There's no conflict, just define the function
|
|
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
|
|
InsertValue(Fn, CurModule.Values);
|
|
}
|
|
}
|
|
|
|
CurFun.FunctionStart(Fn);
|
|
|
|
if (CurFun.isDeclare) {
|
|
// If we have declaration, always overwrite linkage. This will allow us
|
|
// to correctly handle cases, when pointer to function is passed as
|
|
// argument to another function.
|
|
Fn->setLinkage(CurFun.Linkage);
|
|
}
|
|
Fn->setCallingConv(upgradeCallingConv($1));
|
|
Fn->setAlignment($8);
|
|
if ($7) {
|
|
Fn->setSection($7);
|
|
free($7);
|
|
}
|
|
|
|
// Add all of the arguments we parsed to the function...
|
|
if ($5) { // Is null if empty...
|
|
if (isVarArg) { // Nuke the last entry
|
|
assert($5->back().first.PAT->get() == Type::VoidTy &&
|
|
$5->back().second == 0 && "Not a varargs marker");
|
|
delete $5->back().first.PAT;
|
|
$5->pop_back(); // Delete the last entry
|
|
}
|
|
Function::arg_iterator ArgIt = Fn->arg_begin();
|
|
Function::arg_iterator ArgEnd = Fn->arg_end();
|
|
std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin();
|
|
std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end();
|
|
for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) {
|
|
delete I->first.PAT; // Delete the typeholder...
|
|
ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S);
|
|
setValueName(VI, I->second); // Insert arg into symtab...
|
|
InsertValue(ArgIt);
|
|
}
|
|
delete $5; // We're now done with the argument list
|
|
}
|
|
}
|
|
;
|
|
|
|
BEGIN
|
|
: BEGINTOK | '{' // Allow BEGIN or '{' to start a function
|
|
;
|
|
|
|
FunctionHeader
|
|
: OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN {
|
|
$$ = CurFun.CurrentFunction;
|
|
|
|
// Make sure that we keep track of the linkage type even if there was a
|
|
// previous "declare".
|
|
$$->setLinkage($1);
|
|
}
|
|
;
|
|
|
|
END
|
|
: ENDTOK | '}' // Allow end of '}' to end a function
|
|
;
|
|
|
|
Function
|
|
: BasicBlockList END {
|
|
$$ = $1;
|
|
};
|
|
|
|
FnDeclareLinkage
|
|
: /*default*/ { $$ = GlobalValue::ExternalLinkage; }
|
|
| DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
|
|
| EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
|
|
;
|
|
|
|
FunctionProto
|
|
: DECLARE { CurFun.isDeclare = true; }
|
|
FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH {
|
|
$$ = CurFun.CurrentFunction;
|
|
CurFun.FunctionDone();
|
|
|
|
}
|
|
;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Basic Blocks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OptSideEffect
|
|
: /* empty */ { $$ = false; }
|
|
| SIDEEFFECT { $$ = true; }
|
|
;
|
|
|
|
ConstValueRef
|
|
// A reference to a direct constant
|
|
: ESINT64VAL { $$ = ValID::create($1); }
|
|
| EUINT64VAL { $$ = ValID::create($1); }
|
|
| FPVAL { $$ = ValID::create($1); }
|
|
| TRUETOK {
|
|
$$ = ValID::create(ConstantInt::get(Type::Int1Ty, true));
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| FALSETOK {
|
|
$$ = ValID::create(ConstantInt::get(Type::Int1Ty, false));
|
|
$$.S.makeUnsigned();
|
|
}
|
|
| NULL_TOK { $$ = ValID::createNull(); }
|
|
| UNDEF { $$ = ValID::createUndef(); }
|
|
| ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
|
|
| '<' ConstVector '>' { // Nonempty unsized packed vector
|
|
const Type *ETy = (*$2)[0].C->getType();
|
|
int NumElements = $2->size();
|
|
VectorType* pt = VectorType::get(ETy, NumElements);
|
|
$$.S.makeComposite((*$2)[0].S);
|
|
PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S));
|
|
|
|
// Verify all elements are correct type!
|
|
std::vector<Constant*> Elems;
|
|
for (unsigned i = 0; i < $2->size(); i++) {
|
|
Constant *C = (*$2)[i].C;
|
|
const Type *CTy = C->getType();
|
|
if (ETy != CTy)
|
|
error("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '" +
|
|
CTy->getDescription() + "'");
|
|
Elems.push_back(C);
|
|
}
|
|
$$ = ValID::create(ConstantVector::get(pt, Elems));
|
|
delete PTy; delete $2;
|
|
}
|
|
| ConstExpr {
|
|
$$ = ValID::create($1.C);
|
|
$$.S.copy($1.S);
|
|
}
|
|
| ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
|
|
char *End = UnEscapeLexed($3, true);
|
|
std::string AsmStr = std::string($3, End);
|
|
End = UnEscapeLexed($5, true);
|
|
std::string Constraints = std::string($5, End);
|
|
$$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
|
|
free($3);
|
|
free($5);
|
|
}
|
|
;
|
|
|
|
// SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value.
|
|
//
|
|
SymbolicValueRef
|
|
: INTVAL { $$ = ValID::create($1); $$.S.makeSignless(); }
|
|
| Name { $$ = ValID::create($1); $$.S.makeSignless(); }
|
|
;
|
|
|
|
// ValueRef - A reference to a definition... either constant or symbolic
|
|
ValueRef
|
|
: SymbolicValueRef | ConstValueRef
|
|
;
|
|
|
|
|
|
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
|
|
// type immediately preceeds the value reference, and allows complex constant
|
|
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
|
|
ResolvedVal
|
|
: Types ValueRef {
|
|
const Type *Ty = $1.PAT->get();
|
|
$2.S.copy($1.S);
|
|
$$.V = getVal(Ty, $2);
|
|
$$.S.copy($1.S);
|
|
delete $1.PAT;
|
|
}
|
|
;
|
|
|
|
BasicBlockList
|
|
: BasicBlockList BasicBlock {
|
|
$$ = $1;
|
|
}
|
|
| FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
|
|
$$ = $1;
|
|
};
|
|
|
|
|
|
// Basic blocks are terminated by branching instructions:
|
|
// br, br/cc, switch, ret
|
|
//
|
|
BasicBlock
|
|
: InstructionList OptAssign BBTerminatorInst {
|
|
ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S);
|
|
setValueName(VI, $2);
|
|
InsertValue($3.TI);
|
|
$1->getInstList().push_back($3.TI);
|
|
InsertValue($1);
|
|
$$ = $1;
|
|
}
|
|
;
|
|
|
|
InstructionList
|
|
: InstructionList Inst {
|
|
if ($2.I)
|
|
$1->getInstList().push_back($2.I);
|
|
$$ = $1;
|
|
}
|
|
| /* empty */ {
|
|
$$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true);
|
|
// Make sure to move the basic block to the correct location in the
|
|
// function, instead of leaving it inserted wherever it was first
|
|
// referenced.
|
|
Function::BasicBlockListType &BBL =
|
|
CurFun.CurrentFunction->getBasicBlockList();
|
|
BBL.splice(BBL.end(), BBL, $$);
|
|
}
|
|
| LABELSTR {
|
|
$$ = CurBB = getBBVal(ValID::create($1), true);
|
|
// Make sure to move the basic block to the correct location in the
|
|
// function, instead of leaving it inserted wherever it was first
|
|
// referenced.
|
|
Function::BasicBlockListType &BBL =
|
|
CurFun.CurrentFunction->getBasicBlockList();
|
|
BBL.splice(BBL.end(), BBL, $$);
|
|
}
|
|
;
|
|
|
|
Unwind : UNWIND | EXCEPT;
|
|
|
|
BBTerminatorInst
|
|
: RET ResolvedVal { // Return with a result...
|
|
$$.TI = new ReturnInst($2.V);
|
|
$$.S.makeSignless();
|
|
}
|
|
| RET VOID { // Return with no result...
|
|
$$.TI = new ReturnInst();
|
|
$$.S.makeSignless();
|
|
}
|
|
| BR LABEL ValueRef { // Unconditional Branch...
|
|
BasicBlock* tmpBB = getBBVal($3);
|
|
$$.TI = new BranchInst(tmpBB);
|
|
$$.S.makeSignless();
|
|
} // Conditional Branch...
|
|
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
|
|
$6.S.makeSignless();
|
|
$9.S.makeSignless();
|
|
BasicBlock* tmpBBA = getBBVal($6);
|
|
BasicBlock* tmpBBB = getBBVal($9);
|
|
$3.S.makeUnsigned();
|
|
Value* tmpVal = getVal(Type::Int1Ty, $3);
|
|
$$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal);
|
|
$$.S.makeSignless();
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
|
|
$3.S.copy($2.S);
|
|
Value* tmpVal = getVal($2.T, $3);
|
|
$6.S.makeSignless();
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
|
|
$$.TI = S;
|
|
$$.S.makeSignless();
|
|
std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
|
|
E = $8->end();
|
|
for (; I != E; ++I) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
|
|
S->addCase(CI, I->second);
|
|
else
|
|
error("Switch case is constant, but not a simple integer");
|
|
}
|
|
delete $8;
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
|
|
$3.S.copy($2.S);
|
|
Value* tmpVal = getVal($2.T, $3);
|
|
$6.S.makeSignless();
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
|
|
$$.TI = S;
|
|
$$.S.makeSignless();
|
|
}
|
|
| INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
|
|
TO LABEL ValueRef Unwind LABEL ValueRef {
|
|
const PointerType *PFTy;
|
|
const FunctionType *Ty;
|
|
Signedness FTySign;
|
|
|
|
if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
std::vector<const Type*> ParamTypes;
|
|
FTySign.makeComposite($3.S);
|
|
if ($6) {
|
|
for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
|
|
I != E; ++I) {
|
|
ParamTypes.push_back((*I).V->getType());
|
|
FTySign.add(I->S);
|
|
}
|
|
}
|
|
FunctionType::ParamAttrsList ParamAttrs;
|
|
if ($2 == OldCallingConv::CSRet) {
|
|
ParamAttrs.push_back(FunctionType::NoAttributeSet);
|
|
ParamAttrs.push_back(FunctionType::StructRetAttribute);
|
|
}
|
|
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypes.pop_back();
|
|
Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg, ParamAttrs);
|
|
PFTy = PointerType::get(Ty);
|
|
$$.S.copy($3.S);
|
|
} else {
|
|
FTySign = $3.S;
|
|
// Get the signedness of the result type. $3 is the pointer to the
|
|
// function type so we get the 0th element to extract the function type,
|
|
// and then the 0th element again to get the result type.
|
|
$$.S.copy($3.S.get(0).get(0));
|
|
}
|
|
$4.S.makeComposite(FTySign);
|
|
Value *V = getVal(PFTy, $4); // Get the function we're calling...
|
|
BasicBlock *Normal = getBBVal($10);
|
|
BasicBlock *Except = getBBVal($13);
|
|
|
|
// Create the call node...
|
|
if (!$6) { // Has no arguments?
|
|
$$.TI = new InvokeInst(V, Normal, Except, 0, 0);
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
//
|
|
FunctionType::param_iterator I = Ty->param_begin();
|
|
FunctionType::param_iterator E = Ty->param_end();
|
|
std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
|
|
|
|
std::vector<Value*> Args;
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
|
|
if ((*ArgI).V->getType() != *I)
|
|
error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'");
|
|
Args.push_back((*ArgI).V);
|
|
}
|
|
|
|
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
|
|
error("Invalid number of parameters detected");
|
|
|
|
$$.TI = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
|
|
}
|
|
cast<InvokeInst>($$.TI)->setCallingConv(upgradeCallingConv($2));
|
|
delete $3.PAT;
|
|
delete $6;
|
|
}
|
|
| Unwind {
|
|
$$.TI = new UnwindInst();
|
|
$$.S.makeSignless();
|
|
}
|
|
| UNREACHABLE {
|
|
$$.TI = new UnreachableInst();
|
|
$$.S.makeSignless();
|
|
}
|
|
;
|
|
|
|
JumpTable
|
|
: JumpTable IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = $1;
|
|
$3.S.copy($2.S);
|
|
Constant *V = cast<Constant>(getExistingValue($2.T, $3));
|
|
|
|
if (V == 0)
|
|
error("May only switch on a constant pool value");
|
|
|
|
$6.S.makeSignless();
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
$$->push_back(std::make_pair(V, tmpBB));
|
|
}
|
|
| IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
|
|
$2.S.copy($1.S);
|
|
Constant *V = cast<Constant>(getExistingValue($1.T, $2));
|
|
|
|
if (V == 0)
|
|
error("May only switch on a constant pool value");
|
|
|
|
$5.S.makeSignless();
|
|
BasicBlock* tmpBB = getBBVal($5);
|
|
$$->push_back(std::make_pair(V, tmpBB));
|
|
}
|
|
;
|
|
|
|
Inst
|
|
: OptAssign InstVal {
|
|
bool omit = false;
|
|
if ($1)
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
|
|
if (BCI->getSrcTy() == BCI->getDestTy() &&
|
|
BCI->getOperand(0)->getName() == $1)
|
|
// This is a useless bit cast causing a name redefinition. It is
|
|
// a bit cast from a type to the same type of an operand with the
|
|
// same name as the name we would give this instruction. Since this
|
|
// instruction results in no code generation, it is safe to omit
|
|
// the instruction. This situation can occur because of collapsed
|
|
// type planes. For example:
|
|
// %X = add int %Y, %Z
|
|
// %X = cast int %Y to uint
|
|
// After upgrade, this looks like:
|
|
// %X = add i32 %Y, %Z
|
|
// %X = bitcast i32 to i32
|
|
// The bitcast is clearly useless so we omit it.
|
|
omit = true;
|
|
if (omit) {
|
|
$$.I = 0;
|
|
$$.S.makeSignless();
|
|
} else {
|
|
ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S);
|
|
setValueName(VI, $1);
|
|
InsertValue($2.I);
|
|
$$ = $2;
|
|
}
|
|
};
|
|
|
|
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
|
|
$$.P = new std::list<std::pair<Value*, BasicBlock*> >();
|
|
$$.S.copy($1.S);
|
|
$3.S.copy($1.S);
|
|
Value* tmpVal = getVal($1.PAT->get(), $3);
|
|
$5.S.makeSignless();
|
|
BasicBlock* tmpBB = getBBVal($5);
|
|
$$.P->push_back(std::make_pair(tmpVal, tmpBB));
|
|
delete $1.PAT;
|
|
}
|
|
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
|
|
$$ = $1;
|
|
$4.S.copy($1.S);
|
|
Value* tmpVal = getVal($1.P->front().first->getType(), $4);
|
|
$6.S.makeSignless();
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
$1.P->push_back(std::make_pair(tmpVal, tmpBB));
|
|
}
|
|
;
|
|
|
|
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
|
|
$$ = new std::vector<ValueInfo>();
|
|
$$->push_back($1);
|
|
}
|
|
| ValueRefList ',' ResolvedVal {
|
|
$$ = $1;
|
|
$1->push_back($3);
|
|
};
|
|
|
|
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
|
|
ValueRefListE
|
|
: ValueRefList
|
|
| /*empty*/ { $$ = 0; }
|
|
;
|
|
|
|
OptTailCall
|
|
: TAIL CALL {
|
|
$$ = true;
|
|
}
|
|
| CALL {
|
|
$$ = false;
|
|
}
|
|
;
|
|
|
|
InstVal
|
|
: ArithmeticOps Types ValueRef ',' ValueRef {
|
|
$3.S.copy($2.S);
|
|
$5.S.copy($2.S);
|
|
const Type* Ty = $2.PAT->get();
|
|
if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<VectorType>(Ty))
|
|
error("Arithmetic operator requires integer, FP, or packed operands");
|
|
if (isa<VectorType>(Ty) &&
|
|
($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
|
|
error("Remainder not supported on vector types");
|
|
// Upgrade the opcode from obsolete versions before we do anything with it.
|
|
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
|
|
Value* val1 = getVal(Ty, $3);
|
|
Value* val2 = getVal(Ty, $5);
|
|
$$.I = BinaryOperator::create(Opcode, val1, val2);
|
|
if ($$.I == 0)
|
|
error("binary operator returned null");
|
|
$$.S.copy($2.S);
|
|
delete $2.PAT;
|
|
}
|
|
| LogicalOps Types ValueRef ',' ValueRef {
|
|
$3.S.copy($2.S);
|
|
$5.S.copy($2.S);
|
|
const Type *Ty = $2.PAT->get();
|
|
if (!Ty->isInteger()) {
|
|
if (!isa<VectorType>(Ty) ||
|
|
!cast<VectorType>(Ty)->getElementType()->isInteger())
|
|
error("Logical operator requires integral operands");
|
|
}
|
|
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
|
|
Value* tmpVal1 = getVal(Ty, $3);
|
|
Value* tmpVal2 = getVal(Ty, $5);
|
|
$$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
|
|
if ($$.I == 0)
|
|
error("binary operator returned null");
|
|
$$.S.copy($2.S);
|
|
delete $2.PAT;
|
|
}
|
|
| SetCondOps Types ValueRef ',' ValueRef {
|
|
$3.S.copy($2.S);
|
|
$5.S.copy($2.S);
|
|
const Type* Ty = $2.PAT->get();
|
|
if(isa<VectorType>(Ty))
|
|
error("VectorTypes currently not supported in setcc instructions");
|
|
unsigned short pred;
|
|
Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
|
|
Value* tmpVal1 = getVal(Ty, $3);
|
|
Value* tmpVal2 = getVal(Ty, $5);
|
|
$$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
|
|
if ($$.I == 0)
|
|
error("binary operator returned null");
|
|
$$.S.makeUnsigned();
|
|
delete $2.PAT;
|
|
}
|
|
| ICMP IPredicates Types ValueRef ',' ValueRef {
|
|
$4.S.copy($3.S);
|
|
$6.S.copy($3.S);
|
|
const Type *Ty = $3.PAT->get();
|
|
if (isa<VectorType>(Ty))
|
|
error("VectorTypes currently not supported in icmp instructions");
|
|
else if (!Ty->isInteger() && !isa<PointerType>(Ty))
|
|
error("icmp requires integer or pointer typed operands");
|
|
Value* tmpVal1 = getVal(Ty, $4);
|
|
Value* tmpVal2 = getVal(Ty, $6);
|
|
$$.I = new ICmpInst($2, tmpVal1, tmpVal2);
|
|
$$.S.makeUnsigned();
|
|
delete $3.PAT;
|
|
}
|
|
| FCMP FPredicates Types ValueRef ',' ValueRef {
|
|
$4.S.copy($3.S);
|
|
$6.S.copy($3.S);
|
|
const Type *Ty = $3.PAT->get();
|
|
if (isa<VectorType>(Ty))
|
|
error("VectorTypes currently not supported in fcmp instructions");
|
|
else if (!Ty->isFloatingPoint())
|
|
error("fcmp instruction requires floating point operands");
|
|
Value* tmpVal1 = getVal(Ty, $4);
|
|
Value* tmpVal2 = getVal(Ty, $6);
|
|
$$.I = new FCmpInst($2, tmpVal1, tmpVal2);
|
|
$$.S.makeUnsigned();
|
|
delete $3.PAT;
|
|
}
|
|
| NOT ResolvedVal {
|
|
warning("Use of obsolete 'not' instruction: Replacing with 'xor");
|
|
const Type *Ty = $2.V->getType();
|
|
Value *Ones = ConstantInt::getAllOnesValue(Ty);
|
|
if (Ones == 0)
|
|
error("Expected integral type for not instruction");
|
|
$$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
|
|
if ($$.I == 0)
|
|
error("Could not create a xor instruction");
|
|
$$.S.copy($2.S);
|
|
}
|
|
| ShiftOps ResolvedVal ',' ResolvedVal {
|
|
if (!$4.V->getType()->isInteger() ||
|
|
cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
|
|
error("Shift amount must be int8");
|
|
const Type* Ty = $2.V->getType();
|
|
if (!Ty->isInteger())
|
|
error("Shift constant expression requires integer operand");
|
|
Value* ShiftAmt = 0;
|
|
if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth())
|
|
if (Constant *C = dyn_cast<Constant>($4.V))
|
|
ShiftAmt = ConstantExpr::getZExt(C, Ty);
|
|
else
|
|
ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB);
|
|
else
|
|
ShiftAmt = $4.V;
|
|
$$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt);
|
|
$$.S.copy($2.S);
|
|
}
|
|
| CastOps ResolvedVal TO Types {
|
|
const Type *DstTy = $4.PAT->get();
|
|
if (!DstTy->isFirstClassType())
|
|
error("cast instruction to a non-primitive type: '" +
|
|
DstTy->getDescription() + "'");
|
|
$$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
|
|
$$.S.copy($4.S);
|
|
delete $4.PAT;
|
|
}
|
|
| SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if (!$2.V->getType()->isInteger() ||
|
|
cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
|
|
error("select condition must be bool");
|
|
if ($4.V->getType() != $6.V->getType())
|
|
error("select value types should match");
|
|
$$.I = new SelectInst($2.V, $4.V, $6.V);
|
|
$$.S.copy($4.S);
|
|
}
|
|
| VAARG ResolvedVal ',' Types {
|
|
const Type *Ty = $4.PAT->get();
|
|
NewVarArgs = true;
|
|
$$.I = new VAArgInst($2.V, Ty);
|
|
$$.S.copy($4.S);
|
|
delete $4.PAT;
|
|
}
|
|
| VAARG_old ResolvedVal ',' Types {
|
|
const Type* ArgTy = $2.V->getType();
|
|
const Type* DstTy = $4.PAT->get();
|
|
ObsoleteVarArgs = true;
|
|
Function* NF = cast<Function>(CurModule.CurrentModule->
|
|
getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
|
|
|
|
//b = vaarg a, t ->
|
|
//foo = alloca 1 of t
|
|
//bar = vacopy a
|
|
//store bar -> foo
|
|
//b = vaarg foo, t
|
|
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
|
|
CurBB->getInstList().push_back(foo);
|
|
CallInst* bar = new CallInst(NF, $2.V);
|
|
CurBB->getInstList().push_back(bar);
|
|
CurBB->getInstList().push_back(new StoreInst(bar, foo));
|
|
$$.I = new VAArgInst(foo, DstTy);
|
|
$$.S.copy($4.S);
|
|
delete $4.PAT;
|
|
}
|
|
| VANEXT_old ResolvedVal ',' Types {
|
|
const Type* ArgTy = $2.V->getType();
|
|
const Type* DstTy = $4.PAT->get();
|
|
ObsoleteVarArgs = true;
|
|
Function* NF = cast<Function>(CurModule.CurrentModule->
|
|
getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
|
|
|
|
//b = vanext a, t ->
|
|
//foo = alloca 1 of t
|
|
//bar = vacopy a
|
|
//store bar -> foo
|
|
//tmp = vaarg foo, t
|
|
//b = load foo
|
|
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
|
|
CurBB->getInstList().push_back(foo);
|
|
CallInst* bar = new CallInst(NF, $2.V);
|
|
CurBB->getInstList().push_back(bar);
|
|
CurBB->getInstList().push_back(new StoreInst(bar, foo));
|
|
Instruction* tmp = new VAArgInst(foo, DstTy);
|
|
CurBB->getInstList().push_back(tmp);
|
|
$$.I = new LoadInst(foo);
|
|
$$.S.copy($4.S);
|
|
delete $4.PAT;
|
|
}
|
|
| EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
|
|
if (!ExtractElementInst::isValidOperands($2.V, $4.V))
|
|
error("Invalid extractelement operands");
|
|
$$.I = new ExtractElementInst($2.V, $4.V);
|
|
$$.S.copy($2.S.get(0));
|
|
}
|
|
| INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
|
|
error("Invalid insertelement operands");
|
|
$$.I = new InsertElementInst($2.V, $4.V, $6.V);
|
|
$$.S.copy($2.S);
|
|
}
|
|
| SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
|
|
error("Invalid shufflevector operands");
|
|
$$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
|
|
$$.S.copy($2.S);
|
|
}
|
|
| PHI_TOK PHIList {
|
|
const Type *Ty = $2.P->front().first->getType();
|
|
if (!Ty->isFirstClassType())
|
|
error("PHI node operands must be of first class type");
|
|
PHINode *PHI = new PHINode(Ty);
|
|
PHI->reserveOperandSpace($2.P->size());
|
|
while ($2.P->begin() != $2.P->end()) {
|
|
if ($2.P->front().first->getType() != Ty)
|
|
error("All elements of a PHI node must be of the same type");
|
|
PHI->addIncoming($2.P->front().first, $2.P->front().second);
|
|
$2.P->pop_front();
|
|
}
|
|
$$.I = PHI;
|
|
$$.S.copy($2.S);
|
|
delete $2.P; // Free the list...
|
|
}
|
|
| OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
|
|
// Handle the short call syntax
|
|
const PointerType *PFTy;
|
|
const FunctionType *FTy;
|
|
Signedness FTySign;
|
|
if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
|
|
!(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
std::vector<const Type*> ParamTypes;
|
|
FTySign.makeComposite($3.S);
|
|
if ($6) {
|
|
for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
|
|
I != E; ++I) {
|
|
ParamTypes.push_back((*I).V->getType());
|
|
FTySign.add(I->S);
|
|
}
|
|
}
|
|
|
|
FunctionType::ParamAttrsList ParamAttrs;
|
|
if ($2 == OldCallingConv::CSRet) {
|
|
ParamAttrs.push_back(FunctionType::NoAttributeSet);
|
|
ParamAttrs.push_back(FunctionType::StructRetAttribute);
|
|
}
|
|
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypes.pop_back();
|
|
|
|
const Type *RetTy = $3.PAT->get();
|
|
if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
|
|
error("Functions cannot return aggregate types");
|
|
|
|
FTy = FunctionType::get(RetTy, ParamTypes, isVarArg, ParamAttrs);
|
|
PFTy = PointerType::get(FTy);
|
|
$$.S.copy($3.S);
|
|
} else {
|
|
FTySign = $3.S;
|
|
// Get the signedness of the result type. $3 is the pointer to the
|
|
// function type so we get the 0th element to extract the function type,
|
|
// and then the 0th element again to get the result type.
|
|
$$.S.copy($3.S.get(0).get(0));
|
|
}
|
|
$4.S.makeComposite(FTySign);
|
|
|
|
// First upgrade any intrinsic calls.
|
|
std::vector<Value*> Args;
|
|
if ($6)
|
|
for (unsigned i = 0, e = $6->size(); i < e; ++i)
|
|
Args.push_back((*$6)[i].V);
|
|
Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args);
|
|
|
|
// If we got an upgraded intrinsic
|
|
if (Inst) {
|
|
$$.I = Inst;
|
|
} else {
|
|
// Get the function we're calling
|
|
Value *V = getVal(PFTy, $4);
|
|
|
|
// Check the argument values match
|
|
if (!$6) { // Has no arguments?
|
|
// Make sure no arguments is a good thing!
|
|
if (FTy->getNumParams() != 0)
|
|
error("No arguments passed to a function that expects arguments");
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
//
|
|
FunctionType::param_iterator I = FTy->param_begin();
|
|
FunctionType::param_iterator E = FTy->param_end();
|
|
std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
|
|
if ((*ArgI).V->getType() != *I)
|
|
error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'");
|
|
|
|
if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
|
|
error("Invalid number of parameters detected");
|
|
}
|
|
|
|
// Create the call instruction
|
|
CallInst *CI = new CallInst(V, &Args[0], Args.size());
|
|
CI->setTailCall($1);
|
|
CI->setCallingConv(upgradeCallingConv($2));
|
|
$$.I = CI;
|
|
}
|
|
delete $3.PAT;
|
|
delete $6;
|
|
}
|
|
| MemoryInst {
|
|
$$ = $1;
|
|
}
|
|
;
|
|
|
|
|
|
// IndexList - List of indices for GEP based instructions...
|
|
IndexList
|
|
: ',' ValueRefList { $$ = $2; }
|
|
| /* empty */ { $$ = new std::vector<ValueInfo>(); }
|
|
;
|
|
|
|
OptVolatile
|
|
: VOLATILE { $$ = true; }
|
|
| /* empty */ { $$ = false; }
|
|
;
|
|
|
|
MemoryInst
|
|
: MALLOC Types OptCAlign {
|
|
const Type *Ty = $2.PAT->get();
|
|
$$.S.makeComposite($2.S);
|
|
$$.I = new MallocInst(Ty, 0, $3);
|
|
delete $2.PAT;
|
|
}
|
|
| MALLOC Types ',' UINT ValueRef OptCAlign {
|
|
const Type *Ty = $2.PAT->get();
|
|
$5.S.makeUnsigned();
|
|
$$.S.makeComposite($2.S);
|
|
$$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
|
|
delete $2.PAT;
|
|
}
|
|
| ALLOCA Types OptCAlign {
|
|
const Type *Ty = $2.PAT->get();
|
|
$$.S.makeComposite($2.S);
|
|
$$.I = new AllocaInst(Ty, 0, $3);
|
|
delete $2.PAT;
|
|
}
|
|
| ALLOCA Types ',' UINT ValueRef OptCAlign {
|
|
const Type *Ty = $2.PAT->get();
|
|
$5.S.makeUnsigned();
|
|
$$.S.makeComposite($4.S);
|
|
$$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
|
|
delete $2.PAT;
|
|
}
|
|
| FREE ResolvedVal {
|
|
const Type *PTy = $2.V->getType();
|
|
if (!isa<PointerType>(PTy))
|
|
error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
|
|
$$.I = new FreeInst($2.V);
|
|
$$.S.makeSignless();
|
|
}
|
|
| OptVolatile LOAD Types ValueRef {
|
|
const Type* Ty = $3.PAT->get();
|
|
$4.S.copy($3.S);
|
|
if (!isa<PointerType>(Ty))
|
|
error("Can't load from nonpointer type: " + Ty->getDescription());
|
|
if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
|
|
error("Can't load from pointer of non-first-class type: " +
|
|
Ty->getDescription());
|
|
Value* tmpVal = getVal(Ty, $4);
|
|
$$.I = new LoadInst(tmpVal, "", $1);
|
|
$$.S.copy($3.S.get(0));
|
|
delete $3.PAT;
|
|
}
|
|
| OptVolatile STORE ResolvedVal ',' Types ValueRef {
|
|
$6.S.copy($5.S);
|
|
const PointerType *PTy = dyn_cast<PointerType>($5.PAT->get());
|
|
if (!PTy)
|
|
error("Can't store to a nonpointer type: " +
|
|
$5.PAT->get()->getDescription());
|
|
const Type *ElTy = PTy->getElementType();
|
|
Value *StoreVal = $3.V;
|
|
Value* tmpVal = getVal(PTy, $6);
|
|
if (ElTy != $3.V->getType()) {
|
|
StoreVal = handleSRetFuncTypeMerge($3.V, ElTy);
|
|
if (!StoreVal)
|
|
error("Can't store '" + $3.V->getType()->getDescription() +
|
|
"' into space of type '" + ElTy->getDescription() + "'");
|
|
else {
|
|
PTy = PointerType::get(StoreVal->getType());
|
|
if (Constant *C = dyn_cast<Constant>(tmpVal))
|
|
tmpVal = ConstantExpr::getBitCast(C, PTy);
|
|
else
|
|
tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB);
|
|
}
|
|
}
|
|
$$.I = new StoreInst(StoreVal, tmpVal, $1);
|
|
$$.S.makeSignless();
|
|
delete $5.PAT;
|
|
}
|
|
| GETELEMENTPTR Types ValueRef IndexList {
|
|
$3.S.copy($2.S);
|
|
const Type* Ty = $2.PAT->get();
|
|
if (!isa<PointerType>(Ty))
|
|
error("getelementptr insn requires pointer operand");
|
|
|
|
std::vector<Value*> VIndices;
|
|
upgradeGEPIndices(Ty, $4, VIndices);
|
|
|
|
Value* tmpVal = getVal(Ty, $3);
|
|
$$.I = new GetElementPtrInst(tmpVal, &VIndices[0], VIndices.size());
|
|
ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S);
|
|
$$.S.copy(getElementSign(VI, VIndices));
|
|
delete $2.PAT;
|
|
delete $4;
|
|
};
|
|
|
|
|
|
%%
|
|
|
|
int yyerror(const char *ErrorMsg) {
|
|
std::string where
|
|
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
|
|
+ ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
|
|
std::string errMsg = where + "error: " + std::string(ErrorMsg);
|
|
if (yychar != YYEMPTY && yychar != 0)
|
|
errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
|
|
"'.";
|
|
std::cerr << "llvm-upgrade: " << errMsg << '\n';
|
|
std::cout << "llvm-upgrade: parse failed.\n";
|
|
exit(1);
|
|
}
|
|
|
|
void warning(const std::string& ErrorMsg) {
|
|
std::string where
|
|
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
|
|
+ ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
|
|
std::string errMsg = where + "warning: " + std::string(ErrorMsg);
|
|
if (yychar != YYEMPTY && yychar != 0)
|
|
errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
|
|
"'.";
|
|
std::cerr << "llvm-upgrade: " << errMsg << '\n';
|
|
}
|
|
|
|
void error(const std::string& ErrorMsg, int LineNo) {
|
|
if (LineNo == -1) LineNo = Upgradelineno;
|
|
Upgradelineno = LineNo;
|
|
yyerror(ErrorMsg.c_str());
|
|
}
|
|
|