mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-24 08:33:39 +00:00
844b892246
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33557 91177308-0d34-0410-b5e6-96231b3b80d8
3973 lines
156 KiB
C++
3973 lines
156 KiB
C++
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a DAG instruction selector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DAGISelEmitter.h"
|
|
#include "Record.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helpers for working with extended types.
|
|
|
|
/// FilterVTs - Filter a list of VT's according to a predicate.
|
|
///
|
|
template<typename T>
|
|
static std::vector<MVT::ValueType>
|
|
FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
|
|
std::vector<MVT::ValueType> Result;
|
|
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
|
|
if (Filter(InVTs[i]))
|
|
Result.push_back(InVTs[i]);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
static std::vector<unsigned char>
|
|
FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
|
|
std::vector<unsigned char> Result;
|
|
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
|
|
if (Filter((MVT::ValueType)InVTs[i]))
|
|
Result.push_back(InVTs[i]);
|
|
return Result;
|
|
}
|
|
|
|
static std::vector<unsigned char>
|
|
ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
|
|
std::vector<unsigned char> Result;
|
|
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
|
|
Result.push_back(InVTs[i]);
|
|
return Result;
|
|
}
|
|
|
|
static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
|
|
const std::vector<unsigned char> &RHS) {
|
|
if (LHS.size() > RHS.size()) return false;
|
|
for (unsigned i = 0, e = LHS.size(); i != e; ++i)
|
|
if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isExtIntegerVT - Return true if the specified extended value type vector
|
|
/// contains isInt or an integer value type.
|
|
static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
|
|
assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
|
|
return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
|
|
}
|
|
|
|
/// isExtFloatingPointVT - Return true if the specified extended value type
|
|
/// vector contains isFP or a FP value type.
|
|
static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
|
|
assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
|
|
return EVTs[0] == MVT::isFP ||
|
|
!(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDTypeConstraint implementation
|
|
//
|
|
|
|
SDTypeConstraint::SDTypeConstraint(Record *R) {
|
|
OperandNo = R->getValueAsInt("OperandNum");
|
|
|
|
if (R->isSubClassOf("SDTCisVT")) {
|
|
ConstraintType = SDTCisVT;
|
|
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
|
|
} else if (R->isSubClassOf("SDTCisPtrTy")) {
|
|
ConstraintType = SDTCisPtrTy;
|
|
} else if (R->isSubClassOf("SDTCisInt")) {
|
|
ConstraintType = SDTCisInt;
|
|
} else if (R->isSubClassOf("SDTCisFP")) {
|
|
ConstraintType = SDTCisFP;
|
|
} else if (R->isSubClassOf("SDTCisSameAs")) {
|
|
ConstraintType = SDTCisSameAs;
|
|
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
|
|
ConstraintType = SDTCisVTSmallerThanOp;
|
|
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
|
|
ConstraintType = SDTCisOpSmallerThanOp;
|
|
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
|
|
R->getValueAsInt("BigOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
|
|
ConstraintType = SDTCisIntVectorOfSameSize;
|
|
x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOpNum");
|
|
} else {
|
|
cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
|
|
/// N, which has NumResults results.
|
|
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
|
|
TreePatternNode *N,
|
|
unsigned NumResults) const {
|
|
assert(NumResults <= 1 &&
|
|
"We only work with nodes with zero or one result so far!");
|
|
|
|
if (OpNo >= (NumResults + N->getNumChildren())) {
|
|
cerr << "Invalid operand number " << OpNo << " ";
|
|
N->dump();
|
|
cerr << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
if (OpNo < NumResults)
|
|
return N; // FIXME: need value #
|
|
else
|
|
return N->getChild(OpNo-NumResults);
|
|
}
|
|
|
|
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
|
|
/// constraint to the nodes operands. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, throw an
|
|
/// exception.
|
|
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
|
|
const SDNodeInfo &NodeInfo,
|
|
TreePattern &TP) const {
|
|
unsigned NumResults = NodeInfo.getNumResults();
|
|
assert(NumResults <= 1 &&
|
|
"We only work with nodes with zero or one result so far!");
|
|
|
|
// Check that the number of operands is sane. Negative operands -> varargs.
|
|
if (NodeInfo.getNumOperands() >= 0) {
|
|
if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
|
|
TP.error(N->getOperator()->getName() + " node requires exactly " +
|
|
itostr(NodeInfo.getNumOperands()) + " operands!");
|
|
}
|
|
|
|
const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
|
|
|
|
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
|
|
|
|
switch (ConstraintType) {
|
|
default: assert(0 && "Unknown constraint type!");
|
|
case SDTCisVT:
|
|
// Operand must be a particular type.
|
|
return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
|
|
case SDTCisPtrTy: {
|
|
// Operand must be same as target pointer type.
|
|
return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
|
|
}
|
|
case SDTCisInt: {
|
|
// If there is only one integer type supported, this must be it.
|
|
std::vector<MVT::ValueType> IntVTs =
|
|
FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
|
|
|
|
// If we found exactly one supported integer type, apply it.
|
|
if (IntVTs.size() == 1)
|
|
return NodeToApply->UpdateNodeType(IntVTs[0], TP);
|
|
return NodeToApply->UpdateNodeType(MVT::isInt, TP);
|
|
}
|
|
case SDTCisFP: {
|
|
// If there is only one FP type supported, this must be it.
|
|
std::vector<MVT::ValueType> FPVTs =
|
|
FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
|
|
|
|
// If we found exactly one supported FP type, apply it.
|
|
if (FPVTs.size() == 1)
|
|
return NodeToApply->UpdateNodeType(FPVTs[0], TP);
|
|
return NodeToApply->UpdateNodeType(MVT::isFP, TP);
|
|
}
|
|
case SDTCisSameAs: {
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
|
|
return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
|
|
OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
|
|
}
|
|
case SDTCisVTSmallerThanOp: {
|
|
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
|
|
// have an integer type that is smaller than the VT.
|
|
if (!NodeToApply->isLeaf() ||
|
|
!dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
|
|
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
|
|
->isSubClassOf("ValueType"))
|
|
TP.error(N->getOperator()->getName() + " expects a VT operand!");
|
|
MVT::ValueType VT =
|
|
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
|
|
if (!MVT::isInteger(VT))
|
|
TP.error(N->getOperator()->getName() + " VT operand must be integer!");
|
|
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
|
|
|
|
// It must be integer.
|
|
bool MadeChange = false;
|
|
MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
|
|
|
|
// This code only handles nodes that have one type set. Assert here so
|
|
// that we can change this if we ever need to deal with multiple value
|
|
// types at this point.
|
|
assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
|
|
if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
|
|
OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
|
|
return false;
|
|
}
|
|
case SDTCisOpSmallerThanOp: {
|
|
TreePatternNode *BigOperand =
|
|
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
|
|
|
|
// Both operands must be integer or FP, but we don't care which.
|
|
bool MadeChange = false;
|
|
|
|
// This code does not currently handle nodes which have multiple types,
|
|
// where some types are integer, and some are fp. Assert that this is not
|
|
// the case.
|
|
assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
|
|
isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
|
|
!(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
|
|
isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
|
|
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
|
|
if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
|
|
MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
|
|
else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
|
|
MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
|
|
if (isExtIntegerInVTs(BigOperand->getExtTypes()))
|
|
MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
|
|
else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
|
|
MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
|
|
|
|
std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
|
|
|
|
if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
|
|
VTs = FilterVTs(VTs, MVT::isInteger);
|
|
} else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
|
|
VTs = FilterVTs(VTs, MVT::isFloatingPoint);
|
|
} else {
|
|
VTs.clear();
|
|
}
|
|
|
|
switch (VTs.size()) {
|
|
default: // Too many VT's to pick from.
|
|
case 0: break; // No info yet.
|
|
case 1:
|
|
// Only one VT of this flavor. Cannot ever satisify the constraints.
|
|
return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
|
|
case 2:
|
|
// If we have exactly two possible types, the little operand must be the
|
|
// small one, the big operand should be the big one. Common with
|
|
// float/double for example.
|
|
assert(VTs[0] < VTs[1] && "Should be sorted!");
|
|
MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
|
|
MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
|
|
break;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
case SDTCisIntVectorOfSameSize: {
|
|
TreePatternNode *OtherOperand =
|
|
getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
|
|
N, NumResults);
|
|
if (OtherOperand->hasTypeSet()) {
|
|
if (!MVT::isVector(OtherOperand->getTypeNum(0)))
|
|
TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
|
|
MVT::ValueType IVT = OtherOperand->getTypeNum(0);
|
|
IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
|
|
return NodeToApply->UpdateNodeType(IVT, TP);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNodeInfo implementation
|
|
//
|
|
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
|
|
EnumName = R->getValueAsString("Opcode");
|
|
SDClassName = R->getValueAsString("SDClass");
|
|
Record *TypeProfile = R->getValueAsDef("TypeProfile");
|
|
NumResults = TypeProfile->getValueAsInt("NumResults");
|
|
NumOperands = TypeProfile->getValueAsInt("NumOperands");
|
|
|
|
// Parse the properties.
|
|
Properties = 0;
|
|
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
|
|
for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
|
|
if (PropList[i]->getName() == "SDNPCommutative") {
|
|
Properties |= 1 << SDNPCommutative;
|
|
} else if (PropList[i]->getName() == "SDNPAssociative") {
|
|
Properties |= 1 << SDNPAssociative;
|
|
} else if (PropList[i]->getName() == "SDNPHasChain") {
|
|
Properties |= 1 << SDNPHasChain;
|
|
} else if (PropList[i]->getName() == "SDNPOutFlag") {
|
|
Properties |= 1 << SDNPOutFlag;
|
|
} else if (PropList[i]->getName() == "SDNPInFlag") {
|
|
Properties |= 1 << SDNPInFlag;
|
|
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
|
|
Properties |= 1 << SDNPOptInFlag;
|
|
} else {
|
|
cerr << "Unknown SD Node property '" << PropList[i]->getName()
|
|
<< "' on node '" << R->getName() << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
// Parse the type constraints.
|
|
std::vector<Record*> ConstraintList =
|
|
TypeProfile->getValueAsListOfDefs("Constraints");
|
|
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePatternNode implementation
|
|
//
|
|
|
|
TreePatternNode::~TreePatternNode() {
|
|
#if 0 // FIXME: implement refcounted tree nodes!
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
delete getChild(i);
|
|
#endif
|
|
}
|
|
|
|
/// UpdateNodeType - Set the node type of N to VT if VT contains
|
|
/// information. If N already contains a conflicting type, then throw an
|
|
/// exception. This returns true if any information was updated.
|
|
///
|
|
bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
|
|
TreePattern &TP) {
|
|
assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
|
|
|
|
if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
|
|
return false;
|
|
if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
|
|
setTypes(ExtVTs);
|
|
return true;
|
|
}
|
|
|
|
if (getExtTypeNum(0) == MVT::iPTR) {
|
|
if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
|
|
return false;
|
|
if (isExtIntegerInVTs(ExtVTs)) {
|
|
std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
|
|
if (FVTs.size()) {
|
|
setTypes(ExtVTs);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
|
|
assert(hasTypeSet() && "should be handled above!");
|
|
std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
|
|
if (getExtTypes() == FVTs)
|
|
return false;
|
|
setTypes(FVTs);
|
|
return true;
|
|
}
|
|
if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
|
|
//assert(hasTypeSet() && "should be handled above!");
|
|
std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
|
|
if (getExtTypes() == FVTs)
|
|
return false;
|
|
if (FVTs.size()) {
|
|
setTypes(FVTs);
|
|
return true;
|
|
}
|
|
}
|
|
if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
|
|
assert(hasTypeSet() && "should be handled above!");
|
|
std::vector<unsigned char> FVTs =
|
|
FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
|
|
if (getExtTypes() == FVTs)
|
|
return false;
|
|
setTypes(FVTs);
|
|
return true;
|
|
}
|
|
|
|
// If we know this is an int or fp type, and we are told it is a specific one,
|
|
// take the advice.
|
|
//
|
|
// Similarly, we should probably set the type here to the intersection of
|
|
// {isInt|isFP} and ExtVTs
|
|
if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
|
|
(getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
|
|
setTypes(ExtVTs);
|
|
return true;
|
|
}
|
|
if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
|
|
setTypes(ExtVTs);
|
|
return true;
|
|
}
|
|
|
|
if (isLeaf()) {
|
|
dump();
|
|
cerr << " ";
|
|
TP.error("Type inference contradiction found in node!");
|
|
} else {
|
|
TP.error("Type inference contradiction found in node " +
|
|
getOperator()->getName() + "!");
|
|
}
|
|
return true; // unreachable
|
|
}
|
|
|
|
|
|
void TreePatternNode::print(std::ostream &OS) const {
|
|
if (isLeaf()) {
|
|
OS << *getLeafValue();
|
|
} else {
|
|
OS << "(" << getOperator()->getName();
|
|
}
|
|
|
|
// FIXME: At some point we should handle printing all the value types for
|
|
// nodes that are multiply typed.
|
|
switch (getExtTypeNum(0)) {
|
|
case MVT::Other: OS << ":Other"; break;
|
|
case MVT::isInt: OS << ":isInt"; break;
|
|
case MVT::isFP : OS << ":isFP"; break;
|
|
case MVT::isUnknown: ; /*OS << ":?";*/ break;
|
|
case MVT::iPTR: OS << ":iPTR"; break;
|
|
default: {
|
|
std::string VTName = llvm::getName(getTypeNum(0));
|
|
// Strip off MVT:: prefix if present.
|
|
if (VTName.substr(0,5) == "MVT::")
|
|
VTName = VTName.substr(5);
|
|
OS << ":" << VTName;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isLeaf()) {
|
|
if (getNumChildren() != 0) {
|
|
OS << " ";
|
|
getChild(0)->print(OS);
|
|
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
|
|
OS << ", ";
|
|
getChild(i)->print(OS);
|
|
}
|
|
}
|
|
OS << ")";
|
|
}
|
|
|
|
if (!PredicateFn.empty())
|
|
OS << "<<P:" << PredicateFn << ">>";
|
|
if (TransformFn)
|
|
OS << "<<X:" << TransformFn->getName() << ">>";
|
|
if (!getName().empty())
|
|
OS << ":$" << getName();
|
|
|
|
}
|
|
void TreePatternNode::dump() const {
|
|
print(*cerr.stream());
|
|
}
|
|
|
|
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
|
|
/// the specified node. For this comparison, all of the state of the node
|
|
/// is considered, except for the assigned name. Nodes with differing names
|
|
/// that are otherwise identical are considered isomorphic.
|
|
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
|
|
if (N == this) return true;
|
|
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
|
|
getPredicateFn() != N->getPredicateFn() ||
|
|
getTransformFn() != N->getTransformFn())
|
|
return false;
|
|
|
|
if (isLeaf()) {
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
|
|
if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
|
|
return DI->getDef() == NDI->getDef();
|
|
return getLeafValue() == N->getLeafValue();
|
|
}
|
|
|
|
if (N->getOperator() != getOperator() ||
|
|
N->getNumChildren() != getNumChildren()) return false;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// clone - Make a copy of this tree and all of its children.
|
|
///
|
|
TreePatternNode *TreePatternNode::clone() const {
|
|
TreePatternNode *New;
|
|
if (isLeaf()) {
|
|
New = new TreePatternNode(getLeafValue());
|
|
} else {
|
|
std::vector<TreePatternNode*> CChildren;
|
|
CChildren.reserve(Children.size());
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
CChildren.push_back(getChild(i)->clone());
|
|
New = new TreePatternNode(getOperator(), CChildren);
|
|
}
|
|
New->setName(getName());
|
|
New->setTypes(getExtTypes());
|
|
New->setPredicateFn(getPredicateFn());
|
|
New->setTransformFn(getTransformFn());
|
|
return New;
|
|
}
|
|
|
|
/// SubstituteFormalArguments - Replace the formal arguments in this tree
|
|
/// with actual values specified by ArgMap.
|
|
void TreePatternNode::
|
|
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
|
|
if (isLeaf()) return;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
if (Child->isLeaf()) {
|
|
Init *Val = Child->getLeafValue();
|
|
if (dynamic_cast<DefInit*>(Val) &&
|
|
static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
|
|
// We found a use of a formal argument, replace it with its value.
|
|
Child = ArgMap[Child->getName()];
|
|
assert(Child && "Couldn't find formal argument!");
|
|
setChild(i, Child);
|
|
}
|
|
} else {
|
|
getChild(i)->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// InlinePatternFragments - If this pattern refers to any pattern
|
|
/// fragments, inline them into place, giving us a pattern without any
|
|
/// PatFrag references.
|
|
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
|
|
if (isLeaf()) return this; // nothing to do.
|
|
Record *Op = getOperator();
|
|
|
|
if (!Op->isSubClassOf("PatFrag")) {
|
|
// Just recursively inline children nodes.
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
setChild(i, getChild(i)->InlinePatternFragments(TP));
|
|
return this;
|
|
}
|
|
|
|
// Otherwise, we found a reference to a fragment. First, look up its
|
|
// TreePattern record.
|
|
TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
|
|
|
|
// Verify that we are passing the right number of operands.
|
|
if (Frag->getNumArgs() != Children.size())
|
|
TP.error("'" + Op->getName() + "' fragment requires " +
|
|
utostr(Frag->getNumArgs()) + " operands!");
|
|
|
|
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
|
|
|
|
// Resolve formal arguments to their actual value.
|
|
if (Frag->getNumArgs()) {
|
|
// Compute the map of formal to actual arguments.
|
|
std::map<std::string, TreePatternNode*> ArgMap;
|
|
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
|
|
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
|
|
|
|
FragTree->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
|
|
FragTree->setName(getName());
|
|
FragTree->UpdateNodeType(getExtTypes(), TP);
|
|
|
|
// Get a new copy of this fragment to stitch into here.
|
|
//delete this; // FIXME: implement refcounting!
|
|
return FragTree;
|
|
}
|
|
|
|
/// getImplicitType - Check to see if the specified record has an implicit
|
|
/// type which should be applied to it. This infer the type of register
|
|
/// references from the register file information, for example.
|
|
///
|
|
static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
|
|
TreePattern &TP) {
|
|
// Some common return values
|
|
std::vector<unsigned char> Unknown(1, MVT::isUnknown);
|
|
std::vector<unsigned char> Other(1, MVT::Other);
|
|
|
|
// Check to see if this is a register or a register class...
|
|
if (R->isSubClassOf("RegisterClass")) {
|
|
if (NotRegisters)
|
|
return Unknown;
|
|
const CodeGenRegisterClass &RC =
|
|
TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
|
|
return ConvertVTs(RC.getValueTypes());
|
|
} else if (R->isSubClassOf("PatFrag")) {
|
|
// Pattern fragment types will be resolved when they are inlined.
|
|
return Unknown;
|
|
} else if (R->isSubClassOf("Register")) {
|
|
if (NotRegisters)
|
|
return Unknown;
|
|
const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
|
|
return T.getRegisterVTs(R);
|
|
} else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
|
|
// Using a VTSDNode or CondCodeSDNode.
|
|
return Other;
|
|
} else if (R->isSubClassOf("ComplexPattern")) {
|
|
if (NotRegisters)
|
|
return Unknown;
|
|
std::vector<unsigned char>
|
|
ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
|
|
return ComplexPat;
|
|
} else if (R->getName() == "ptr_rc") {
|
|
Other[0] = MVT::iPTR;
|
|
return Other;
|
|
} else if (R->getName() == "node" || R->getName() == "srcvalue") {
|
|
// Placeholder.
|
|
return Unknown;
|
|
}
|
|
|
|
TP.error("Unknown node flavor used in pattern: " + R->getName());
|
|
return Other;
|
|
}
|
|
|
|
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
|
|
/// this node and its children in the tree. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, throw an
|
|
/// exception.
|
|
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
|
|
DAGISelEmitter &ISE = TP.getDAGISelEmitter();
|
|
if (isLeaf()) {
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
|
|
// If it's a regclass or something else known, include the type.
|
|
return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
|
|
} else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
|
|
// Int inits are always integers. :)
|
|
bool MadeChange = UpdateNodeType(MVT::isInt, TP);
|
|
|
|
if (hasTypeSet()) {
|
|
// At some point, it may make sense for this tree pattern to have
|
|
// multiple types. Assert here that it does not, so we revisit this
|
|
// code when appropriate.
|
|
assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
|
|
MVT::ValueType VT = getTypeNum(0);
|
|
for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
|
|
assert(getTypeNum(i) == VT && "TreePattern has too many types!");
|
|
|
|
VT = getTypeNum(0);
|
|
if (VT != MVT::iPTR) {
|
|
unsigned Size = MVT::getSizeInBits(VT);
|
|
// Make sure that the value is representable for this type.
|
|
if (Size < 32) {
|
|
int Val = (II->getValue() << (32-Size)) >> (32-Size);
|
|
if (Val != II->getValue())
|
|
TP.error("Sign-extended integer value '" + itostr(II->getValue())+
|
|
"' is out of range for type '" +
|
|
getEnumName(getTypeNum(0)) + "'!");
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// special handling for set, which isn't really an SDNode.
|
|
if (getOperator()->getName() == "set") {
|
|
assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
|
|
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
|
|
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
// Types of operands must match.
|
|
MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
|
|
MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
|
|
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
|
|
return MadeChange;
|
|
} else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
|
|
getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
|
|
getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
|
|
unsigned IID =
|
|
dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
|
|
const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
|
|
bool MadeChange = false;
|
|
|
|
// Apply the result type to the node.
|
|
MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
|
|
|
|
if (getNumChildren() != Int.ArgVTs.size())
|
|
TP.error("Intrinsic '" + Int.Name + "' expects " +
|
|
utostr(Int.ArgVTs.size()-1) + " operands, not " +
|
|
utostr(getNumChildren()-1) + " operands!");
|
|
|
|
// Apply type info to the intrinsic ID.
|
|
MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
|
|
|
|
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
|
|
MVT::ValueType OpVT = Int.ArgVTs[i];
|
|
MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
}
|
|
return MadeChange;
|
|
} else if (getOperator()->isSubClassOf("SDNode")) {
|
|
const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
|
|
|
|
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
// Branch, etc. do not produce results and top-level forms in instr pattern
|
|
// must have void types.
|
|
if (NI.getNumResults() == 0)
|
|
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
|
|
|
|
// If this is a vector_shuffle operation, apply types to the build_vector
|
|
// operation. The types of the integers don't matter, but this ensures they
|
|
// won't get checked.
|
|
if (getOperator()->getName() == "vector_shuffle" &&
|
|
getChild(2)->getOperator()->getName() == "build_vector") {
|
|
TreePatternNode *BV = getChild(2);
|
|
const std::vector<MVT::ValueType> &LegalVTs
|
|
= ISE.getTargetInfo().getLegalValueTypes();
|
|
MVT::ValueType LegalIntVT = MVT::Other;
|
|
for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
|
|
if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
|
|
LegalIntVT = LegalVTs[i];
|
|
break;
|
|
}
|
|
assert(LegalIntVT != MVT::Other && "No legal integer VT?");
|
|
|
|
for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
|
|
MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
|
|
}
|
|
return MadeChange;
|
|
} else if (getOperator()->isSubClassOf("Instruction")) {
|
|
const DAGInstruction &Inst = ISE.getInstruction(getOperator());
|
|
bool MadeChange = false;
|
|
unsigned NumResults = Inst.getNumResults();
|
|
|
|
assert(NumResults <= 1 &&
|
|
"Only supports zero or one result instrs!");
|
|
|
|
CodeGenInstruction &InstInfo =
|
|
ISE.getTargetInfo().getInstruction(getOperator()->getName());
|
|
// Apply the result type to the node
|
|
if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack.
|
|
MadeChange = UpdateNodeType(MVT::isVoid, TP);
|
|
} else {
|
|
Record *ResultNode = Inst.getResult(0);
|
|
|
|
if (ResultNode->getName() == "ptr_rc") {
|
|
std::vector<unsigned char> VT;
|
|
VT.push_back(MVT::iPTR);
|
|
MadeChange = UpdateNodeType(VT, TP);
|
|
} else {
|
|
assert(ResultNode->isSubClassOf("RegisterClass") &&
|
|
"Operands should be register classes!");
|
|
|
|
const CodeGenRegisterClass &RC =
|
|
ISE.getTargetInfo().getRegisterClass(ResultNode);
|
|
MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
|
|
}
|
|
}
|
|
|
|
unsigned ChildNo = 0;
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
|
|
Record *OperandNode = Inst.getOperand(i);
|
|
|
|
// If the instruction expects a predicate operand, we codegen this by
|
|
// setting the predicate to it's "execute always" value.
|
|
if (OperandNode->isSubClassOf("PredicateOperand"))
|
|
continue;
|
|
|
|
// Verify that we didn't run out of provided operands.
|
|
if (ChildNo >= getNumChildren())
|
|
TP.error("Instruction '" + getOperator()->getName() +
|
|
"' expects more operands than were provided.");
|
|
|
|
MVT::ValueType VT;
|
|
TreePatternNode *Child = getChild(ChildNo++);
|
|
if (OperandNode->isSubClassOf("RegisterClass")) {
|
|
const CodeGenRegisterClass &RC =
|
|
ISE.getTargetInfo().getRegisterClass(OperandNode);
|
|
MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
|
|
} else if (OperandNode->isSubClassOf("Operand")) {
|
|
VT = getValueType(OperandNode->getValueAsDef("Type"));
|
|
MadeChange |= Child->UpdateNodeType(VT, TP);
|
|
} else if (OperandNode->getName() == "ptr_rc") {
|
|
MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
|
|
} else {
|
|
assert(0 && "Unknown operand type!");
|
|
abort();
|
|
}
|
|
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
|
|
}
|
|
|
|
if (ChildNo != getNumChildren())
|
|
TP.error("Instruction '" + getOperator()->getName() +
|
|
"' was provided too many operands!");
|
|
|
|
return MadeChange;
|
|
} else {
|
|
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
|
|
|
|
// Node transforms always take one operand.
|
|
if (getNumChildren() != 1)
|
|
TP.error("Node transform '" + getOperator()->getName() +
|
|
"' requires one operand!");
|
|
|
|
// If either the output or input of the xform does not have exact
|
|
// type info. We assume they must be the same. Otherwise, it is perfectly
|
|
// legal to transform from one type to a completely different type.
|
|
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
|
|
bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
|
|
MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
|
|
return MadeChange;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
|
|
/// RHS of a commutative operation, not the on LHS.
|
|
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
|
|
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
|
|
return true;
|
|
if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/// canPatternMatch - If it is impossible for this pattern to match on this
|
|
/// target, fill in Reason and return false. Otherwise, return true. This is
|
|
/// used as a santity check for .td files (to prevent people from writing stuff
|
|
/// that can never possibly work), and to prevent the pattern permuter from
|
|
/// generating stuff that is useless.
|
|
bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
|
|
if (isLeaf()) return true;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (!getChild(i)->canPatternMatch(Reason, ISE))
|
|
return false;
|
|
|
|
// If this is an intrinsic, handle cases that would make it not match. For
|
|
// example, if an operand is required to be an immediate.
|
|
if (getOperator()->isSubClassOf("Intrinsic")) {
|
|
// TODO:
|
|
return true;
|
|
}
|
|
|
|
// If this node is a commutative operator, check that the LHS isn't an
|
|
// immediate.
|
|
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
|
|
if (NodeInfo.hasProperty(SDNPCommutative)) {
|
|
// Scan all of the operands of the node and make sure that only the last one
|
|
// is a constant node, unless the RHS also is.
|
|
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
|
|
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
|
|
if (OnlyOnRHSOfCommutative(getChild(i))) {
|
|
Reason="Immediate value must be on the RHS of commutative operators!";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePattern implementation
|
|
//
|
|
|
|
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
|
|
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
|
|
isInputPattern = isInput;
|
|
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
|
|
Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
|
|
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
|
|
isInputPattern = isInput;
|
|
Trees.push_back(ParseTreePattern(Pat));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
|
|
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
|
|
isInputPattern = isInput;
|
|
Trees.push_back(Pat);
|
|
}
|
|
|
|
|
|
|
|
void TreePattern::error(const std::string &Msg) const {
|
|
dump();
|
|
throw "In " + TheRecord->getName() + ": " + Msg;
|
|
}
|
|
|
|
TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
|
|
DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
|
|
if (!OpDef) error("Pattern has unexpected operator type!");
|
|
Record *Operator = OpDef->getDef();
|
|
|
|
if (Operator->isSubClassOf("ValueType")) {
|
|
// If the operator is a ValueType, then this must be "type cast" of a leaf
|
|
// node.
|
|
if (Dag->getNumArgs() != 1)
|
|
error("Type cast only takes one operand!");
|
|
|
|
Init *Arg = Dag->getArg(0);
|
|
TreePatternNode *New;
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
|
|
Record *R = DI->getDef();
|
|
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
|
|
Dag->setArg(0, new DagInit(DI,
|
|
std::vector<std::pair<Init*, std::string> >()));
|
|
return ParseTreePattern(Dag);
|
|
}
|
|
New = new TreePatternNode(DI);
|
|
} else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
|
|
New = ParseTreePattern(DI);
|
|
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
|
|
New = new TreePatternNode(II);
|
|
if (!Dag->getArgName(0).empty())
|
|
error("Constant int argument should not have a name!");
|
|
} else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
|
|
// Turn this into an IntInit.
|
|
Init *II = BI->convertInitializerTo(new IntRecTy());
|
|
if (II == 0 || !dynamic_cast<IntInit*>(II))
|
|
error("Bits value must be constants!");
|
|
|
|
New = new TreePatternNode(dynamic_cast<IntInit*>(II));
|
|
if (!Dag->getArgName(0).empty())
|
|
error("Constant int argument should not have a name!");
|
|
} else {
|
|
Arg->dump();
|
|
error("Unknown leaf value for tree pattern!");
|
|
return 0;
|
|
}
|
|
|
|
// Apply the type cast.
|
|
New->UpdateNodeType(getValueType(Operator), *this);
|
|
New->setName(Dag->getArgName(0));
|
|
return New;
|
|
}
|
|
|
|
// Verify that this is something that makes sense for an operator.
|
|
if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
|
|
!Operator->isSubClassOf("Instruction") &&
|
|
!Operator->isSubClassOf("SDNodeXForm") &&
|
|
!Operator->isSubClassOf("Intrinsic") &&
|
|
Operator->getName() != "set")
|
|
error("Unrecognized node '" + Operator->getName() + "'!");
|
|
|
|
// Check to see if this is something that is illegal in an input pattern.
|
|
if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
|
|
Operator->isSubClassOf("SDNodeXForm")))
|
|
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
|
|
|
|
std::vector<TreePatternNode*> Children;
|
|
|
|
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
|
|
Init *Arg = Dag->getArg(i);
|
|
if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
|
|
Children.push_back(ParseTreePattern(DI));
|
|
if (Children.back()->getName().empty())
|
|
Children.back()->setName(Dag->getArgName(i));
|
|
} else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
|
|
Record *R = DefI->getDef();
|
|
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
|
|
// TreePatternNode if its own.
|
|
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
|
|
Dag->setArg(i, new DagInit(DefI,
|
|
std::vector<std::pair<Init*, std::string> >()));
|
|
--i; // Revisit this node...
|
|
} else {
|
|
TreePatternNode *Node = new TreePatternNode(DefI);
|
|
Node->setName(Dag->getArgName(i));
|
|
Children.push_back(Node);
|
|
|
|
// Input argument?
|
|
if (R->getName() == "node") {
|
|
if (Dag->getArgName(i).empty())
|
|
error("'node' argument requires a name to match with operand list");
|
|
Args.push_back(Dag->getArgName(i));
|
|
}
|
|
}
|
|
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
|
|
TreePatternNode *Node = new TreePatternNode(II);
|
|
if (!Dag->getArgName(i).empty())
|
|
error("Constant int argument should not have a name!");
|
|
Children.push_back(Node);
|
|
} else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
|
|
// Turn this into an IntInit.
|
|
Init *II = BI->convertInitializerTo(new IntRecTy());
|
|
if (II == 0 || !dynamic_cast<IntInit*>(II))
|
|
error("Bits value must be constants!");
|
|
|
|
TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
|
|
if (!Dag->getArgName(i).empty())
|
|
error("Constant int argument should not have a name!");
|
|
Children.push_back(Node);
|
|
} else {
|
|
cerr << '"';
|
|
Arg->dump();
|
|
cerr << "\": ";
|
|
error("Unknown leaf value for tree pattern!");
|
|
}
|
|
}
|
|
|
|
// If the operator is an intrinsic, then this is just syntactic sugar for for
|
|
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
|
|
// convert the intrinsic name to a number.
|
|
if (Operator->isSubClassOf("Intrinsic")) {
|
|
const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
|
|
unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
|
|
|
|
// If this intrinsic returns void, it must have side-effects and thus a
|
|
// chain.
|
|
if (Int.ArgVTs[0] == MVT::isVoid) {
|
|
Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
|
|
} else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
|
|
// Has side-effects, requires chain.
|
|
Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
|
|
} else {
|
|
// Otherwise, no chain.
|
|
Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
|
|
}
|
|
|
|
TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
|
|
Children.insert(Children.begin(), IIDNode);
|
|
}
|
|
|
|
return new TreePatternNode(Operator, Children);
|
|
}
|
|
|
|
/// InferAllTypes - Infer/propagate as many types throughout the expression
|
|
/// patterns as possible. Return true if all types are infered, false
|
|
/// otherwise. Throw an exception if a type contradiction is found.
|
|
bool TreePattern::InferAllTypes() {
|
|
bool MadeChange = true;
|
|
while (MadeChange) {
|
|
MadeChange = false;
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
|
|
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
|
|
}
|
|
|
|
bool HasUnresolvedTypes = false;
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
|
|
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
|
|
return !HasUnresolvedTypes;
|
|
}
|
|
|
|
void TreePattern::print(std::ostream &OS) const {
|
|
OS << getRecord()->getName();
|
|
if (!Args.empty()) {
|
|
OS << "(" << Args[0];
|
|
for (unsigned i = 1, e = Args.size(); i != e; ++i)
|
|
OS << ", " << Args[i];
|
|
OS << ")";
|
|
}
|
|
OS << ": ";
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "[\n";
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
|
|
OS << "\t";
|
|
Trees[i]->print(OS);
|
|
OS << "\n";
|
|
}
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "]\n";
|
|
}
|
|
|
|
void TreePattern::dump() const { print(*cerr.stream()); }
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DAGISelEmitter implementation
|
|
//
|
|
|
|
// Parse all of the SDNode definitions for the target, populating SDNodes.
|
|
void DAGISelEmitter::ParseNodeInfo() {
|
|
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
|
|
while (!Nodes.empty()) {
|
|
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
|
|
Nodes.pop_back();
|
|
}
|
|
|
|
// Get the buildin intrinsic nodes.
|
|
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
|
|
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
|
|
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
|
|
}
|
|
|
|
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
|
|
/// map, and emit them to the file as functions.
|
|
void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
|
|
OS << "\n// Node transformations.\n";
|
|
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
|
|
while (!Xforms.empty()) {
|
|
Record *XFormNode = Xforms.back();
|
|
Record *SDNode = XFormNode->getValueAsDef("Opcode");
|
|
std::string Code = XFormNode->getValueAsCode("XFormFunction");
|
|
SDNodeXForms.insert(std::make_pair(XFormNode,
|
|
std::make_pair(SDNode, Code)));
|
|
|
|
if (!Code.empty()) {
|
|
std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
|
|
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
|
|
|
|
OS << "inline SDOperand Transform_" << XFormNode->getName()
|
|
<< "(SDNode *" << C2 << ") {\n";
|
|
if (ClassName != "SDNode")
|
|
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
|
|
OS << Code << "\n}\n";
|
|
}
|
|
|
|
Xforms.pop_back();
|
|
}
|
|
}
|
|
|
|
void DAGISelEmitter::ParseComplexPatterns() {
|
|
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
|
|
while (!AMs.empty()) {
|
|
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
|
|
AMs.pop_back();
|
|
}
|
|
}
|
|
|
|
|
|
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
|
|
/// file, building up the PatternFragments map. After we've collected them all,
|
|
/// inline fragments together as necessary, so that there are no references left
|
|
/// inside a pattern fragment to a pattern fragment.
|
|
///
|
|
/// This also emits all of the predicate functions to the output file.
|
|
///
|
|
void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
|
|
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
|
|
|
|
// First step, parse all of the fragments and emit predicate functions.
|
|
OS << "\n// Predicate functions.\n";
|
|
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
|
|
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
|
|
TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
|
|
PatternFragments[Fragments[i]] = P;
|
|
|
|
// Validate the argument list, converting it to map, to discard duplicates.
|
|
std::vector<std::string> &Args = P->getArgList();
|
|
std::set<std::string> OperandsMap(Args.begin(), Args.end());
|
|
|
|
if (OperandsMap.count(""))
|
|
P->error("Cannot have unnamed 'node' values in pattern fragment!");
|
|
|
|
// Parse the operands list.
|
|
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
|
|
DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
|
|
if (!OpsOp || OpsOp->getDef()->getName() != "ops")
|
|
P->error("Operands list should start with '(ops ... '!");
|
|
|
|
// Copy over the arguments.
|
|
Args.clear();
|
|
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
|
|
if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
|
|
static_cast<DefInit*>(OpsList->getArg(j))->
|
|
getDef()->getName() != "node")
|
|
P->error("Operands list should all be 'node' values.");
|
|
if (OpsList->getArgName(j).empty())
|
|
P->error("Operands list should have names for each operand!");
|
|
if (!OperandsMap.count(OpsList->getArgName(j)))
|
|
P->error("'" + OpsList->getArgName(j) +
|
|
"' does not occur in pattern or was multiply specified!");
|
|
OperandsMap.erase(OpsList->getArgName(j));
|
|
Args.push_back(OpsList->getArgName(j));
|
|
}
|
|
|
|
if (!OperandsMap.empty())
|
|
P->error("Operands list does not contain an entry for operand '" +
|
|
*OperandsMap.begin() + "'!");
|
|
|
|
// If there is a code init for this fragment, emit the predicate code and
|
|
// keep track of the fact that this fragment uses it.
|
|
std::string Code = Fragments[i]->getValueAsCode("Predicate");
|
|
if (!Code.empty()) {
|
|
if (P->getOnlyTree()->isLeaf())
|
|
OS << "inline bool Predicate_" << Fragments[i]->getName()
|
|
<< "(SDNode *N) {\n";
|
|
else {
|
|
std::string ClassName =
|
|
getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
|
|
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
|
|
|
|
OS << "inline bool Predicate_" << Fragments[i]->getName()
|
|
<< "(SDNode *" << C2 << ") {\n";
|
|
if (ClassName != "SDNode")
|
|
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
|
|
}
|
|
OS << Code << "\n}\n";
|
|
P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
|
|
}
|
|
|
|
// If there is a node transformation corresponding to this, keep track of
|
|
// it.
|
|
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
|
|
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
|
|
P->getOnlyTree()->setTransformFn(Transform);
|
|
}
|
|
|
|
OS << "\n\n";
|
|
|
|
// Now that we've parsed all of the tree fragments, do a closure on them so
|
|
// that there are not references to PatFrags left inside of them.
|
|
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
|
|
E = PatternFragments.end(); I != E; ++I) {
|
|
TreePattern *ThePat = I->second;
|
|
ThePat->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. Don't worry about it if we don't infer
|
|
// all of them, some may depend on the inputs of the pattern.
|
|
try {
|
|
ThePat->InferAllTypes();
|
|
} catch (...) {
|
|
// If this pattern fragment is not supported by this target (no types can
|
|
// satisfy its constraints), just ignore it. If the bogus pattern is
|
|
// actually used by instructions, the type consistency error will be
|
|
// reported there.
|
|
}
|
|
|
|
// If debugging, print out the pattern fragment result.
|
|
DEBUG(ThePat->dump());
|
|
}
|
|
}
|
|
|
|
void DAGISelEmitter::ParsePredicateOperands() {
|
|
std::vector<Record*> PredOps =
|
|
Records.getAllDerivedDefinitions("PredicateOperand");
|
|
|
|
// Find some SDNode.
|
|
assert(!SDNodes.empty() && "No SDNodes parsed?");
|
|
Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
|
|
|
|
for (unsigned i = 0, e = PredOps.size(); i != e; ++i) {
|
|
DagInit *AlwaysInfo = PredOps[i]->getValueAsDag("ExecuteAlways");
|
|
|
|
// Clone the AlwaysInfo dag node, changing the operator from 'ops' to
|
|
// SomeSDnode so that we can parse this.
|
|
std::vector<std::pair<Init*, std::string> > Ops;
|
|
for (unsigned op = 0, e = AlwaysInfo->getNumArgs(); op != e; ++op)
|
|
Ops.push_back(std::make_pair(AlwaysInfo->getArg(op),
|
|
AlwaysInfo->getArgName(op)));
|
|
DagInit *DI = new DagInit(SomeSDNode, Ops);
|
|
|
|
// Create a TreePattern to parse this.
|
|
TreePattern P(PredOps[i], DI, false, *this);
|
|
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
|
|
|
|
// Copy the operands over into a DAGPredicateOperand.
|
|
DAGPredicateOperand PredOpInfo;
|
|
|
|
TreePatternNode *T = P.getTree(0);
|
|
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
|
|
TreePatternNode *TPN = T->getChild(op);
|
|
while (TPN->ApplyTypeConstraints(P, false))
|
|
/* Resolve all types */;
|
|
|
|
if (TPN->ContainsUnresolvedType())
|
|
throw "Value #" + utostr(i) + " of PredicateOperand '" +
|
|
PredOps[i]->getName() + "' doesn't have a concrete type!";
|
|
|
|
PredOpInfo.AlwaysOps.push_back(TPN);
|
|
}
|
|
|
|
// Insert it into the PredicateOperands map so we can find it later.
|
|
PredicateOperands[PredOps[i]] = PredOpInfo;
|
|
}
|
|
}
|
|
|
|
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
|
|
/// instruction input. Return true if this is a real use.
|
|
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs,
|
|
std::vector<Record*> &InstImpInputs) {
|
|
// No name -> not interesting.
|
|
if (Pat->getName().empty()) {
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
|
|
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
|
|
I->error("Input " + DI->getDef()->getName() + " must be named!");
|
|
else if (DI && DI->getDef()->isSubClassOf("Register"))
|
|
InstImpInputs.push_back(DI->getDef());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Record *Rec;
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
|
|
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
|
|
Rec = DI->getDef();
|
|
} else {
|
|
assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
|
|
Rec = Pat->getOperator();
|
|
}
|
|
|
|
// SRCVALUE nodes are ignored.
|
|
if (Rec->getName() == "srcvalue")
|
|
return false;
|
|
|
|
TreePatternNode *&Slot = InstInputs[Pat->getName()];
|
|
if (!Slot) {
|
|
Slot = Pat;
|
|
} else {
|
|
Record *SlotRec;
|
|
if (Slot->isLeaf()) {
|
|
SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
|
|
} else {
|
|
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
|
|
SlotRec = Slot->getOperator();
|
|
}
|
|
|
|
// Ensure that the inputs agree if we've already seen this input.
|
|
if (Rec != SlotRec)
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
if (Slot->getExtTypes() != Pat->getExtTypes())
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
|
|
/// part of "I", the instruction), computing the set of inputs and outputs of
|
|
/// the pattern. Report errors if we see anything naughty.
|
|
void DAGISelEmitter::
|
|
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs,
|
|
std::map<std::string, TreePatternNode*>&InstResults,
|
|
std::vector<Record*> &InstImpInputs,
|
|
std::vector<Record*> &InstImpResults) {
|
|
if (Pat->isLeaf()) {
|
|
bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
} else if (Pat->getOperator()->getName() != "set") {
|
|
// If this is not a set, verify that the children nodes are not void typed,
|
|
// and recurse.
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
|
|
if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
|
|
I->error("Cannot have void nodes inside of patterns!");
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
|
|
InstImpInputs, InstImpResults);
|
|
}
|
|
|
|
// If this is a non-leaf node with no children, treat it basically as if
|
|
// it were a leaf. This handles nodes like (imm).
|
|
bool isUse = false;
|
|
if (Pat->getNumChildren() == 0)
|
|
isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
|
|
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this is a set, validate and collect instruction results.
|
|
if (Pat->getNumChildren() == 0)
|
|
I->error("set requires operands!");
|
|
else if (Pat->getNumChildren() & 1)
|
|
I->error("set requires an even number of operands");
|
|
|
|
if (Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function on a set node!");
|
|
|
|
// Check the set destinations.
|
|
unsigned NumValues = Pat->getNumChildren()/2;
|
|
for (unsigned i = 0; i != NumValues; ++i) {
|
|
TreePatternNode *Dest = Pat->getChild(i);
|
|
if (!Dest->isLeaf())
|
|
I->error("set destination should be a register!");
|
|
|
|
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
|
|
if (!Val)
|
|
I->error("set destination should be a register!");
|
|
|
|
if (Val->getDef()->isSubClassOf("RegisterClass") ||
|
|
Val->getDef()->getName() == "ptr_rc") {
|
|
if (Dest->getName().empty())
|
|
I->error("set destination must have a name!");
|
|
if (InstResults.count(Dest->getName()))
|
|
I->error("cannot set '" + Dest->getName() +"' multiple times");
|
|
InstResults[Dest->getName()] = Dest;
|
|
} else if (Val->getDef()->isSubClassOf("Register")) {
|
|
InstImpResults.push_back(Val->getDef());
|
|
} else {
|
|
I->error("set destination should be a register!");
|
|
}
|
|
|
|
// Verify and collect info from the computation.
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
|
|
InstInputs, InstResults,
|
|
InstImpInputs, InstImpResults);
|
|
}
|
|
}
|
|
|
|
/// ParseInstructions - Parse all of the instructions, inlining and resolving
|
|
/// any fragments involved. This populates the Instructions list with fully
|
|
/// resolved instructions.
|
|
void DAGISelEmitter::ParseInstructions() {
|
|
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
|
|
|
|
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
|
|
ListInit *LI = 0;
|
|
|
|
if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
|
|
LI = Instrs[i]->getValueAsListInit("Pattern");
|
|
|
|
// If there is no pattern, only collect minimal information about the
|
|
// instruction for its operand list. We have to assume that there is one
|
|
// result, as we have no detailed info.
|
|
if (!LI || LI->getSize() == 0) {
|
|
std::vector<Record*> Results;
|
|
std::vector<Record*> Operands;
|
|
|
|
CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
|
|
|
|
if (InstInfo.OperandList.size() != 0) {
|
|
// FIXME: temporary hack...
|
|
if (InstInfo.noResults) {
|
|
// These produce no results
|
|
for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
|
|
Operands.push_back(InstInfo.OperandList[j].Rec);
|
|
} else {
|
|
// Assume the first operand is the result.
|
|
Results.push_back(InstInfo.OperandList[0].Rec);
|
|
|
|
// The rest are inputs.
|
|
for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
|
|
Operands.push_back(InstInfo.OperandList[j].Rec);
|
|
}
|
|
}
|
|
|
|
// Create and insert the instruction.
|
|
std::vector<Record*> ImpResults;
|
|
std::vector<Record*> ImpOperands;
|
|
Instructions.insert(std::make_pair(Instrs[i],
|
|
DAGInstruction(0, Results, Operands, ImpResults,
|
|
ImpOperands)));
|
|
continue; // no pattern.
|
|
}
|
|
|
|
// Parse the instruction.
|
|
TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
|
|
// Inline pattern fragments into it.
|
|
I->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we can
|
|
// never do anything with this instruction pattern: report it to the user.
|
|
if (!I->InferAllTypes())
|
|
I->error("Could not infer all types in pattern!");
|
|
|
|
// InstInputs - Keep track of all of the inputs of the instruction, along
|
|
// with the record they are declared as.
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
|
|
// InstResults - Keep track of all the virtual registers that are 'set'
|
|
// in the instruction, including what reg class they are.
|
|
std::map<std::string, TreePatternNode*> InstResults;
|
|
|
|
std::vector<Record*> InstImpInputs;
|
|
std::vector<Record*> InstImpResults;
|
|
|
|
// Verify that the top-level forms in the instruction are of void type, and
|
|
// fill in the InstResults map.
|
|
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
|
|
TreePatternNode *Pat = I->getTree(j);
|
|
if (Pat->getExtTypeNum(0) != MVT::isVoid)
|
|
I->error("Top-level forms in instruction pattern should have"
|
|
" void types");
|
|
|
|
// Find inputs and outputs, and verify the structure of the uses/defs.
|
|
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
|
|
InstImpInputs, InstImpResults);
|
|
}
|
|
|
|
// Now that we have inputs and outputs of the pattern, inspect the operands
|
|
// list for the instruction. This determines the order that operands are
|
|
// added to the machine instruction the node corresponds to.
|
|
unsigned NumResults = InstResults.size();
|
|
|
|
// Parse the operands list from the (ops) list, validating it.
|
|
std::vector<std::string> &Args = I->getArgList();
|
|
assert(Args.empty() && "Args list should still be empty here!");
|
|
CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
|
|
|
|
// Check that all of the results occur first in the list.
|
|
std::vector<Record*> Results;
|
|
TreePatternNode *Res0Node = NULL;
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
if (i == CGI.OperandList.size())
|
|
I->error("'" + InstResults.begin()->first +
|
|
"' set but does not appear in operand list!");
|
|
const std::string &OpName = CGI.OperandList[i].Name;
|
|
|
|
// Check that it exists in InstResults.
|
|
TreePatternNode *RNode = InstResults[OpName];
|
|
if (RNode == 0)
|
|
I->error("Operand $" + OpName + " does not exist in operand list!");
|
|
|
|
if (i == 0)
|
|
Res0Node = RNode;
|
|
Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
|
|
if (R == 0)
|
|
I->error("Operand $" + OpName + " should be a set destination: all "
|
|
"outputs must occur before inputs in operand list!");
|
|
|
|
if (CGI.OperandList[i].Rec != R)
|
|
I->error("Operand $" + OpName + " class mismatch!");
|
|
|
|
// Remember the return type.
|
|
Results.push_back(CGI.OperandList[i].Rec);
|
|
|
|
// Okay, this one checks out.
|
|
InstResults.erase(OpName);
|
|
}
|
|
|
|
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
|
|
// the copy while we're checking the inputs.
|
|
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
|
|
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
std::vector<Record*> Operands;
|
|
for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
|
|
CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
|
|
const std::string &OpName = Op.Name;
|
|
if (OpName.empty())
|
|
I->error("Operand #" + utostr(i) + " in operands list has no name!");
|
|
|
|
if (!InstInputsCheck.count(OpName)) {
|
|
// If this is an predicate operand with an ExecuteAlways set filled in,
|
|
// we can ignore this. When we codegen it, we will do so as always
|
|
// executed.
|
|
if (Op.Rec->isSubClassOf("PredicateOperand")) {
|
|
// Does it have a non-empty ExecuteAlways field? If so, ignore this
|
|
// operand.
|
|
if (!getPredicateOperand(Op.Rec).AlwaysOps.empty())
|
|
continue;
|
|
}
|
|
I->error("Operand $" + OpName +
|
|
" does not appear in the instruction pattern");
|
|
}
|
|
TreePatternNode *InVal = InstInputsCheck[OpName];
|
|
InstInputsCheck.erase(OpName); // It occurred, remove from map.
|
|
|
|
if (InVal->isLeaf() &&
|
|
dynamic_cast<DefInit*>(InVal->getLeafValue())) {
|
|
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
|
|
if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
|
|
I->error("Operand $" + OpName + "'s register class disagrees"
|
|
" between the operand and pattern");
|
|
}
|
|
Operands.push_back(Op.Rec);
|
|
|
|
// Construct the result for the dest-pattern operand list.
|
|
TreePatternNode *OpNode = InVal->clone();
|
|
|
|
// No predicate is useful on the result.
|
|
OpNode->setPredicateFn("");
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(0);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children);
|
|
}
|
|
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
|
|
if (!InstInputsCheck.empty())
|
|
I->error("Input operand $" + InstInputsCheck.begin()->first +
|
|
" occurs in pattern but not in operands list!");
|
|
|
|
TreePatternNode *ResultPattern =
|
|
new TreePatternNode(I->getRecord(), ResultNodeOperands);
|
|
// Copy fully inferred output node type to instruction result pattern.
|
|
if (NumResults > 0)
|
|
ResultPattern->setTypes(Res0Node->getExtTypes());
|
|
|
|
// Create and insert the instruction.
|
|
DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
|
|
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
|
|
|
|
// Use a temporary tree pattern to infer all types and make sure that the
|
|
// constructed result is correct. This depends on the instruction already
|
|
// being inserted into the Instructions map.
|
|
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
|
|
Temp.InferAllTypes();
|
|
|
|
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
|
|
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
|
|
|
|
DEBUG(I->dump());
|
|
}
|
|
|
|
// If we can, convert the instructions to be patterns that are matched!
|
|
for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
|
|
E = Instructions.end(); II != E; ++II) {
|
|
DAGInstruction &TheInst = II->second;
|
|
TreePattern *I = TheInst.getPattern();
|
|
if (I == 0) continue; // No pattern.
|
|
|
|
if (I->getNumTrees() != 1) {
|
|
cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
|
|
continue;
|
|
}
|
|
TreePatternNode *Pattern = I->getTree(0);
|
|
TreePatternNode *SrcPattern;
|
|
if (Pattern->getOperator()->getName() == "set") {
|
|
if (Pattern->getNumChildren() != 2)
|
|
continue; // Not a set of a single value (not handled so far)
|
|
|
|
SrcPattern = Pattern->getChild(1)->clone();
|
|
} else{
|
|
// Not a set (store or something?)
|
|
SrcPattern = Pattern;
|
|
}
|
|
|
|
std::string Reason;
|
|
if (!SrcPattern->canPatternMatch(Reason, *this))
|
|
I->error("Instruction can never match: " + Reason);
|
|
|
|
Record *Instr = II->first;
|
|
TreePatternNode *DstPattern = TheInst.getResultPattern();
|
|
PatternsToMatch.
|
|
push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
|
|
SrcPattern, DstPattern,
|
|
Instr->getValueAsInt("AddedComplexity")));
|
|
}
|
|
}
|
|
|
|
void DAGISelEmitter::ParsePatterns() {
|
|
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
|
|
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
|
|
TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Pattern->InlinePatternFragments();
|
|
|
|
ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
|
|
if (LI->getSize() == 0) continue; // no pattern.
|
|
|
|
// Parse the instruction.
|
|
TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Result->InlinePatternFragments();
|
|
|
|
if (Result->getNumTrees() != 1)
|
|
Result->error("Cannot handle instructions producing instructions "
|
|
"with temporaries yet!");
|
|
|
|
bool IterateInference;
|
|
bool InferredAllPatternTypes, InferredAllResultTypes;
|
|
do {
|
|
// Infer as many types as possible. If we cannot infer all of them, we
|
|
// can never do anything with this pattern: report it to the user.
|
|
InferredAllPatternTypes = Pattern->InferAllTypes();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we
|
|
// can never do anything with this pattern: report it to the user.
|
|
InferredAllResultTypes = Result->InferAllTypes();
|
|
|
|
// Apply the type of the result to the source pattern. This helps us
|
|
// resolve cases where the input type is known to be a pointer type (which
|
|
// is considered resolved), but the result knows it needs to be 32- or
|
|
// 64-bits. Infer the other way for good measure.
|
|
IterateInference = Pattern->getOnlyTree()->
|
|
UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
|
|
IterateInference |= Result->getOnlyTree()->
|
|
UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
|
|
} while (IterateInference);
|
|
|
|
// Verify that we inferred enough types that we can do something with the
|
|
// pattern and result. If these fire the user has to add type casts.
|
|
if (!InferredAllPatternTypes)
|
|
Pattern->error("Could not infer all types in pattern!");
|
|
if (!InferredAllResultTypes)
|
|
Result->error("Could not infer all types in pattern result!");
|
|
|
|
// Validate that the input pattern is correct.
|
|
{
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
std::map<std::string, TreePatternNode*> InstResults;
|
|
std::vector<Record*> InstImpInputs;
|
|
std::vector<Record*> InstImpResults;
|
|
FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
|
|
InstInputs, InstResults,
|
|
InstImpInputs, InstImpResults);
|
|
}
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
TreePatternNode *DstPattern = Result->getOnlyTree();
|
|
for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
|
|
TreePatternNode *OpNode = DstPattern->getChild(ii);
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(0);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children);
|
|
}
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
DstPattern = Result->getOnlyTree();
|
|
if (!DstPattern->isLeaf())
|
|
DstPattern = new TreePatternNode(DstPattern->getOperator(),
|
|
ResultNodeOperands);
|
|
DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
|
|
TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
|
|
Temp.InferAllTypes();
|
|
|
|
std::string Reason;
|
|
if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
|
|
Pattern->error("Pattern can never match: " + Reason);
|
|
|
|
PatternsToMatch.
|
|
push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
|
|
Pattern->getOnlyTree(),
|
|
Temp.getOnlyTree(),
|
|
Patterns[i]->getValueAsInt("AddedComplexity")));
|
|
}
|
|
}
|
|
|
|
/// CombineChildVariants - Given a bunch of permutations of each child of the
|
|
/// 'operator' node, put them together in all possible ways.
|
|
static void CombineChildVariants(TreePatternNode *Orig,
|
|
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
DAGISelEmitter &ISE) {
|
|
// Make sure that each operand has at least one variant to choose from.
|
|
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
|
|
if (ChildVariants[i].empty())
|
|
return;
|
|
|
|
// The end result is an all-pairs construction of the resultant pattern.
|
|
std::vector<unsigned> Idxs;
|
|
Idxs.resize(ChildVariants.size());
|
|
bool NotDone = true;
|
|
while (NotDone) {
|
|
// Create the variant and add it to the output list.
|
|
std::vector<TreePatternNode*> NewChildren;
|
|
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
|
|
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
|
|
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
|
|
|
|
// Copy over properties.
|
|
R->setName(Orig->getName());
|
|
R->setPredicateFn(Orig->getPredicateFn());
|
|
R->setTransformFn(Orig->getTransformFn());
|
|
R->setTypes(Orig->getExtTypes());
|
|
|
|
// If this pattern cannot every match, do not include it as a variant.
|
|
std::string ErrString;
|
|
if (!R->canPatternMatch(ErrString, ISE)) {
|
|
delete R;
|
|
} else {
|
|
bool AlreadyExists = false;
|
|
|
|
// Scan to see if this pattern has already been emitted. We can get
|
|
// duplication due to things like commuting:
|
|
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
|
|
// which are the same pattern. Ignore the dups.
|
|
for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
|
|
if (R->isIsomorphicTo(OutVariants[i])) {
|
|
AlreadyExists = true;
|
|
break;
|
|
}
|
|
|
|
if (AlreadyExists)
|
|
delete R;
|
|
else
|
|
OutVariants.push_back(R);
|
|
}
|
|
|
|
// Increment indices to the next permutation.
|
|
NotDone = false;
|
|
// Look for something we can increment without causing a wrap-around.
|
|
for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
|
|
if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
|
|
NotDone = true; // Found something to increment.
|
|
break;
|
|
}
|
|
Idxs[IdxsIdx] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CombineChildVariants - A helper function for binary operators.
|
|
///
|
|
static void CombineChildVariants(TreePatternNode *Orig,
|
|
const std::vector<TreePatternNode*> &LHS,
|
|
const std::vector<TreePatternNode*> &RHS,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
DAGISelEmitter &ISE) {
|
|
std::vector<std::vector<TreePatternNode*> > ChildVariants;
|
|
ChildVariants.push_back(LHS);
|
|
ChildVariants.push_back(RHS);
|
|
CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
|
|
}
|
|
|
|
|
|
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
|
|
std::vector<TreePatternNode *> &Children) {
|
|
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
|
|
Record *Operator = N->getOperator();
|
|
|
|
// Only permit raw nodes.
|
|
if (!N->getName().empty() || !N->getPredicateFn().empty() ||
|
|
N->getTransformFn()) {
|
|
Children.push_back(N);
|
|
return;
|
|
}
|
|
|
|
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
|
|
Children.push_back(N->getChild(0));
|
|
else
|
|
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
|
|
|
|
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
|
|
Children.push_back(N->getChild(1));
|
|
else
|
|
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
|
|
}
|
|
|
|
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
|
|
/// the (potentially recursive) pattern by using algebraic laws.
|
|
///
|
|
static void GenerateVariantsOf(TreePatternNode *N,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
DAGISelEmitter &ISE) {
|
|
// We cannot permute leaves.
|
|
if (N->isLeaf()) {
|
|
OutVariants.push_back(N);
|
|
return;
|
|
}
|
|
|
|
// Look up interesting info about the node.
|
|
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
|
|
|
|
// If this node is associative, reassociate.
|
|
if (NodeInfo.hasProperty(SDNPAssociative)) {
|
|
// Reassociate by pulling together all of the linked operators
|
|
std::vector<TreePatternNode*> MaximalChildren;
|
|
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
|
|
|
|
// Only handle child sizes of 3. Otherwise we'll end up trying too many
|
|
// permutations.
|
|
if (MaximalChildren.size() == 3) {
|
|
// Find the variants of all of our maximal children.
|
|
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
|
|
GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
|
|
GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
|
|
GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
|
|
|
|
// There are only two ways we can permute the tree:
|
|
// (A op B) op C and A op (B op C)
|
|
// Within these forms, we can also permute A/B/C.
|
|
|
|
// Generate legal pair permutations of A/B/C.
|
|
std::vector<TreePatternNode*> ABVariants;
|
|
std::vector<TreePatternNode*> BAVariants;
|
|
std::vector<TreePatternNode*> ACVariants;
|
|
std::vector<TreePatternNode*> CAVariants;
|
|
std::vector<TreePatternNode*> BCVariants;
|
|
std::vector<TreePatternNode*> CBVariants;
|
|
CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
|
|
CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
|
|
CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
|
|
CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
|
|
CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
|
|
CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
|
|
|
|
// Combine those into the result: (x op x) op x
|
|
CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
|
|
|
|
// Combine those into the result: x op (x op x)
|
|
CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
|
|
CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Compute permutations of all children.
|
|
std::vector<std::vector<TreePatternNode*> > ChildVariants;
|
|
ChildVariants.resize(N->getNumChildren());
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
|
|
|
|
// Build all permutations based on how the children were formed.
|
|
CombineChildVariants(N, ChildVariants, OutVariants, ISE);
|
|
|
|
// If this node is commutative, consider the commuted order.
|
|
if (NodeInfo.hasProperty(SDNPCommutative)) {
|
|
assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
|
|
// Don't count children which are actually register references.
|
|
unsigned NC = 0;
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
if (Child->isLeaf())
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
|
|
Record *RR = DI->getDef();
|
|
if (RR->isSubClassOf("Register"))
|
|
continue;
|
|
}
|
|
NC++;
|
|
}
|
|
// Consider the commuted order.
|
|
if (NC == 2)
|
|
CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
|
|
OutVariants, ISE);
|
|
}
|
|
}
|
|
|
|
|
|
// GenerateVariants - Generate variants. For example, commutative patterns can
|
|
// match multiple ways. Add them to PatternsToMatch as well.
|
|
void DAGISelEmitter::GenerateVariants() {
|
|
|
|
DOUT << "Generating instruction variants.\n";
|
|
|
|
// Loop over all of the patterns we've collected, checking to see if we can
|
|
// generate variants of the instruction, through the exploitation of
|
|
// identities. This permits the target to provide agressive matching without
|
|
// the .td file having to contain tons of variants of instructions.
|
|
//
|
|
// Note that this loop adds new patterns to the PatternsToMatch list, but we
|
|
// intentionally do not reconsider these. Any variants of added patterns have
|
|
// already been added.
|
|
//
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
|
|
std::vector<TreePatternNode*> Variants;
|
|
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
|
|
|
|
assert(!Variants.empty() && "Must create at least original variant!");
|
|
Variants.erase(Variants.begin()); // Remove the original pattern.
|
|
|
|
if (Variants.empty()) // No variants for this pattern.
|
|
continue;
|
|
|
|
DOUT << "FOUND VARIANTS OF: ";
|
|
DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
|
|
DOUT << "\n";
|
|
|
|
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
|
|
TreePatternNode *Variant = Variants[v];
|
|
|
|
DOUT << " VAR#" << v << ": ";
|
|
DEBUG(Variant->dump());
|
|
DOUT << "\n";
|
|
|
|
// Scan to see if an instruction or explicit pattern already matches this.
|
|
bool AlreadyExists = false;
|
|
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
|
|
// Check to see if this variant already exists.
|
|
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
|
|
DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
|
|
AlreadyExists = true;
|
|
break;
|
|
}
|
|
}
|
|
// If we already have it, ignore the variant.
|
|
if (AlreadyExists) continue;
|
|
|
|
// Otherwise, add it to the list of patterns we have.
|
|
PatternsToMatch.
|
|
push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
|
|
Variant, PatternsToMatch[i].getDstPattern(),
|
|
PatternsToMatch[i].getAddedComplexity()));
|
|
}
|
|
|
|
DOUT << "\n";
|
|
}
|
|
}
|
|
|
|
// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
|
|
// ComplexPattern.
|
|
static bool NodeIsComplexPattern(TreePatternNode *N)
|
|
{
|
|
return (N->isLeaf() &&
|
|
dynamic_cast<DefInit*>(N->getLeafValue()) &&
|
|
static_cast<DefInit*>(N->getLeafValue())->getDef()->
|
|
isSubClassOf("ComplexPattern"));
|
|
}
|
|
|
|
// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
|
|
// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
|
|
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
|
|
DAGISelEmitter &ISE)
|
|
{
|
|
if (N->isLeaf() &&
|
|
dynamic_cast<DefInit*>(N->getLeafValue()) &&
|
|
static_cast<DefInit*>(N->getLeafValue())->getDef()->
|
|
isSubClassOf("ComplexPattern")) {
|
|
return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
|
|
->getDef());
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// getPatternSize - Return the 'size' of this pattern. We want to match large
|
|
/// patterns before small ones. This is used to determine the size of a
|
|
/// pattern.
|
|
static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
|
|
assert((isExtIntegerInVTs(P->getExtTypes()) ||
|
|
isExtFloatingPointInVTs(P->getExtTypes()) ||
|
|
P->getExtTypeNum(0) == MVT::isVoid ||
|
|
P->getExtTypeNum(0) == MVT::Flag ||
|
|
P->getExtTypeNum(0) == MVT::iPTR) &&
|
|
"Not a valid pattern node to size!");
|
|
unsigned Size = 3; // The node itself.
|
|
// If the root node is a ConstantSDNode, increases its size.
|
|
// e.g. (set R32:$dst, 0).
|
|
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
|
|
Size += 2;
|
|
|
|
// FIXME: This is a hack to statically increase the priority of patterns
|
|
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
|
|
// Later we can allow complexity / cost for each pattern to be (optionally)
|
|
// specified. To get best possible pattern match we'll need to dynamically
|
|
// calculate the complexity of all patterns a dag can potentially map to.
|
|
const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
|
|
if (AM)
|
|
Size += AM->getNumOperands() * 3;
|
|
|
|
// If this node has some predicate function that must match, it adds to the
|
|
// complexity of this node.
|
|
if (!P->getPredicateFn().empty())
|
|
++Size;
|
|
|
|
// Count children in the count if they are also nodes.
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = P->getChild(i);
|
|
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
|
|
Size += getPatternSize(Child, ISE);
|
|
else if (Child->isLeaf()) {
|
|
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
|
|
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
|
|
else if (NodeIsComplexPattern(Child))
|
|
Size += getPatternSize(Child, ISE);
|
|
else if (!Child->getPredicateFn().empty())
|
|
++Size;
|
|
}
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// getResultPatternCost - Compute the number of instructions for this pattern.
|
|
/// This is a temporary hack. We should really include the instruction
|
|
/// latencies in this calculation.
|
|
static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
|
|
if (P->isLeaf()) return 0;
|
|
|
|
unsigned Cost = 0;
|
|
Record *Op = P->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
Cost++;
|
|
CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
|
|
if (II.usesCustomDAGSchedInserter)
|
|
Cost += 10;
|
|
}
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
Cost += getResultPatternCost(P->getChild(i), ISE);
|
|
return Cost;
|
|
}
|
|
|
|
/// getResultPatternCodeSize - Compute the code size of instructions for this
|
|
/// pattern.
|
|
static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
|
|
if (P->isLeaf()) return 0;
|
|
|
|
unsigned Cost = 0;
|
|
Record *Op = P->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
Cost += Op->getValueAsInt("CodeSize");
|
|
}
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
Cost += getResultPatternSize(P->getChild(i), ISE);
|
|
return Cost;
|
|
}
|
|
|
|
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
|
|
// In particular, we want to match maximal patterns first and lowest cost within
|
|
// a particular complexity first.
|
|
struct PatternSortingPredicate {
|
|
PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
|
|
DAGISelEmitter &ISE;
|
|
|
|
bool operator()(PatternToMatch *LHS,
|
|
PatternToMatch *RHS) {
|
|
unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
|
|
unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
|
|
LHSSize += LHS->getAddedComplexity();
|
|
RHSSize += RHS->getAddedComplexity();
|
|
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
|
|
if (LHSSize < RHSSize) return false;
|
|
|
|
// If the patterns have equal complexity, compare generated instruction cost
|
|
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
|
|
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
|
|
if (LHSCost < RHSCost) return true;
|
|
if (LHSCost > RHSCost) return false;
|
|
|
|
return getResultPatternSize(LHS->getDstPattern(), ISE) <
|
|
getResultPatternSize(RHS->getDstPattern(), ISE);
|
|
}
|
|
};
|
|
|
|
/// getRegisterValueType - Look up and return the first ValueType of specified
|
|
/// RegisterClass record
|
|
static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
|
|
if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
|
|
return RC->getValueTypeNum(0);
|
|
return MVT::Other;
|
|
}
|
|
|
|
|
|
/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
|
|
/// type information from it.
|
|
static void RemoveAllTypes(TreePatternNode *N) {
|
|
N->removeTypes();
|
|
if (!N->isLeaf())
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
RemoveAllTypes(N->getChild(i));
|
|
}
|
|
|
|
Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
|
|
Record *N = Records.getDef(Name);
|
|
if (!N || !N->isSubClassOf("SDNode")) {
|
|
cerr << "Error getting SDNode '" << Name << "'!\n";
|
|
exit(1);
|
|
}
|
|
return N;
|
|
}
|
|
|
|
/// NodeHasProperty - return true if TreePatternNode has the specified
|
|
/// property.
|
|
static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
|
|
DAGISelEmitter &ISE)
|
|
{
|
|
if (N->isLeaf()) {
|
|
const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
|
|
if (CP)
|
|
return CP->hasProperty(Property);
|
|
return false;
|
|
}
|
|
Record *Operator = N->getOperator();
|
|
if (!Operator->isSubClassOf("SDNode")) return false;
|
|
|
|
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
|
|
return NodeInfo.hasProperty(Property);
|
|
}
|
|
|
|
static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
|
|
DAGISelEmitter &ISE)
|
|
{
|
|
if (NodeHasProperty(N, Property, ISE))
|
|
return true;
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
if (PatternHasProperty(Child, Property, ISE))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
class PatternCodeEmitter {
|
|
private:
|
|
DAGISelEmitter &ISE;
|
|
|
|
// Predicates.
|
|
ListInit *Predicates;
|
|
// Pattern cost.
|
|
unsigned Cost;
|
|
// Instruction selector pattern.
|
|
TreePatternNode *Pattern;
|
|
// Matched instruction.
|
|
TreePatternNode *Instruction;
|
|
|
|
// Node to name mapping
|
|
std::map<std::string, std::string> VariableMap;
|
|
// Node to operator mapping
|
|
std::map<std::string, Record*> OperatorMap;
|
|
// Names of all the folded nodes which produce chains.
|
|
std::vector<std::pair<std::string, unsigned> > FoldedChains;
|
|
// Original input chain(s).
|
|
std::vector<std::pair<std::string, std::string> > OrigChains;
|
|
std::set<std::string> Duplicates;
|
|
|
|
/// GeneratedCode - This is the buffer that we emit code to. The first int
|
|
/// indicates whether this is an exit predicate (something that should be
|
|
/// tested, and if true, the match fails) [when 1], or normal code to emit
|
|
/// [when 0], or initialization code to emit [when 2].
|
|
std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
|
|
/// GeneratedDecl - This is the set of all SDOperand declarations needed for
|
|
/// the set of patterns for each top-level opcode.
|
|
std::set<std::string> &GeneratedDecl;
|
|
/// TargetOpcodes - The target specific opcodes used by the resulting
|
|
/// instructions.
|
|
std::vector<std::string> &TargetOpcodes;
|
|
std::vector<std::string> &TargetVTs;
|
|
|
|
std::string ChainName;
|
|
unsigned TmpNo;
|
|
unsigned OpcNo;
|
|
unsigned VTNo;
|
|
|
|
void emitCheck(const std::string &S) {
|
|
if (!S.empty())
|
|
GeneratedCode.push_back(std::make_pair(1, S));
|
|
}
|
|
void emitCode(const std::string &S) {
|
|
if (!S.empty())
|
|
GeneratedCode.push_back(std::make_pair(0, S));
|
|
}
|
|
void emitInit(const std::string &S) {
|
|
if (!S.empty())
|
|
GeneratedCode.push_back(std::make_pair(2, S));
|
|
}
|
|
void emitDecl(const std::string &S) {
|
|
assert(!S.empty() && "Invalid declaration");
|
|
GeneratedDecl.insert(S);
|
|
}
|
|
void emitOpcode(const std::string &Opc) {
|
|
TargetOpcodes.push_back(Opc);
|
|
OpcNo++;
|
|
}
|
|
void emitVT(const std::string &VT) {
|
|
TargetVTs.push_back(VT);
|
|
VTNo++;
|
|
}
|
|
public:
|
|
PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
|
|
TreePatternNode *pattern, TreePatternNode *instr,
|
|
std::vector<std::pair<unsigned, std::string> > &gc,
|
|
std::set<std::string> &gd,
|
|
std::vector<std::string> &to,
|
|
std::vector<std::string> &tv)
|
|
: ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
|
|
GeneratedCode(gc), GeneratedDecl(gd),
|
|
TargetOpcodes(to), TargetVTs(tv),
|
|
TmpNo(0), OpcNo(0), VTNo(0) {}
|
|
|
|
/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
|
|
/// if the match fails. At this point, we already know that the opcode for N
|
|
/// matches, and the SDNode for the result has the RootName specified name.
|
|
void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
|
|
const std::string &RootName, const std::string &ChainSuffix,
|
|
bool &FoundChain) {
|
|
bool isRoot = (P == NULL);
|
|
// Emit instruction predicates. Each predicate is just a string for now.
|
|
if (isRoot) {
|
|
std::string PredicateCheck;
|
|
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
|
|
if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
|
|
Record *Def = Pred->getDef();
|
|
if (!Def->isSubClassOf("Predicate")) {
|
|
#ifndef NDEBUG
|
|
Def->dump();
|
|
#endif
|
|
assert(0 && "Unknown predicate type!");
|
|
}
|
|
if (!PredicateCheck.empty())
|
|
PredicateCheck += " && ";
|
|
PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
|
|
}
|
|
}
|
|
|
|
emitCheck(PredicateCheck);
|
|
}
|
|
|
|
if (N->isLeaf()) {
|
|
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
|
|
emitCheck("cast<ConstantSDNode>(" + RootName +
|
|
")->getSignExtended() == " + itostr(II->getValue()));
|
|
return;
|
|
} else if (!NodeIsComplexPattern(N)) {
|
|
assert(0 && "Cannot match this as a leaf value!");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// If this node has a name associated with it, capture it in VariableMap. If
|
|
// we already saw this in the pattern, emit code to verify dagness.
|
|
if (!N->getName().empty()) {
|
|
std::string &VarMapEntry = VariableMap[N->getName()];
|
|
if (VarMapEntry.empty()) {
|
|
VarMapEntry = RootName;
|
|
} else {
|
|
// If we get here, this is a second reference to a specific name. Since
|
|
// we already have checked that the first reference is valid, we don't
|
|
// have to recursively match it, just check that it's the same as the
|
|
// previously named thing.
|
|
emitCheck(VarMapEntry + " == " + RootName);
|
|
return;
|
|
}
|
|
|
|
if (!N->isLeaf())
|
|
OperatorMap[N->getName()] = N->getOperator();
|
|
}
|
|
|
|
|
|
// Emit code to load the child nodes and match their contents recursively.
|
|
unsigned OpNo = 0;
|
|
bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE);
|
|
bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE);
|
|
bool EmittedUseCheck = false;
|
|
if (HasChain) {
|
|
if (NodeHasChain)
|
|
OpNo = 1;
|
|
if (!isRoot) {
|
|
// Multiple uses of actual result?
|
|
emitCheck(RootName + ".hasOneUse()");
|
|
EmittedUseCheck = true;
|
|
if (NodeHasChain) {
|
|
// If the immediate use can somehow reach this node through another
|
|
// path, then can't fold it either or it will create a cycle.
|
|
// e.g. In the following diagram, XX can reach ld through YY. If
|
|
// ld is folded into XX, then YY is both a predecessor and a successor
|
|
// of XX.
|
|
//
|
|
// [ld]
|
|
// ^ ^
|
|
// | |
|
|
// / \---
|
|
// / [YY]
|
|
// | ^
|
|
// [XX]-------|
|
|
bool NeedCheck = false;
|
|
if (P != Pattern)
|
|
NeedCheck = true;
|
|
else {
|
|
const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
|
|
NeedCheck =
|
|
P->getOperator() == ISE.get_intrinsic_void_sdnode() ||
|
|
P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
|
|
P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() ||
|
|
PInfo.getNumOperands() > 1 ||
|
|
PInfo.hasProperty(SDNPHasChain) ||
|
|
PInfo.hasProperty(SDNPInFlag) ||
|
|
PInfo.hasProperty(SDNPOptInFlag);
|
|
}
|
|
|
|
if (NeedCheck) {
|
|
std::string ParentName(RootName.begin(), RootName.end()-1);
|
|
emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
|
|
".Val, N.Val)");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NodeHasChain) {
|
|
if (FoundChain) {
|
|
emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
|
|
"IsChainCompatible(" + ChainName + ".Val, " +
|
|
RootName + ".Val))");
|
|
OrigChains.push_back(std::make_pair(ChainName, RootName));
|
|
} else
|
|
FoundChain = true;
|
|
ChainName = "Chain" + ChainSuffix;
|
|
emitInit("SDOperand " + ChainName + " = " + RootName +
|
|
".getOperand(0);");
|
|
}
|
|
}
|
|
|
|
// Don't fold any node which reads or writes a flag and has multiple uses.
|
|
// FIXME: We really need to separate the concepts of flag and "glue". Those
|
|
// real flag results, e.g. X86CMP output, can have multiple uses.
|
|
// FIXME: If the optional incoming flag does not exist. Then it is ok to
|
|
// fold it.
|
|
if (!isRoot &&
|
|
(PatternHasProperty(N, SDNPInFlag, ISE) ||
|
|
PatternHasProperty(N, SDNPOptInFlag, ISE) ||
|
|
PatternHasProperty(N, SDNPOutFlag, ISE))) {
|
|
if (!EmittedUseCheck) {
|
|
// Multiple uses of actual result?
|
|
emitCheck(RootName + ".hasOneUse()");
|
|
}
|
|
}
|
|
|
|
// If there is a node predicate for this, emit the call.
|
|
if (!N->getPredicateFn().empty())
|
|
emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
|
|
|
|
|
|
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
|
|
// a constant without a predicate fn that has more that one bit set, handle
|
|
// this as a special case. This is usually for targets that have special
|
|
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
|
|
// handling stuff). Using these instructions is often far more efficient
|
|
// than materializing the constant. Unfortunately, both the instcombiner
|
|
// and the dag combiner can often infer that bits are dead, and thus drop
|
|
// them from the mask in the dag. For example, it might turn 'AND X, 255'
|
|
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
|
|
// to handle this.
|
|
if (!N->isLeaf() &&
|
|
(N->getOperator()->getName() == "and" ||
|
|
N->getOperator()->getName() == "or") &&
|
|
N->getChild(1)->isLeaf() &&
|
|
N->getChild(1)->getPredicateFn().empty()) {
|
|
if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
|
|
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
|
|
emitInit("SDOperand " + RootName + "0" + " = " +
|
|
RootName + ".getOperand(" + utostr(0) + ");");
|
|
emitInit("SDOperand " + RootName + "1" + " = " +
|
|
RootName + ".getOperand(" + utostr(1) + ");");
|
|
|
|
emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
|
|
const char *MaskPredicate = N->getOperator()->getName() == "or"
|
|
? "CheckOrMask(" : "CheckAndMask(";
|
|
emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
|
|
RootName + "1), " + itostr(II->getValue()) + ")");
|
|
|
|
EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
|
|
ChainSuffix + utostr(0), FoundChain);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
|
|
emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
|
|
RootName + ".getOperand(" +utostr(OpNo) + ");");
|
|
|
|
EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
|
|
ChainSuffix + utostr(OpNo), FoundChain);
|
|
}
|
|
|
|
// Handle cases when root is a complex pattern.
|
|
const ComplexPattern *CP;
|
|
if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
|
|
std::string Fn = CP->getSelectFunc();
|
|
unsigned NumOps = CP->getNumOperands();
|
|
for (unsigned i = 0; i < NumOps; ++i) {
|
|
emitDecl("CPTmp" + utostr(i));
|
|
emitCode("SDOperand CPTmp" + utostr(i) + ";");
|
|
}
|
|
if (CP->hasProperty(SDNPHasChain)) {
|
|
emitDecl("CPInChain");
|
|
emitDecl("Chain" + ChainSuffix);
|
|
emitCode("SDOperand CPInChain;");
|
|
emitCode("SDOperand Chain" + ChainSuffix + ";");
|
|
}
|
|
|
|
std::string Code = Fn + "(" + RootName + ", " + RootName;
|
|
for (unsigned i = 0; i < NumOps; i++)
|
|
Code += ", CPTmp" + utostr(i);
|
|
if (CP->hasProperty(SDNPHasChain)) {
|
|
ChainName = "Chain" + ChainSuffix;
|
|
Code += ", CPInChain, Chain" + ChainSuffix;
|
|
}
|
|
emitCheck(Code + ")");
|
|
}
|
|
}
|
|
|
|
void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
|
|
const std::string &RootName,
|
|
const std::string &ChainSuffix, bool &FoundChain) {
|
|
if (!Child->isLeaf()) {
|
|
// If it's not a leaf, recursively match.
|
|
const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
|
|
emitCheck(RootName + ".getOpcode() == " +
|
|
CInfo.getEnumName());
|
|
EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
|
|
if (NodeHasProperty(Child, SDNPHasChain, ISE))
|
|
FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
|
|
} else {
|
|
// If this child has a name associated with it, capture it in VarMap. If
|
|
// we already saw this in the pattern, emit code to verify dagness.
|
|
if (!Child->getName().empty()) {
|
|
std::string &VarMapEntry = VariableMap[Child->getName()];
|
|
if (VarMapEntry.empty()) {
|
|
VarMapEntry = RootName;
|
|
} else {
|
|
// If we get here, this is a second reference to a specific name.
|
|
// Since we already have checked that the first reference is valid,
|
|
// we don't have to recursively match it, just check that it's the
|
|
// same as the previously named thing.
|
|
emitCheck(VarMapEntry + " == " + RootName);
|
|
Duplicates.insert(RootName);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle leaves of various types.
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
|
|
Record *LeafRec = DI->getDef();
|
|
if (LeafRec->isSubClassOf("RegisterClass") ||
|
|
LeafRec->getName() == "ptr_rc") {
|
|
// Handle register references. Nothing to do here.
|
|
} else if (LeafRec->isSubClassOf("Register")) {
|
|
// Handle register references.
|
|
} else if (LeafRec->isSubClassOf("ComplexPattern")) {
|
|
// Handle complex pattern.
|
|
const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
|
|
std::string Fn = CP->getSelectFunc();
|
|
unsigned NumOps = CP->getNumOperands();
|
|
for (unsigned i = 0; i < NumOps; ++i) {
|
|
emitDecl("CPTmp" + utostr(i));
|
|
emitCode("SDOperand CPTmp" + utostr(i) + ";");
|
|
}
|
|
if (CP->hasProperty(SDNPHasChain)) {
|
|
const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
|
|
FoldedChains.push_back(std::make_pair("CPInChain",
|
|
PInfo.getNumResults()));
|
|
ChainName = "Chain" + ChainSuffix;
|
|
emitDecl("CPInChain");
|
|
emitDecl(ChainName);
|
|
emitCode("SDOperand CPInChain;");
|
|
emitCode("SDOperand " + ChainName + ";");
|
|
}
|
|
|
|
std::string Code = Fn + "(N, ";
|
|
if (CP->hasProperty(SDNPHasChain)) {
|
|
std::string ParentName(RootName.begin(), RootName.end()-1);
|
|
Code += ParentName + ", ";
|
|
}
|
|
Code += RootName;
|
|
for (unsigned i = 0; i < NumOps; i++)
|
|
Code += ", CPTmp" + utostr(i);
|
|
if (CP->hasProperty(SDNPHasChain))
|
|
Code += ", CPInChain, Chain" + ChainSuffix;
|
|
emitCheck(Code + ")");
|
|
} else if (LeafRec->getName() == "srcvalue") {
|
|
// Place holder for SRCVALUE nodes. Nothing to do here.
|
|
} else if (LeafRec->isSubClassOf("ValueType")) {
|
|
// Make sure this is the specified value type.
|
|
emitCheck("cast<VTSDNode>(" + RootName +
|
|
")->getVT() == MVT::" + LeafRec->getName());
|
|
} else if (LeafRec->isSubClassOf("CondCode")) {
|
|
// Make sure this is the specified cond code.
|
|
emitCheck("cast<CondCodeSDNode>(" + RootName +
|
|
")->get() == ISD::" + LeafRec->getName());
|
|
} else {
|
|
#ifndef NDEBUG
|
|
Child->dump();
|
|
cerr << " ";
|
|
#endif
|
|
assert(0 && "Unknown leaf type!");
|
|
}
|
|
|
|
// If there is a node predicate for this, emit the call.
|
|
if (!Child->getPredicateFn().empty())
|
|
emitCheck(Child->getPredicateFn() + "(" + RootName +
|
|
".Val)");
|
|
} else if (IntInit *II =
|
|
dynamic_cast<IntInit*>(Child->getLeafValue())) {
|
|
emitCheck("isa<ConstantSDNode>(" + RootName + ")");
|
|
unsigned CTmp = TmpNo++;
|
|
emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
|
|
RootName + ")->getSignExtended();");
|
|
|
|
emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
|
|
} else {
|
|
#ifndef NDEBUG
|
|
Child->dump();
|
|
#endif
|
|
assert(0 && "Unknown leaf type!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitResultCode - Emit the action for a pattern. Now that it has matched
|
|
/// we actually have to build a DAG!
|
|
std::vector<std::string>
|
|
EmitResultCode(TreePatternNode *N, bool RetSelected,
|
|
bool InFlagDecled, bool ResNodeDecled,
|
|
bool LikeLeaf = false, bool isRoot = false) {
|
|
// List of arguments of getTargetNode() or SelectNodeTo().
|
|
std::vector<std::string> NodeOps;
|
|
// This is something selected from the pattern we matched.
|
|
if (!N->getName().empty()) {
|
|
std::string &Val = VariableMap[N->getName()];
|
|
assert(!Val.empty() &&
|
|
"Variable referenced but not defined and not caught earlier!");
|
|
if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
|
|
// Already selected this operand, just return the tmpval.
|
|
NodeOps.push_back(Val);
|
|
return NodeOps;
|
|
}
|
|
|
|
const ComplexPattern *CP;
|
|
unsigned ResNo = TmpNo++;
|
|
if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
|
|
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
|
|
std::string CastType;
|
|
switch (N->getTypeNum(0)) {
|
|
default:
|
|
cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
|
|
<< " type as an immediate constant. Aborting\n";
|
|
abort();
|
|
case MVT::i1: CastType = "bool"; break;
|
|
case MVT::i8: CastType = "unsigned char"; break;
|
|
case MVT::i16: CastType = "unsigned short"; break;
|
|
case MVT::i32: CastType = "unsigned"; break;
|
|
case MVT::i64: CastType = "uint64_t"; break;
|
|
}
|
|
emitCode("SDOperand Tmp" + utostr(ResNo) +
|
|
" = CurDAG->getTargetConstant(((" + CastType +
|
|
") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
|
|
getEnumName(N->getTypeNum(0)) + ");");
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
|
|
// value if used multiple times by this pattern result.
|
|
Val = "Tmp"+utostr(ResNo);
|
|
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
|
|
Record *Op = OperatorMap[N->getName()];
|
|
// Transform ExternalSymbol to TargetExternalSymbol
|
|
if (Op && Op->getName() == "externalsym") {
|
|
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
|
|
"ExternalSymbol(cast<ExternalSymbolSDNode>(" +
|
|
Val + ")->getSymbol(), " +
|
|
getEnumName(N->getTypeNum(0)) + ");");
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
|
|
// this value if used multiple times by this pattern result.
|
|
Val = "Tmp"+utostr(ResNo);
|
|
} else {
|
|
NodeOps.push_back(Val);
|
|
}
|
|
} else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") {
|
|
Record *Op = OperatorMap[N->getName()];
|
|
// Transform GlobalAddress to TargetGlobalAddress
|
|
if (Op && Op->getName() == "globaladdr") {
|
|
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
|
|
"GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
|
|
")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
|
|
");");
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
|
|
// this value if used multiple times by this pattern result.
|
|
Val = "Tmp"+utostr(ResNo);
|
|
} else {
|
|
NodeOps.push_back(Val);
|
|
}
|
|
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
|
|
NodeOps.push_back(Val);
|
|
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
|
|
// value if used multiple times by this pattern result.
|
|
Val = "Tmp"+utostr(ResNo);
|
|
} else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
|
|
NodeOps.push_back(Val);
|
|
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
|
|
// value if used multiple times by this pattern result.
|
|
Val = "Tmp"+utostr(ResNo);
|
|
} else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
|
|
for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
|
|
emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
|
|
NodeOps.push_back("CPTmp" + utostr(i));
|
|
}
|
|
} else {
|
|
// This node, probably wrapped in a SDNodeXForm, behaves like a leaf
|
|
// node even if it isn't one. Don't select it.
|
|
if (!LikeLeaf) {
|
|
emitCode("AddToISelQueue(" + Val + ");");
|
|
if (isRoot && N->isLeaf()) {
|
|
emitCode("ReplaceUses(N, " + Val + ");");
|
|
emitCode("return NULL;");
|
|
}
|
|
}
|
|
NodeOps.push_back(Val);
|
|
}
|
|
return NodeOps;
|
|
}
|
|
if (N->isLeaf()) {
|
|
// If this is an explicit register reference, handle it.
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
|
|
unsigned ResNo = TmpNo++;
|
|
if (DI->getDef()->isSubClassOf("Register")) {
|
|
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
|
|
ISE.getQualifiedName(DI->getDef()) + ", " +
|
|
getEnumName(N->getTypeNum(0)) + ");");
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
return NodeOps;
|
|
}
|
|
} else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
|
|
unsigned ResNo = TmpNo++;
|
|
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
|
|
emitCode("SDOperand Tmp" + utostr(ResNo) +
|
|
" = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
|
|
", " + getEnumName(N->getTypeNum(0)) + ");");
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
return NodeOps;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
N->dump();
|
|
#endif
|
|
assert(0 && "Unknown leaf type!");
|
|
return NodeOps;
|
|
}
|
|
|
|
Record *Op = N->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
const CodeGenTarget &CGT = ISE.getTargetInfo();
|
|
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
|
|
const DAGInstruction &Inst = ISE.getInstruction(Op);
|
|
TreePattern *InstPat = Inst.getPattern();
|
|
TreePatternNode *InstPatNode =
|
|
isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
|
|
: (InstPat ? InstPat->getOnlyTree() : NULL);
|
|
if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
|
|
InstPatNode = InstPatNode->getChild(1);
|
|
}
|
|
bool HasVarOps = isRoot && II.hasVariableNumberOfOperands;
|
|
bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
|
|
bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
|
|
bool NodeHasOptInFlag = isRoot &&
|
|
PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
|
|
bool NodeHasInFlag = isRoot &&
|
|
PatternHasProperty(Pattern, SDNPInFlag, ISE);
|
|
bool NodeHasOutFlag = HasImpResults || (isRoot &&
|
|
PatternHasProperty(Pattern, SDNPOutFlag, ISE));
|
|
bool NodeHasChain = InstPatNode &&
|
|
PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
|
|
bool InputHasChain = isRoot &&
|
|
NodeHasProperty(Pattern, SDNPHasChain, ISE);
|
|
unsigned NumResults = Inst.getNumResults();
|
|
|
|
if (NodeHasOptInFlag) {
|
|
emitCode("bool HasInFlag = "
|
|
"(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
|
|
}
|
|
if (HasVarOps)
|
|
emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
|
|
|
|
// How many results is this pattern expected to produce?
|
|
unsigned PatResults = 0;
|
|
for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
|
|
MVT::ValueType VT = Pattern->getTypeNum(i);
|
|
if (VT != MVT::isVoid && VT != MVT::Flag)
|
|
PatResults++;
|
|
}
|
|
|
|
if (OrigChains.size() > 0) {
|
|
// The original input chain is being ignored. If it is not just
|
|
// pointing to the op that's being folded, we should create a
|
|
// TokenFactor with it and the chain of the folded op as the new chain.
|
|
// We could potentially be doing multiple levels of folding, in that
|
|
// case, the TokenFactor can have more operands.
|
|
emitCode("SmallVector<SDOperand, 8> InChains;");
|
|
for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
|
|
emitCode("if (" + OrigChains[i].first + ".Val != " +
|
|
OrigChains[i].second + ".Val) {");
|
|
emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
|
|
emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
|
|
emitCode("}");
|
|
}
|
|
emitCode("AddToISelQueue(" + ChainName + ");");
|
|
emitCode("InChains.push_back(" + ChainName + ");");
|
|
emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
|
|
"&InChains[0], InChains.size());");
|
|
}
|
|
|
|
// Loop over all of the operands of the instruction pattern, emitting code
|
|
// to fill them all in. The node 'N' usually has number children equal to
|
|
// the number of input operands of the instruction. However, in cases
|
|
// where there are predicate operands for an instruction, we need to fill
|
|
// in the 'execute always' values. Match up the node operands to the
|
|
// instruction operands to do this.
|
|
std::vector<std::string> AllOps;
|
|
for (unsigned ChildNo = 0, InstOpNo = NumResults;
|
|
InstOpNo != II.OperandList.size(); ++InstOpNo) {
|
|
std::vector<std::string> Ops;
|
|
|
|
// If this is a normal operand, emit it.
|
|
if (!II.OperandList[InstOpNo].Rec->isSubClassOf("PredicateOperand")) {
|
|
Ops = EmitResultCode(N->getChild(ChildNo), RetSelected,
|
|
InFlagDecled, ResNodeDecled);
|
|
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
|
|
++ChildNo;
|
|
} else {
|
|
// Otherwise, this is a predicate operand, emit the 'execute always'
|
|
// operands.
|
|
const DAGPredicateOperand &Pred =
|
|
ISE.getPredicateOperand(II.OperandList[InstOpNo].Rec);
|
|
for (unsigned i = 0, e = Pred.AlwaysOps.size(); i != e; ++i) {
|
|
Ops = EmitResultCode(Pred.AlwaysOps[i], RetSelected,
|
|
InFlagDecled, ResNodeDecled);
|
|
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit all the chain and CopyToReg stuff.
|
|
bool ChainEmitted = NodeHasChain;
|
|
if (NodeHasChain)
|
|
emitCode("AddToISelQueue(" + ChainName + ");");
|
|
if (NodeHasInFlag || HasImpInputs)
|
|
EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
|
|
InFlagDecled, ResNodeDecled, true);
|
|
if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
|
|
if (!InFlagDecled) {
|
|
emitCode("SDOperand InFlag(0, 0);");
|
|
InFlagDecled = true;
|
|
}
|
|
if (NodeHasOptInFlag) {
|
|
emitCode("if (HasInFlag) {");
|
|
emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
|
|
emitCode(" AddToISelQueue(InFlag);");
|
|
emitCode("}");
|
|
}
|
|
}
|
|
|
|
unsigned ResNo = TmpNo++;
|
|
if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
|
|
NodeHasOptInFlag) {
|
|
std::string Code;
|
|
std::string Code2;
|
|
std::string NodeName;
|
|
if (!isRoot) {
|
|
NodeName = "Tmp" + utostr(ResNo);
|
|
Code2 = "SDOperand " + NodeName + " = SDOperand(";
|
|
} else {
|
|
NodeName = "ResNode";
|
|
if (!ResNodeDecled)
|
|
Code2 = "SDNode *" + NodeName + " = ";
|
|
else
|
|
Code2 = NodeName + " = ";
|
|
}
|
|
|
|
Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
|
|
unsigned OpsNo = OpcNo;
|
|
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
|
|
|
|
// Output order: results, chain, flags
|
|
// Result types.
|
|
if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
|
|
Code += ", VT" + utostr(VTNo);
|
|
emitVT(getEnumName(N->getTypeNum(0)));
|
|
}
|
|
if (NodeHasChain)
|
|
Code += ", MVT::Other";
|
|
if (NodeHasOutFlag)
|
|
Code += ", MVT::Flag";
|
|
|
|
// Figure out how many fixed inputs the node has. This is important to
|
|
// know which inputs are the variable ones if present.
|
|
unsigned NumInputs = AllOps.size();
|
|
NumInputs += NodeHasChain;
|
|
|
|
// Inputs.
|
|
if (HasVarOps) {
|
|
for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
|
|
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
|
|
AllOps.clear();
|
|
}
|
|
|
|
if (HasVarOps) {
|
|
// Figure out whether any operands at the end of the op list are not
|
|
// part of the variable section.
|
|
std::string EndAdjust;
|
|
if (NodeHasInFlag || HasImpInputs)
|
|
EndAdjust = "-1"; // Always has one flag.
|
|
else if (NodeHasOptInFlag)
|
|
EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
|
|
|
|
emitCode("for (unsigned i = " + utostr(NumInputs) +
|
|
", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
|
|
|
|
emitCode(" AddToISelQueue(N.getOperand(i));");
|
|
emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
|
|
emitCode("}");
|
|
}
|
|
|
|
if (NodeHasChain) {
|
|
if (HasVarOps)
|
|
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
|
|
else
|
|
AllOps.push_back(ChainName);
|
|
}
|
|
|
|
if (HasVarOps) {
|
|
if (NodeHasInFlag || HasImpInputs)
|
|
emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
|
|
else if (NodeHasOptInFlag) {
|
|
emitCode("if (HasInFlag)");
|
|
emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
|
|
}
|
|
Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
|
|
".size()";
|
|
} else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
|
|
AllOps.push_back("InFlag");
|
|
|
|
unsigned NumOps = AllOps.size();
|
|
if (NumOps) {
|
|
if (!NodeHasOptInFlag && NumOps < 4) {
|
|
for (unsigned i = 0; i != NumOps; ++i)
|
|
Code += ", " + AllOps[i];
|
|
} else {
|
|
std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
OpsCode += AllOps[i];
|
|
if (i != NumOps-1)
|
|
OpsCode += ", ";
|
|
}
|
|
emitCode(OpsCode + " };");
|
|
Code += ", Ops" + utostr(OpsNo) + ", ";
|
|
if (NodeHasOptInFlag) {
|
|
Code += "HasInFlag ? ";
|
|
Code += utostr(NumOps) + " : " + utostr(NumOps-1);
|
|
} else
|
|
Code += utostr(NumOps);
|
|
}
|
|
}
|
|
|
|
if (!isRoot)
|
|
Code += "), 0";
|
|
emitCode(Code2 + Code + ");");
|
|
|
|
if (NodeHasChain)
|
|
// Remember which op produces the chain.
|
|
if (!isRoot)
|
|
emitCode(ChainName + " = SDOperand(" + NodeName +
|
|
".Val, " + utostr(PatResults) + ");");
|
|
else
|
|
emitCode(ChainName + " = SDOperand(" + NodeName +
|
|
", " + utostr(PatResults) + ");");
|
|
|
|
if (!isRoot) {
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
return NodeOps;
|
|
}
|
|
|
|
bool NeedReplace = false;
|
|
if (NodeHasOutFlag) {
|
|
if (!InFlagDecled) {
|
|
emitCode("SDOperand InFlag = SDOperand(ResNode, " +
|
|
utostr(NumResults + (unsigned)NodeHasChain) + ");");
|
|
InFlagDecled = true;
|
|
} else
|
|
emitCode("InFlag = SDOperand(ResNode, " +
|
|
utostr(NumResults + (unsigned)NodeHasChain) + ");");
|
|
}
|
|
|
|
if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) {
|
|
emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));");
|
|
NumResults = 1;
|
|
}
|
|
|
|
if (FoldedChains.size() > 0) {
|
|
std::string Code;
|
|
for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
|
|
emitCode("ReplaceUses(SDOperand(" +
|
|
FoldedChains[j].first + ".Val, " +
|
|
utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
|
|
utostr(NumResults) + "));");
|
|
NeedReplace = true;
|
|
}
|
|
|
|
if (NodeHasOutFlag) {
|
|
emitCode("ReplaceUses(SDOperand(N.Val, " +
|
|
utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
|
|
NeedReplace = true;
|
|
}
|
|
|
|
if (NeedReplace) {
|
|
for (unsigned i = 0; i < NumResults; i++)
|
|
emitCode("ReplaceUses(SDOperand(N.Val, " +
|
|
utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
|
|
if (InputHasChain)
|
|
emitCode("ReplaceUses(SDOperand(N.Val, " +
|
|
utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, "
|
|
+ ChainName + ".ResNo" + "));");
|
|
} else
|
|
RetSelected = true;
|
|
|
|
// User does not expect the instruction would produce a chain!
|
|
if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
|
|
;
|
|
} else if (InputHasChain && !NodeHasChain) {
|
|
// One of the inner node produces a chain.
|
|
if (NodeHasOutFlag)
|
|
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
|
|
"), SDOperand(ResNode, N.ResNo-1));");
|
|
for (unsigned i = 0; i < PatResults; ++i)
|
|
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
|
|
"), SDOperand(ResNode, " + utostr(i) + "));");
|
|
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
|
|
"), " + ChainName + ");");
|
|
RetSelected = false;
|
|
}
|
|
|
|
if (RetSelected)
|
|
emitCode("return ResNode;");
|
|
else
|
|
emitCode("return NULL;");
|
|
} else {
|
|
std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
|
|
utostr(OpcNo);
|
|
if (N->getTypeNum(0) != MVT::isVoid)
|
|
Code += ", VT" + utostr(VTNo);
|
|
if (NodeHasOutFlag)
|
|
Code += ", MVT::Flag";
|
|
|
|
if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
|
|
AllOps.push_back("InFlag");
|
|
|
|
unsigned NumOps = AllOps.size();
|
|
if (NumOps) {
|
|
if (!NodeHasOptInFlag && NumOps < 4) {
|
|
for (unsigned i = 0; i != NumOps; ++i)
|
|
Code += ", " + AllOps[i];
|
|
} else {
|
|
std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
OpsCode += AllOps[i];
|
|
if (i != NumOps-1)
|
|
OpsCode += ", ";
|
|
}
|
|
emitCode(OpsCode + " };");
|
|
Code += ", Ops" + utostr(OpcNo) + ", ";
|
|
Code += utostr(NumOps);
|
|
}
|
|
}
|
|
emitCode(Code + ");");
|
|
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
|
|
if (N->getTypeNum(0) != MVT::isVoid)
|
|
emitVT(getEnumName(N->getTypeNum(0)));
|
|
}
|
|
|
|
return NodeOps;
|
|
} else if (Op->isSubClassOf("SDNodeXForm")) {
|
|
assert(N->getNumChildren() == 1 && "node xform should have one child!");
|
|
// PatLeaf node - the operand may or may not be a leaf node. But it should
|
|
// behave like one.
|
|
std::vector<std::string> Ops =
|
|
EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
|
|
ResNodeDecled, true);
|
|
unsigned ResNo = TmpNo++;
|
|
emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
|
|
+ "(" + Ops.back() + ".Val);");
|
|
NodeOps.push_back("Tmp" + utostr(ResNo));
|
|
if (isRoot)
|
|
emitCode("return Tmp" + utostr(ResNo) + ".Val;");
|
|
return NodeOps;
|
|
} else {
|
|
N->dump();
|
|
cerr << "\n";
|
|
throw std::string("Unknown node in result pattern!");
|
|
}
|
|
}
|
|
|
|
/// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
|
|
/// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
|
|
/// 'Pat' may be missing types. If we find an unresolved type to add a check
|
|
/// for, this returns true otherwise false if Pat has all types.
|
|
bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
|
|
const std::string &Prefix, bool isRoot = false) {
|
|
// Did we find one?
|
|
if (Pat->getExtTypes() != Other->getExtTypes()) {
|
|
// Move a type over from 'other' to 'pat'.
|
|
Pat->setTypes(Other->getExtTypes());
|
|
// The top level node type is checked outside of the select function.
|
|
if (!isRoot)
|
|
emitCheck(Prefix + ".Val->getValueType(0) == " +
|
|
getName(Pat->getTypeNum(0)));
|
|
return true;
|
|
}
|
|
|
|
unsigned OpNo =
|
|
(unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
|
|
if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
|
|
Prefix + utostr(OpNo)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
/// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
|
|
/// being built.
|
|
void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
|
|
bool &ChainEmitted, bool &InFlagDecled,
|
|
bool &ResNodeDecled, bool isRoot = false) {
|
|
const CodeGenTarget &T = ISE.getTargetInfo();
|
|
unsigned OpNo =
|
|
(unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
|
|
bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
if (!Child->isLeaf()) {
|
|
EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
|
|
InFlagDecled, ResNodeDecled);
|
|
} else {
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
|
|
if (!Child->getName().empty()) {
|
|
std::string Name = RootName + utostr(OpNo);
|
|
if (Duplicates.find(Name) != Duplicates.end())
|
|
// A duplicate! Do not emit a copy for this node.
|
|
continue;
|
|
}
|
|
|
|
Record *RR = DI->getDef();
|
|
if (RR->isSubClassOf("Register")) {
|
|
MVT::ValueType RVT = getRegisterValueType(RR, T);
|
|
if (RVT == MVT::Flag) {
|
|
if (!InFlagDecled) {
|
|
emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
|
|
InFlagDecled = true;
|
|
} else
|
|
emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
|
|
emitCode("AddToISelQueue(InFlag);");
|
|
} else {
|
|
if (!ChainEmitted) {
|
|
emitCode("SDOperand Chain = CurDAG->getEntryNode();");
|
|
ChainName = "Chain";
|
|
ChainEmitted = true;
|
|
}
|
|
emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
|
|
if (!InFlagDecled) {
|
|
emitCode("SDOperand InFlag(0, 0);");
|
|
InFlagDecled = true;
|
|
}
|
|
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
|
|
emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
|
|
", " + ISE.getQualifiedName(RR) +
|
|
", " + RootName + utostr(OpNo) + ", InFlag).Val;");
|
|
ResNodeDecled = true;
|
|
emitCode(ChainName + " = SDOperand(ResNode, 0);");
|
|
emitCode("InFlag = SDOperand(ResNode, 1);");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (HasInFlag) {
|
|
if (!InFlagDecled) {
|
|
emitCode("SDOperand InFlag = " + RootName +
|
|
".getOperand(" + utostr(OpNo) + ");");
|
|
InFlagDecled = true;
|
|
} else
|
|
emitCode("InFlag = " + RootName +
|
|
".getOperand(" + utostr(OpNo) + ");");
|
|
emitCode("AddToISelQueue(InFlag);");
|
|
}
|
|
}
|
|
|
|
/// EmitCopyFromRegs - Emit code to copy result to physical registers
|
|
/// as specified by the instruction. It returns true if any copy is
|
|
/// emitted.
|
|
bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled,
|
|
bool &ChainEmitted) {
|
|
bool RetVal = false;
|
|
Record *Op = N->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
const DAGInstruction &Inst = ISE.getInstruction(Op);
|
|
const CodeGenTarget &CGT = ISE.getTargetInfo();
|
|
unsigned NumImpResults = Inst.getNumImpResults();
|
|
for (unsigned i = 0; i < NumImpResults; i++) {
|
|
Record *RR = Inst.getImpResult(i);
|
|
if (RR->isSubClassOf("Register")) {
|
|
MVT::ValueType RVT = getRegisterValueType(RR, CGT);
|
|
if (RVT != MVT::Flag) {
|
|
if (!ChainEmitted) {
|
|
emitCode("SDOperand Chain = CurDAG->getEntryNode();");
|
|
ChainEmitted = true;
|
|
ChainName = "Chain";
|
|
}
|
|
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
|
|
emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName +
|
|
", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
|
|
", InFlag).Val;");
|
|
ResNodeDecled = true;
|
|
emitCode(ChainName + " = SDOperand(ResNode, 1);");
|
|
emitCode("InFlag = SDOperand(ResNode, 2);");
|
|
RetVal = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return RetVal;
|
|
}
|
|
};
|
|
|
|
/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
|
|
/// stream to match the pattern, and generate the code for the match if it
|
|
/// succeeds. Returns true if the pattern is not guaranteed to match.
|
|
void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
|
|
std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
|
|
std::set<std::string> &GeneratedDecl,
|
|
std::vector<std::string> &TargetOpcodes,
|
|
std::vector<std::string> &TargetVTs) {
|
|
PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
|
|
Pattern.getSrcPattern(), Pattern.getDstPattern(),
|
|
GeneratedCode, GeneratedDecl,
|
|
TargetOpcodes, TargetVTs);
|
|
|
|
// Emit the matcher, capturing named arguments in VariableMap.
|
|
bool FoundChain = false;
|
|
Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
|
|
|
|
// TP - Get *SOME* tree pattern, we don't care which.
|
|
TreePattern &TP = *PatternFragments.begin()->second;
|
|
|
|
// At this point, we know that we structurally match the pattern, but the
|
|
// types of the nodes may not match. Figure out the fewest number of type
|
|
// comparisons we need to emit. For example, if there is only one integer
|
|
// type supported by a target, there should be no type comparisons at all for
|
|
// integer patterns!
|
|
//
|
|
// To figure out the fewest number of type checks needed, clone the pattern,
|
|
// remove the types, then perform type inference on the pattern as a whole.
|
|
// If there are unresolved types, emit an explicit check for those types,
|
|
// apply the type to the tree, then rerun type inference. Iterate until all
|
|
// types are resolved.
|
|
//
|
|
TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
|
|
RemoveAllTypes(Pat);
|
|
|
|
do {
|
|
// Resolve/propagate as many types as possible.
|
|
try {
|
|
bool MadeChange = true;
|
|
while (MadeChange)
|
|
MadeChange = Pat->ApplyTypeConstraints(TP,
|
|
true/*Ignore reg constraints*/);
|
|
} catch (...) {
|
|
assert(0 && "Error: could not find consistent types for something we"
|
|
" already decided was ok!");
|
|
abort();
|
|
}
|
|
|
|
// Insert a check for an unresolved type and add it to the tree. If we find
|
|
// an unresolved type to add a check for, this returns true and we iterate,
|
|
// otherwise we are done.
|
|
} while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
|
|
|
|
Emitter.EmitResultCode(Pattern.getDstPattern(),
|
|
false, false, false, false, true);
|
|
delete Pat;
|
|
}
|
|
|
|
/// EraseCodeLine - Erase one code line from all of the patterns. If removing
|
|
/// a line causes any of them to be empty, remove them and return true when
|
|
/// done.
|
|
static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
|
|
std::vector<std::pair<unsigned, std::string> > > >
|
|
&Patterns) {
|
|
bool ErasedPatterns = false;
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
Patterns[i].second.pop_back();
|
|
if (Patterns[i].second.empty()) {
|
|
Patterns.erase(Patterns.begin()+i);
|
|
--i; --e;
|
|
ErasedPatterns = true;
|
|
}
|
|
}
|
|
return ErasedPatterns;
|
|
}
|
|
|
|
/// EmitPatterns - Emit code for at least one pattern, but try to group common
|
|
/// code together between the patterns.
|
|
void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
|
|
std::vector<std::pair<unsigned, std::string> > > >
|
|
&Patterns, unsigned Indent,
|
|
std::ostream &OS) {
|
|
typedef std::pair<unsigned, std::string> CodeLine;
|
|
typedef std::vector<CodeLine> CodeList;
|
|
typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
|
|
|
|
if (Patterns.empty()) return;
|
|
|
|
// Figure out how many patterns share the next code line. Explicitly copy
|
|
// FirstCodeLine so that we don't invalidate a reference when changing
|
|
// Patterns.
|
|
const CodeLine FirstCodeLine = Patterns.back().second.back();
|
|
unsigned LastMatch = Patterns.size()-1;
|
|
while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
|
|
--LastMatch;
|
|
|
|
// If not all patterns share this line, split the list into two pieces. The
|
|
// first chunk will use this line, the second chunk won't.
|
|
if (LastMatch != 0) {
|
|
PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
|
|
PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
|
|
|
|
// FIXME: Emit braces?
|
|
if (Shared.size() == 1) {
|
|
PatternToMatch &Pattern = *Shared.back().first;
|
|
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
|
|
Pattern.getSrcPattern()->print(OS);
|
|
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
|
|
Pattern.getDstPattern()->print(OS);
|
|
OS << "\n";
|
|
unsigned AddedComplexity = Pattern.getAddedComplexity();
|
|
OS << std::string(Indent, ' ') << "// Pattern complexity = "
|
|
<< getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
|
|
<< " cost = "
|
|
<< getResultPatternCost(Pattern.getDstPattern(), *this)
|
|
<< " size = "
|
|
<< getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
|
|
}
|
|
if (FirstCodeLine.first != 1) {
|
|
OS << std::string(Indent, ' ') << "{\n";
|
|
Indent += 2;
|
|
}
|
|
EmitPatterns(Shared, Indent, OS);
|
|
if (FirstCodeLine.first != 1) {
|
|
Indent -= 2;
|
|
OS << std::string(Indent, ' ') << "}\n";
|
|
}
|
|
|
|
if (Other.size() == 1) {
|
|
PatternToMatch &Pattern = *Other.back().first;
|
|
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
|
|
Pattern.getSrcPattern()->print(OS);
|
|
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
|
|
Pattern.getDstPattern()->print(OS);
|
|
OS << "\n";
|
|
unsigned AddedComplexity = Pattern.getAddedComplexity();
|
|
OS << std::string(Indent, ' ') << "// Pattern complexity = "
|
|
<< getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
|
|
<< " cost = "
|
|
<< getResultPatternCost(Pattern.getDstPattern(), *this)
|
|
<< " size = "
|
|
<< getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
|
|
}
|
|
EmitPatterns(Other, Indent, OS);
|
|
return;
|
|
}
|
|
|
|
// Remove this code from all of the patterns that share it.
|
|
bool ErasedPatterns = EraseCodeLine(Patterns);
|
|
|
|
bool isPredicate = FirstCodeLine.first == 1;
|
|
|
|
// Otherwise, every pattern in the list has this line. Emit it.
|
|
if (!isPredicate) {
|
|
// Normal code.
|
|
OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
|
|
} else {
|
|
OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
|
|
|
|
// If the next code line is another predicate, and if all of the pattern
|
|
// in this group share the same next line, emit it inline now. Do this
|
|
// until we run out of common predicates.
|
|
while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
|
|
// Check that all of fhe patterns in Patterns end with the same predicate.
|
|
bool AllEndWithSamePredicate = true;
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
|
|
if (Patterns[i].second.back() != Patterns.back().second.back()) {
|
|
AllEndWithSamePredicate = false;
|
|
break;
|
|
}
|
|
// If all of the predicates aren't the same, we can't share them.
|
|
if (!AllEndWithSamePredicate) break;
|
|
|
|
// Otherwise we can. Emit it shared now.
|
|
OS << " &&\n" << std::string(Indent+4, ' ')
|
|
<< Patterns.back().second.back().second;
|
|
ErasedPatterns = EraseCodeLine(Patterns);
|
|
}
|
|
|
|
OS << ") {\n";
|
|
Indent += 2;
|
|
}
|
|
|
|
EmitPatterns(Patterns, Indent, OS);
|
|
|
|
if (isPredicate)
|
|
OS << std::string(Indent-2, ' ') << "}\n";
|
|
}
|
|
|
|
static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) {
|
|
const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op);
|
|
return OpcodeInfo.getEnumName();
|
|
}
|
|
|
|
static std::string getLegalCName(std::string OpName) {
|
|
std::string::size_type pos = OpName.find("::");
|
|
if (pos != std::string::npos)
|
|
OpName.replace(pos, 2, "_");
|
|
return OpName;
|
|
}
|
|
|
|
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
|
|
// Get the namespace to insert instructions into. Make sure not to pick up
|
|
// "TargetInstrInfo" by accidentally getting the namespace off the PHI
|
|
// instruction or something.
|
|
std::string InstNS;
|
|
for (CodeGenTarget::inst_iterator i = Target.inst_begin(),
|
|
e = Target.inst_end(); i != e; ++i) {
|
|
InstNS = i->second.Namespace;
|
|
if (InstNS != "TargetInstrInfo")
|
|
break;
|
|
}
|
|
|
|
if (!InstNS.empty()) InstNS += "::";
|
|
|
|
// Group the patterns by their top-level opcodes.
|
|
std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode;
|
|
// All unique target node emission functions.
|
|
std::map<std::string, unsigned> EmitFunctions;
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
|
|
TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
|
|
if (!Node->isLeaf()) {
|
|
PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)].
|
|
push_back(&PatternsToMatch[i]);
|
|
} else {
|
|
const ComplexPattern *CP;
|
|
if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
|
|
PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)].
|
|
push_back(&PatternsToMatch[i]);
|
|
} else if ((CP = NodeGetComplexPattern(Node, *this))) {
|
|
std::vector<Record*> OpNodes = CP->getRootNodes();
|
|
for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
|
|
PatternsByOpcode[getOpcodeName(OpNodes[j], *this)]
|
|
.insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(),
|
|
&PatternsToMatch[i]);
|
|
}
|
|
} else {
|
|
cerr << "Unrecognized opcode '";
|
|
Node->dump();
|
|
cerr << "' on tree pattern '";
|
|
cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName();
|
|
cerr << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For each opcode, there might be multiple select functions, one per
|
|
// ValueType of the node (or its first operand if it doesn't produce a
|
|
// non-chain result.
|
|
std::map<std::string, std::vector<std::string> > OpcodeVTMap;
|
|
|
|
// Emit one Select_* method for each top-level opcode. We do this instead of
|
|
// emitting one giant switch statement to support compilers where this will
|
|
// result in the recursive functions taking less stack space.
|
|
for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
|
|
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
|
|
PBOI != E; ++PBOI) {
|
|
const std::string &OpName = PBOI->first;
|
|
std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
|
|
assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
|
|
|
|
// We want to emit all of the matching code now. However, we want to emit
|
|
// the matches in order of minimal cost. Sort the patterns so the least
|
|
// cost one is at the start.
|
|
std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
|
|
PatternSortingPredicate(*this));
|
|
|
|
// Split them into groups by type.
|
|
std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
|
|
for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
|
|
PatternToMatch *Pat = PatternsOfOp[i];
|
|
TreePatternNode *SrcPat = Pat->getSrcPattern();
|
|
MVT::ValueType VT = SrcPat->getTypeNum(0);
|
|
std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI =
|
|
PatternsByType.find(VT);
|
|
if (TI != PatternsByType.end())
|
|
TI->second.push_back(Pat);
|
|
else {
|
|
std::vector<PatternToMatch*> PVec;
|
|
PVec.push_back(Pat);
|
|
PatternsByType.insert(std::make_pair(VT, PVec));
|
|
}
|
|
}
|
|
|
|
for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
|
|
II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
|
|
++II) {
|
|
MVT::ValueType OpVT = II->first;
|
|
std::vector<PatternToMatch*> &Patterns = II->second;
|
|
typedef std::vector<std::pair<unsigned,std::string> > CodeList;
|
|
typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
|
|
|
|
std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
|
|
std::vector<std::vector<std::string> > PatternOpcodes;
|
|
std::vector<std::vector<std::string> > PatternVTs;
|
|
std::vector<std::set<std::string> > PatternDecls;
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
CodeList GeneratedCode;
|
|
std::set<std::string> GeneratedDecl;
|
|
std::vector<std::string> TargetOpcodes;
|
|
std::vector<std::string> TargetVTs;
|
|
GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
|
|
TargetOpcodes, TargetVTs);
|
|
CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
|
|
PatternDecls.push_back(GeneratedDecl);
|
|
PatternOpcodes.push_back(TargetOpcodes);
|
|
PatternVTs.push_back(TargetVTs);
|
|
}
|
|
|
|
// Scan the code to see if all of the patterns are reachable and if it is
|
|
// possible that the last one might not match.
|
|
bool mightNotMatch = true;
|
|
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
|
|
CodeList &GeneratedCode = CodeForPatterns[i].second;
|
|
mightNotMatch = false;
|
|
|
|
for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
|
|
if (GeneratedCode[j].first == 1) { // predicate.
|
|
mightNotMatch = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If this pattern definitely matches, and if it isn't the last one, the
|
|
// patterns after it CANNOT ever match. Error out.
|
|
if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
|
|
cerr << "Pattern '";
|
|
CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
|
|
cerr << "' is impossible to select!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
// Factor target node emission code (emitted by EmitResultCode) into
|
|
// separate functions. Uniquing and share them among all instruction
|
|
// selection routines.
|
|
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
|
|
CodeList &GeneratedCode = CodeForPatterns[i].second;
|
|
std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
|
|
std::vector<std::string> &TargetVTs = PatternVTs[i];
|
|
std::set<std::string> Decls = PatternDecls[i];
|
|
std::vector<std::string> AddedInits;
|
|
int CodeSize = (int)GeneratedCode.size();
|
|
int LastPred = -1;
|
|
for (int j = CodeSize-1; j >= 0; --j) {
|
|
if (LastPred == -1 && GeneratedCode[j].first == 1)
|
|
LastPred = j;
|
|
else if (LastPred != -1 && GeneratedCode[j].first == 2)
|
|
AddedInits.push_back(GeneratedCode[j].second);
|
|
}
|
|
|
|
std::string CalleeCode = "(const SDOperand &N";
|
|
std::string CallerCode = "(N";
|
|
for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
|
|
CalleeCode += ", unsigned Opc" + utostr(j);
|
|
CallerCode += ", " + TargetOpcodes[j];
|
|
}
|
|
for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
|
|
CalleeCode += ", MVT::ValueType VT" + utostr(j);
|
|
CallerCode += ", " + TargetVTs[j];
|
|
}
|
|
for (std::set<std::string>::iterator
|
|
I = Decls.begin(), E = Decls.end(); I != E; ++I) {
|
|
std::string Name = *I;
|
|
CalleeCode += ", SDOperand &" + Name;
|
|
CallerCode += ", " + Name;
|
|
}
|
|
CallerCode += ");";
|
|
CalleeCode += ") ";
|
|
// Prevent emission routines from being inlined to reduce selection
|
|
// routines stack frame sizes.
|
|
CalleeCode += "DISABLE_INLINE ";
|
|
CalleeCode += "{\n";
|
|
|
|
for (std::vector<std::string>::const_reverse_iterator
|
|
I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
|
|
CalleeCode += " " + *I + "\n";
|
|
|
|
for (int j = LastPred+1; j < CodeSize; ++j)
|
|
CalleeCode += " " + GeneratedCode[j].second + "\n";
|
|
for (int j = LastPred+1; j < CodeSize; ++j)
|
|
GeneratedCode.pop_back();
|
|
CalleeCode += "}\n";
|
|
|
|
// Uniquing the emission routines.
|
|
unsigned EmitFuncNum;
|
|
std::map<std::string, unsigned>::iterator EFI =
|
|
EmitFunctions.find(CalleeCode);
|
|
if (EFI != EmitFunctions.end()) {
|
|
EmitFuncNum = EFI->second;
|
|
} else {
|
|
EmitFuncNum = EmitFunctions.size();
|
|
EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
|
|
OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
|
|
}
|
|
|
|
// Replace the emission code within selection routines with calls to the
|
|
// emission functions.
|
|
CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
|
|
GeneratedCode.push_back(std::make_pair(false, CallerCode));
|
|
}
|
|
|
|
// Print function.
|
|
std::string OpVTStr;
|
|
if (OpVT == MVT::iPTR) {
|
|
OpVTStr = "_iPTR";
|
|
} else if (OpVT == MVT::isVoid) {
|
|
// Nodes with a void result actually have a first result type of either
|
|
// Other (a chain) or Flag. Since there is no one-to-one mapping from
|
|
// void to this case, we handle it specially here.
|
|
} else {
|
|
OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
|
|
}
|
|
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
|
|
OpcodeVTMap.find(OpName);
|
|
if (OpVTI == OpcodeVTMap.end()) {
|
|
std::vector<std::string> VTSet;
|
|
VTSet.push_back(OpVTStr);
|
|
OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
|
|
} else
|
|
OpVTI->second.push_back(OpVTStr);
|
|
|
|
OS << "SDNode *Select_" << getLegalCName(OpName)
|
|
<< OpVTStr << "(const SDOperand &N) {\n";
|
|
|
|
// Loop through and reverse all of the CodeList vectors, as we will be
|
|
// accessing them from their logical front, but accessing the end of a
|
|
// vector is more efficient.
|
|
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
|
|
CodeList &GeneratedCode = CodeForPatterns[i].second;
|
|
std::reverse(GeneratedCode.begin(), GeneratedCode.end());
|
|
}
|
|
|
|
// Next, reverse the list of patterns itself for the same reason.
|
|
std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
|
|
|
|
// Emit all of the patterns now, grouped together to share code.
|
|
EmitPatterns(CodeForPatterns, 2, OS);
|
|
|
|
// If the last pattern has predicates (which could fail) emit code to
|
|
// catch the case where nothing handles a pattern.
|
|
if (mightNotMatch) {
|
|
OS << " cerr << \"Cannot yet select: \";\n";
|
|
if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
|
|
OpName != "ISD::INTRINSIC_WO_CHAIN" &&
|
|
OpName != "ISD::INTRINSIC_VOID") {
|
|
OS << " N.Val->dump(CurDAG);\n";
|
|
} else {
|
|
OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
|
|
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
|
|
<< " cerr << \"intrinsic %\"<< "
|
|
"Intrinsic::getName((Intrinsic::ID)iid);\n";
|
|
}
|
|
OS << " cerr << '\\n';\n"
|
|
<< " abort();\n"
|
|
<< " return NULL;\n";
|
|
}
|
|
OS << "}\n\n";
|
|
}
|
|
}
|
|
|
|
// Emit boilerplate.
|
|
OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
|
|
<< " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
|
|
<< " AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n"
|
|
<< " // Select the flag operand.\n"
|
|
<< " if (Ops.back().getValueType() == MVT::Flag)\n"
|
|
<< " AddToISelQueue(Ops.back());\n"
|
|
<< " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n"
|
|
<< " std::vector<MVT::ValueType> VTs;\n"
|
|
<< " VTs.push_back(MVT::Other);\n"
|
|
<< " VTs.push_back(MVT::Flag);\n"
|
|
<< " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
|
|
"Ops.size());\n"
|
|
<< " return New.Val;\n"
|
|
<< "}\n\n";
|
|
|
|
OS << "SDNode *Select_LABEL(const SDOperand &N) {\n"
|
|
<< " SDOperand Chain = N.getOperand(0);\n"
|
|
<< " SDOperand N1 = N.getOperand(1);\n"
|
|
<< " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
|
|
<< " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
|
|
<< " AddToISelQueue(Chain);\n"
|
|
<< " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n"
|
|
<< " MVT::Other, Tmp, Chain);\n"
|
|
<< "}\n\n";
|
|
|
|
OS << "// The main instruction selector code.\n"
|
|
<< "SDNode *SelectCode(SDOperand N) {\n"
|
|
<< " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
|
|
<< " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
|
|
<< "INSTRUCTION_LIST_END)) {\n"
|
|
<< " return NULL; // Already selected.\n"
|
|
<< " }\n\n"
|
|
<< " MVT::ValueType NVT = N.Val->getValueType(0);\n"
|
|
<< " switch (N.getOpcode()) {\n"
|
|
<< " default: break;\n"
|
|
<< " case ISD::EntryToken: // These leaves remain the same.\n"
|
|
<< " case ISD::BasicBlock:\n"
|
|
<< " case ISD::Register:\n"
|
|
<< " case ISD::HANDLENODE:\n"
|
|
<< " case ISD::TargetConstant:\n"
|
|
<< " case ISD::TargetConstantPool:\n"
|
|
<< " case ISD::TargetFrameIndex:\n"
|
|
<< " case ISD::TargetJumpTable:\n"
|
|
<< " case ISD::TargetGlobalAddress: {\n"
|
|
<< " return NULL;\n"
|
|
<< " }\n"
|
|
<< " case ISD::AssertSext:\n"
|
|
<< " case ISD::AssertZext: {\n"
|
|
<< " AddToISelQueue(N.getOperand(0));\n"
|
|
<< " ReplaceUses(N, N.getOperand(0));\n"
|
|
<< " return NULL;\n"
|
|
<< " }\n"
|
|
<< " case ISD::TokenFactor:\n"
|
|
<< " case ISD::CopyFromReg:\n"
|
|
<< " case ISD::CopyToReg: {\n"
|
|
<< " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
|
|
<< " AddToISelQueue(N.getOperand(i));\n"
|
|
<< " return NULL;\n"
|
|
<< " }\n"
|
|
<< " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
|
|
<< " case ISD::LABEL: return Select_LABEL(N);\n";
|
|
|
|
|
|
// Loop over all of the case statements, emiting a call to each method we
|
|
// emitted above.
|
|
for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
|
|
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
|
|
PBOI != E; ++PBOI) {
|
|
const std::string &OpName = PBOI->first;
|
|
// Potentially multiple versions of select for this opcode. One for each
|
|
// ValueType of the node (or its first true operand if it doesn't produce a
|
|
// result.
|
|
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
|
|
OpcodeVTMap.find(OpName);
|
|
std::vector<std::string> &OpVTs = OpVTI->second;
|
|
OS << " case " << OpName << ": {\n";
|
|
if (OpVTs.size() == 1) {
|
|
std::string &VTStr = OpVTs[0];
|
|
OS << " return Select_" << getLegalCName(OpName)
|
|
<< VTStr << "(N);\n";
|
|
} else {
|
|
// Keep track of whether we see a pattern that has an iPtr result.
|
|
bool HasPtrPattern = false;
|
|
bool HasDefaultPattern = false;
|
|
|
|
OS << " switch (NVT) {\n";
|
|
for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
|
|
std::string &VTStr = OpVTs[i];
|
|
if (VTStr.empty()) {
|
|
HasDefaultPattern = true;
|
|
continue;
|
|
}
|
|
|
|
// If this is a match on iPTR: don't emit it directly, we need special
|
|
// code.
|
|
if (VTStr == "_iPTR") {
|
|
HasPtrPattern = true;
|
|
continue;
|
|
}
|
|
OS << " case MVT::" << VTStr.substr(1) << ":\n"
|
|
<< " return Select_" << getLegalCName(OpName)
|
|
<< VTStr << "(N);\n";
|
|
}
|
|
OS << " default:\n";
|
|
|
|
// If there is an iPTR result version of this pattern, emit it here.
|
|
if (HasPtrPattern) {
|
|
OS << " if (NVT == TLI.getPointerTy())\n";
|
|
OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
|
|
}
|
|
if (HasDefaultPattern) {
|
|
OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
|
|
}
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
OS << " break;\n";
|
|
}
|
|
OS << " }\n";
|
|
}
|
|
|
|
OS << " } // end of big switch.\n\n"
|
|
<< " cerr << \"Cannot yet select: \";\n"
|
|
<< " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
|
|
<< " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
|
|
<< " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
|
|
<< " N.Val->dump(CurDAG);\n"
|
|
<< " } else {\n"
|
|
<< " unsigned iid = cast<ConstantSDNode>(N.getOperand("
|
|
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
|
|
<< " cerr << \"intrinsic %\"<< "
|
|
"Intrinsic::getName((Intrinsic::ID)iid);\n"
|
|
<< " }\n"
|
|
<< " cerr << '\\n';\n"
|
|
<< " abort();\n"
|
|
<< " return NULL;\n"
|
|
<< "}\n";
|
|
}
|
|
|
|
void DAGISelEmitter::run(std::ostream &OS) {
|
|
EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
|
|
" target", OS);
|
|
|
|
OS << "// *** NOTE: This file is #included into the middle of the target\n"
|
|
<< "// *** instruction selector class. These functions are really "
|
|
<< "methods.\n\n";
|
|
|
|
OS << "#include \"llvm/Support/Compiler.h\"\n";
|
|
|
|
OS << "// Instruction selector priority queue:\n"
|
|
<< "std::vector<SDNode*> ISelQueue;\n";
|
|
OS << "/// Keep track of nodes which have already been added to queue.\n"
|
|
<< "unsigned char *ISelQueued;\n";
|
|
OS << "/// Keep track of nodes which have already been selected.\n"
|
|
<< "unsigned char *ISelSelected;\n";
|
|
OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
|
|
<< "std::vector<SDNode*> ISelKilled;\n\n";
|
|
|
|
OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
|
|
OS << "/// not reach Op.\n";
|
|
OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
|
|
OS << " if (Chain->getOpcode() == ISD::EntryToken)\n";
|
|
OS << " return true;\n";
|
|
OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n";
|
|
OS << " return false;\n";
|
|
OS << " else if (Chain->getNumOperands() > 0) {\n";
|
|
OS << " SDOperand C0 = Chain->getOperand(0);\n";
|
|
OS << " if (C0.getValueType() == MVT::Other)\n";
|
|
OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
|
|
OS << " }\n";
|
|
OS << " return true;\n";
|
|
OS << "}\n";
|
|
|
|
OS << "/// Sorting functions for the selection queue.\n"
|
|
<< "struct isel_sort : public std::binary_function"
|
|
<< "<SDNode*, SDNode*, bool> {\n"
|
|
<< " bool operator()(const SDNode* left, const SDNode* right) "
|
|
<< "const {\n"
|
|
<< " return (left->getNodeId() > right->getNodeId());\n"
|
|
<< " }\n"
|
|
<< "};\n\n";
|
|
|
|
OS << "inline void setQueued(int Id) {\n";
|
|
OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
|
|
OS << "}\n";
|
|
OS << "inline bool isQueued(int Id) {\n";
|
|
OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
|
|
OS << "}\n";
|
|
OS << "inline void setSelected(int Id) {\n";
|
|
OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
|
|
OS << "}\n";
|
|
OS << "inline bool isSelected(int Id) {\n";
|
|
OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
|
|
OS << "}\n\n";
|
|
|
|
OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
|
|
OS << " int Id = N.Val->getNodeId();\n";
|
|
OS << " if (Id != -1 && !isQueued(Id)) {\n";
|
|
OS << " ISelQueue.push_back(N.Val);\n";
|
|
OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
|
|
OS << " setQueued(Id);\n";
|
|
OS << " }\n";
|
|
OS << "}\n\n";
|
|
|
|
OS << "inline void RemoveKilled() {\n";
|
|
OS << " unsigned NumKilled = ISelKilled.size();\n";
|
|
OS << " if (NumKilled) {\n";
|
|
OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n";
|
|
OS << " SDNode *Temp = ISelKilled[i];\n";
|
|
OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
|
|
<< "Temp), ISelQueue.end());\n";
|
|
OS << " };\n";
|
|
OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
|
|
OS << " ISelKilled.clear();\n";
|
|
OS << " }\n";
|
|
OS << "}\n\n";
|
|
|
|
OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
|
|
OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
|
|
OS << " setSelected(F.Val->getNodeId());\n";
|
|
OS << " RemoveKilled();\n";
|
|
OS << "}\n";
|
|
OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
|
|
OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
|
|
OS << " setSelected(F->getNodeId());\n";
|
|
OS << " RemoveKilled();\n";
|
|
OS << "}\n\n";
|
|
|
|
OS << "// SelectRoot - Top level entry to DAG isel.\n";
|
|
OS << "SDOperand SelectRoot(SDOperand Root) {\n";
|
|
OS << " SelectRootInit();\n";
|
|
OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
|
|
OS << " ISelQueued = new unsigned char[NumBytes];\n";
|
|
OS << " ISelSelected = new unsigned char[NumBytes];\n";
|
|
OS << " memset(ISelQueued, 0, NumBytes);\n";
|
|
OS << " memset(ISelSelected, 0, NumBytes);\n";
|
|
OS << "\n";
|
|
OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
|
|
<< " // a reference to the root node, preventing it from being deleted,\n"
|
|
<< " // and tracking any changes of the root.\n"
|
|
<< " HandleSDNode Dummy(CurDAG->getRoot());\n"
|
|
<< " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
|
|
OS << " while (!ISelQueue.empty()) {\n";
|
|
OS << " SDNode *Node = ISelQueue.front();\n";
|
|
OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
|
|
OS << " ISelQueue.pop_back();\n";
|
|
OS << " if (!isSelected(Node->getNodeId())) {\n";
|
|
OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
|
|
OS << " if (ResNode != Node) {\n";
|
|
OS << " if (ResNode)\n";
|
|
OS << " ReplaceUses(Node, ResNode);\n";
|
|
OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
|
|
OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
|
|
OS << " RemoveKilled();\n";
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << "\n";
|
|
OS << " delete[] ISelQueued;\n";
|
|
OS << " ISelQueued = NULL;\n";
|
|
OS << " delete[] ISelSelected;\n";
|
|
OS << " ISelSelected = NULL;\n";
|
|
OS << " return Dummy.getValue();\n";
|
|
OS << "}\n";
|
|
|
|
Intrinsics = LoadIntrinsics(Records);
|
|
ParseNodeInfo();
|
|
ParseNodeTransforms(OS);
|
|
ParseComplexPatterns();
|
|
ParsePatternFragments(OS);
|
|
ParsePredicateOperands();
|
|
ParseInstructions();
|
|
ParsePatterns();
|
|
|
|
// Generate variants. For example, commutative patterns can match
|
|
// multiple ways. Add them to PatternsToMatch as well.
|
|
GenerateVariants();
|
|
|
|
DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
|
|
DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
|
|
DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump());
|
|
DOUT << "\n";
|
|
}
|
|
|
|
// At this point, we have full information about the 'Patterns' we need to
|
|
// parse, both implicitly from instructions as well as from explicit pattern
|
|
// definitions. Emit the resultant instruction selector.
|
|
EmitInstructionSelector(OS);
|
|
|
|
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
|
|
E = PatternFragments.end(); I != E; ++I)
|
|
delete I->second;
|
|
PatternFragments.clear();
|
|
|
|
Instructions.clear();
|
|
}
|