mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	We won't find a root with index zero in any loop that we are able to reroll. However, we may find one in a non-rerollable loop, so bail gracefully instead of failing hard. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229406 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1527 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1527 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements a simple loop reroller.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-reroll"
 | 
						|
 | 
						|
STATISTIC(NumRerolledLoops, "Number of rerolled loops");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
 | 
						|
  cl::desc("The maximum increment for loop rerolling"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
 | 
						|
                          cl::Hidden,
 | 
						|
                          cl::desc("The maximum number of failures to tolerate"
 | 
						|
                                   " during fuzzy matching. (default: 400)"));
 | 
						|
 | 
						|
// This loop re-rolling transformation aims to transform loops like this:
 | 
						|
//
 | 
						|
// int foo(int a);
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; i += 3) {
 | 
						|
//     foo(i);
 | 
						|
//     foo(i+1);
 | 
						|
//     foo(i+2);
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// into a loop like this:
 | 
						|
//
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; ++i)
 | 
						|
//     foo(i);
 | 
						|
// }
 | 
						|
//
 | 
						|
// It does this by looking for loops that, besides the latch code, are composed
 | 
						|
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
 | 
						|
// to the induction variable, and where each DAG is isomorphic to the DAG
 | 
						|
// rooted at the induction variable (excepting the sub-DAGs which root the
 | 
						|
// other induction-variable increments). In other words, we're looking for loop
 | 
						|
// bodies of the form:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// f(%iv)
 | 
						|
// %iv.1 = add %iv, 1                <-- a root increment
 | 
						|
// f(%iv.1)
 | 
						|
// %iv.2 = add %iv, 2                <-- a root increment
 | 
						|
// f(%iv.2)
 | 
						|
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | 
						|
// f(%iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, scale
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// where each f(i) is a set of instructions that, collectively, are a function
 | 
						|
// only of i (and other loop-invariant values).
 | 
						|
//
 | 
						|
// As a special case, we can also reroll loops like this:
 | 
						|
//
 | 
						|
// int foo(int);
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; ++i) {
 | 
						|
//     x[3*i] = foo(0);
 | 
						|
//     x[3*i+1] = foo(0);
 | 
						|
//     x[3*i+2] = foo(0);
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// into this:
 | 
						|
//
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 1500; ++i)
 | 
						|
//     x[i] = foo(0);
 | 
						|
// }
 | 
						|
//
 | 
						|
// in which case, we're looking for inputs like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// %scaled.iv = mul %iv, scale
 | 
						|
// f(%scaled.iv)
 | 
						|
// %scaled.iv.1 = add %scaled.iv, 1
 | 
						|
// f(%scaled.iv.1)
 | 
						|
// %scaled.iv.2 = add %scaled.iv, 2
 | 
						|
// f(%scaled.iv.2)
 | 
						|
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | 
						|
// f(%scaled.iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, 1
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
 | 
						|
namespace {
 | 
						|
  enum IterationLimits {
 | 
						|
    /// The maximum number of iterations that we'll try and reroll. This
 | 
						|
    /// has to be less than 25 in order to fit into a SmallBitVector.
 | 
						|
    IL_MaxRerollIterations = 16,
 | 
						|
    /// The bitvector index used by loop induction variables and other
 | 
						|
    /// instructions that belong to all iterations.
 | 
						|
    IL_All,
 | 
						|
    IL_End
 | 
						|
  };
 | 
						|
 | 
						|
  class LoopReroll : public LoopPass {
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
    LoopReroll() : LoopPass(ID) {
 | 
						|
      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
      AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    }
 | 
						|
 | 
						|
  protected:
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    LoopInfo *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    const DataLayout *DL;
 | 
						|
    TargetLibraryInfo *TLI;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
 | 
						|
    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
 | 
						|
 | 
						|
    // A chain of isomorphic instructions, indentified by a single-use PHI,
 | 
						|
    // representing a reduction. Only the last value may be used outside the
 | 
						|
    // loop.
 | 
						|
    struct SimpleLoopReduction {
 | 
						|
      SimpleLoopReduction(Instruction *P, Loop *L)
 | 
						|
        : Valid(false), Instructions(1, P) {
 | 
						|
        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
 | 
						|
        add(L);
 | 
						|
      }
 | 
						|
 | 
						|
      bool valid() const {
 | 
						|
        return Valid;
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *getPHI() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.front();
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *getReducedValue() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.back();
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *get(size_t i) const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions[i+1];
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *operator [] (size_t i) const { return get(i); }
 | 
						|
 | 
						|
      // The size, ignoring the initial PHI.
 | 
						|
      size_t size() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.size()-1;
 | 
						|
      }
 | 
						|
 | 
						|
      typedef SmallInstructionVector::iterator iterator;
 | 
						|
      typedef SmallInstructionVector::const_iterator const_iterator;
 | 
						|
 | 
						|
      iterator begin() {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return std::next(Instructions.begin());
 | 
						|
      }
 | 
						|
 | 
						|
      const_iterator begin() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return std::next(Instructions.begin());
 | 
						|
      }
 | 
						|
 | 
						|
      iterator end() { return Instructions.end(); }
 | 
						|
      const_iterator end() const { return Instructions.end(); }
 | 
						|
 | 
						|
    protected:
 | 
						|
      bool Valid;
 | 
						|
      SmallInstructionVector Instructions;
 | 
						|
 | 
						|
      void add(Loop *L);
 | 
						|
    };
 | 
						|
 | 
						|
    // The set of all reductions, and state tracking of possible reductions
 | 
						|
    // during loop instruction processing.
 | 
						|
    struct ReductionTracker {
 | 
						|
      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
 | 
						|
 | 
						|
      // Add a new possible reduction.
 | 
						|
      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
 | 
						|
 | 
						|
      // Setup to track possible reductions corresponding to the provided
 | 
						|
      // rerolling scale. Only reductions with a number of non-PHI instructions
 | 
						|
      // that is divisible by the scale are considered. Three instructions sets
 | 
						|
      // are filled in:
 | 
						|
      //   - A set of all possible instructions in eligible reductions.
 | 
						|
      //   - A set of all PHIs in eligible reductions
 | 
						|
      //   - A set of all reduced values (last instructions) in eligible
 | 
						|
      //     reductions.
 | 
						|
      void restrictToScale(uint64_t Scale,
 | 
						|
                           SmallInstructionSet &PossibleRedSet,
 | 
						|
                           SmallInstructionSet &PossibleRedPHISet,
 | 
						|
                           SmallInstructionSet &PossibleRedLastSet) {
 | 
						|
        PossibleRedIdx.clear();
 | 
						|
        PossibleRedIter.clear();
 | 
						|
        Reds.clear();
 | 
						|
 | 
						|
        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
 | 
						|
          if (PossibleReds[i].size() % Scale == 0) {
 | 
						|
            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
 | 
						|
            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
 | 
						|
 | 
						|
            PossibleRedSet.insert(PossibleReds[i].getPHI());
 | 
						|
            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
 | 
						|
            for (Instruction *J : PossibleReds[i]) {
 | 
						|
              PossibleRedSet.insert(J);
 | 
						|
              PossibleRedIdx[J] = i;
 | 
						|
            }
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      // The functions below are used while processing the loop instructions.
 | 
						|
 | 
						|
      // Are the two instructions both from reductions, and furthermore, from
 | 
						|
      // the same reduction?
 | 
						|
      bool isPairInSame(Instruction *J1, Instruction *J2) {
 | 
						|
        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
 | 
						|
        if (J1I != PossibleRedIdx.end()) {
 | 
						|
          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
 | 
						|
          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // The two provided instructions, the first from the base iteration, and
 | 
						|
      // the second from iteration i, form a matched pair. If these are part of
 | 
						|
      // a reduction, record that fact.
 | 
						|
      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
 | 
						|
        if (PossibleRedIdx.count(J1)) {
 | 
						|
          assert(PossibleRedIdx.count(J2) &&
 | 
						|
                 "Recording reduction vs. non-reduction instruction?");
 | 
						|
 | 
						|
          PossibleRedIter[J1] = 0;
 | 
						|
          PossibleRedIter[J2] = i;
 | 
						|
 | 
						|
          int Idx = PossibleRedIdx[J1];
 | 
						|
          assert(Idx == PossibleRedIdx[J2] &&
 | 
						|
                 "Recording pair from different reductions?");
 | 
						|
          Reds.insert(Idx);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // The functions below can be called after we've finished processing all
 | 
						|
      // instructions in the loop, and we know which reductions were selected.
 | 
						|
 | 
						|
      // Is the provided instruction the PHI of a reduction selected for
 | 
						|
      // rerolling?
 | 
						|
      bool isSelectedPHI(Instruction *J) {
 | 
						|
        if (!isa<PHINode>(J))
 | 
						|
          return false;
 | 
						|
 | 
						|
        for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | 
						|
             RI != RIE; ++RI) {
 | 
						|
          int i = *RI;
 | 
						|
          if (cast<Instruction>(J) == PossibleReds[i].getPHI())
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      bool validateSelected();
 | 
						|
      void replaceSelected();
 | 
						|
 | 
						|
    protected:
 | 
						|
      // The vector of all possible reductions (for any scale).
 | 
						|
      SmallReductionVector PossibleReds;
 | 
						|
 | 
						|
      DenseMap<Instruction *, int> PossibleRedIdx;
 | 
						|
      DenseMap<Instruction *, int> PossibleRedIter;
 | 
						|
      DenseSet<int> Reds;
 | 
						|
    };
 | 
						|
 | 
						|
    // A DAGRootSet models an induction variable being used in a rerollable
 | 
						|
    // loop. For example,
 | 
						|
    //
 | 
						|
    //   x[i*3+0] = y1
 | 
						|
    //   x[i*3+1] = y2
 | 
						|
    //   x[i*3+2] = y3
 | 
						|
    //
 | 
						|
    //   Base instruction -> i*3               
 | 
						|
    //                    +---+----+
 | 
						|
    //                   /    |     \
 | 
						|
    //               ST[y1]  +1     +2  <-- Roots
 | 
						|
    //                        |      |
 | 
						|
    //                      ST[y2] ST[y3]
 | 
						|
    //
 | 
						|
    // There may be multiple DAGRoots, for example:
 | 
						|
    //
 | 
						|
    //   x[i*2+0] = ...   (1)
 | 
						|
    //   x[i*2+1] = ...   (1)
 | 
						|
    //   x[i*2+4] = ...   (2)
 | 
						|
    //   x[i*2+5] = ...   (2)
 | 
						|
    //   x[(i+1234)*2+5678] = ... (3)
 | 
						|
    //   x[(i+1234)*2+5679] = ... (3)
 | 
						|
    //
 | 
						|
    // The loop will be rerolled by adding a new loop induction variable,
 | 
						|
    // one for the Base instruction in each DAGRootSet.
 | 
						|
    //
 | 
						|
    struct DAGRootSet {
 | 
						|
      Instruction *BaseInst;
 | 
						|
      SmallInstructionVector Roots;
 | 
						|
      // The instructions between IV and BaseInst (but not including BaseInst).
 | 
						|
      SmallInstructionSet SubsumedInsts;
 | 
						|
    };
 | 
						|
 | 
						|
    // The set of all DAG roots, and state tracking of all roots
 | 
						|
    // for a particular induction variable.
 | 
						|
    struct DAGRootTracker {
 | 
						|
      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
 | 
						|
                     ScalarEvolution *SE, AliasAnalysis *AA,
 | 
						|
                     TargetLibraryInfo *TLI, const DataLayout *DL)
 | 
						|
        : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI),
 | 
						|
          DL(DL), IV(IV) {
 | 
						|
      }
 | 
						|
 | 
						|
      /// Stage 1: Find all the DAG roots for the induction variable.
 | 
						|
      bool findRoots();
 | 
						|
      /// Stage 2: Validate if the found roots are valid.
 | 
						|
      bool validate(ReductionTracker &Reductions);
 | 
						|
      /// Stage 3: Assuming validate() returned true, perform the
 | 
						|
      /// replacement.
 | 
						|
      /// @param IterCount The maximum iteration count of L.
 | 
						|
      void replace(const SCEV *IterCount);
 | 
						|
 | 
						|
    protected:
 | 
						|
      typedef MapVector<Instruction*, SmallBitVector> UsesTy;
 | 
						|
 | 
						|
      bool findRootsRecursive(Instruction *IVU,
 | 
						|
                              SmallInstructionSet SubsumedInsts);
 | 
						|
      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
 | 
						|
      bool collectPossibleRoots(Instruction *Base,
 | 
						|
                                std::map<int64_t,Instruction*> &Roots);
 | 
						|
 | 
						|
      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
 | 
						|
      void collectInLoopUserSet(const SmallInstructionVector &Roots,
 | 
						|
                                const SmallInstructionSet &Exclude,
 | 
						|
                                const SmallInstructionSet &Final,
 | 
						|
                                DenseSet<Instruction *> &Users);
 | 
						|
      void collectInLoopUserSet(Instruction *Root,
 | 
						|
                                const SmallInstructionSet &Exclude,
 | 
						|
                                const SmallInstructionSet &Final,
 | 
						|
                                DenseSet<Instruction *> &Users);
 | 
						|
 | 
						|
      UsesTy::iterator nextInstr(int Val, UsesTy &In,
 | 
						|
                                 const SmallInstructionSet &Exclude,
 | 
						|
                                 UsesTy::iterator *StartI=nullptr);
 | 
						|
      bool isBaseInst(Instruction *I);
 | 
						|
      bool isRootInst(Instruction *I);
 | 
						|
      bool instrDependsOn(Instruction *I,
 | 
						|
                          UsesTy::iterator Start,
 | 
						|
                          UsesTy::iterator End);
 | 
						|
 | 
						|
      LoopReroll *Parent;
 | 
						|
 | 
						|
      // Members of Parent, replicated here for brevity.
 | 
						|
      Loop *L;
 | 
						|
      ScalarEvolution *SE;
 | 
						|
      AliasAnalysis *AA;
 | 
						|
      TargetLibraryInfo *TLI;
 | 
						|
      const DataLayout *DL;
 | 
						|
 | 
						|
      // The loop induction variable.
 | 
						|
      Instruction *IV;
 | 
						|
      // Loop step amount.
 | 
						|
      uint64_t Inc;
 | 
						|
      // Loop reroll count; if Inc == 1, this records the scaling applied
 | 
						|
      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
 | 
						|
      // If Inc is not 1, Scale = Inc.
 | 
						|
      uint64_t Scale;
 | 
						|
      // The roots themselves.
 | 
						|
      SmallVector<DAGRootSet,16> RootSets;
 | 
						|
      // All increment instructions for IV.
 | 
						|
      SmallInstructionVector LoopIncs;
 | 
						|
      // Map of all instructions in the loop (in order) to the iterations
 | 
						|
      // they are used in (or specially, IL_All for instructions
 | 
						|
      // used in the loop increment mechanism).
 | 
						|
      UsesTy Uses;
 | 
						|
    };
 | 
						|
 | 
						|
    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
 | 
						|
    void collectPossibleReductions(Loop *L,
 | 
						|
           ReductionTracker &Reductions);
 | 
						|
    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
 | 
						|
                ReductionTracker &Reductions);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char LoopReroll::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopRerollPass() {
 | 
						|
  return new LoopReroll;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the provided instruction is used outside the given loop.
 | 
						|
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
 | 
						|
// non-loop blocks to be outside the loop.
 | 
						|
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
 | 
						|
  for (User *U : I->users()) {
 | 
						|
    if (!L->contains(cast<Instruction>(U)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Collect the list of loop induction variables with respect to which it might
 | 
						|
// be possible to reroll the loop.
 | 
						|
void LoopReroll::collectPossibleIVs(Loop *L,
 | 
						|
                                    SmallInstructionVector &PossibleIVs) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  for (BasicBlock::iterator I = Header->begin(),
 | 
						|
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | 
						|
    if (!isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (!I->getType()->isIntegerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SCEVAddRecExpr *PHISCEV =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
 | 
						|
      if (PHISCEV->getLoop() != L)
 | 
						|
        continue;
 | 
						|
      if (!PHISCEV->isAffine())
 | 
						|
        continue;
 | 
						|
      if (const SCEVConstant *IncSCEV =
 | 
						|
          dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
 | 
						|
        if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
 | 
						|
          continue;
 | 
						|
        if (IncSCEV->getValue()->uge(MaxInc))
 | 
						|
          continue;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
 | 
						|
              *PHISCEV << "\n");
 | 
						|
        PossibleIVs.push_back(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Add the remainder of the reduction-variable chain to the instruction vector
 | 
						|
// (the initial PHINode has already been added). If successful, the object is
 | 
						|
// marked as valid.
 | 
						|
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
 | 
						|
  assert(!Valid && "Cannot add to an already-valid chain");
 | 
						|
 | 
						|
  // The reduction variable must be a chain of single-use instructions
 | 
						|
  // (including the PHI), except for the last value (which is used by the PHI
 | 
						|
  // and also outside the loop).
 | 
						|
  Instruction *C = Instructions.front();
 | 
						|
  if (C->user_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  do {
 | 
						|
    C = cast<Instruction>(*C->user_begin());
 | 
						|
    if (C->hasOneUse()) {
 | 
						|
      if (!C->isBinaryOp())
 | 
						|
        return;
 | 
						|
 | 
						|
      if (!(isa<PHINode>(Instructions.back()) ||
 | 
						|
            C->isSameOperationAs(Instructions.back())))
 | 
						|
        return;
 | 
						|
 | 
						|
      Instructions.push_back(C);
 | 
						|
    }
 | 
						|
  } while (C->hasOneUse());
 | 
						|
 | 
						|
  if (Instructions.size() < 2 ||
 | 
						|
      !C->isSameOperationAs(Instructions.back()) ||
 | 
						|
      C->use_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // C is now the (potential) last instruction in the reduction chain.
 | 
						|
  for (User *U : C->users()) {
 | 
						|
    // The only in-loop user can be the initial PHI.
 | 
						|
    if (L->contains(cast<Instruction>(U)))
 | 
						|
      if (cast<Instruction>(U) != Instructions.front())
 | 
						|
        return;
 | 
						|
  }
 | 
						|
 | 
						|
  Instructions.push_back(C);
 | 
						|
  Valid = true;
 | 
						|
}
 | 
						|
 | 
						|
// Collect the vector of possible reduction variables.
 | 
						|
void LoopReroll::collectPossibleReductions(Loop *L,
 | 
						|
  ReductionTracker &Reductions) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  for (BasicBlock::iterator I = Header->begin(),
 | 
						|
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | 
						|
    if (!isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (!I->getType()->isSingleValueType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SimpleLoopReduction SLR(I, L);
 | 
						|
    if (!SLR.valid())
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
 | 
						|
          SLR.size() << " chained instructions)\n");
 | 
						|
    Reductions.addSLR(SLR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Collect the set of all users of the provided root instruction. This set of
 | 
						|
// users contains not only the direct users of the root instruction, but also
 | 
						|
// all users of those users, and so on. There are two exceptions:
 | 
						|
//
 | 
						|
//   1. Instructions in the set of excluded instructions are never added to the
 | 
						|
//   use set (even if they are users). This is used, for example, to exclude
 | 
						|
//   including root increments in the use set of the primary IV.
 | 
						|
//
 | 
						|
//   2. Instructions in the set of final instructions are added to the use set
 | 
						|
//   if they are users, but their users are not added. This is used, for
 | 
						|
//   example, to prevent a reduction update from forcing all later reduction
 | 
						|
//   updates into the use set.
 | 
						|
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
 | 
						|
  Instruction *Root, const SmallInstructionSet &Exclude,
 | 
						|
  const SmallInstructionSet &Final,
 | 
						|
  DenseSet<Instruction *> &Users) {
 | 
						|
  SmallInstructionVector Queue(1, Root);
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    Instruction *I = Queue.pop_back_val();
 | 
						|
    if (!Users.insert(I).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!Final.count(I))
 | 
						|
      for (Use &U : I->uses()) {
 | 
						|
        Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
        if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | 
						|
          // Ignore "wrap-around" uses to PHIs of this loop's header.
 | 
						|
          if (PN->getIncomingBlock(U) == L->getHeader())
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (L->contains(User) && !Exclude.count(User)) {
 | 
						|
          Queue.push_back(User);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // We also want to collect single-user "feeder" values.
 | 
						|
    for (User::op_iterator OI = I->op_begin(),
 | 
						|
         OIE = I->op_end(); OI != OIE; ++OI) {
 | 
						|
      if (Instruction *Op = dyn_cast<Instruction>(*OI))
 | 
						|
        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
 | 
						|
            !Final.count(Op))
 | 
						|
          Queue.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Collect all of the users of all of the provided root instructions (combined
 | 
						|
// into a single set).
 | 
						|
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
 | 
						|
  const SmallInstructionVector &Roots,
 | 
						|
  const SmallInstructionSet &Exclude,
 | 
						|
  const SmallInstructionSet &Final,
 | 
						|
  DenseSet<Instruction *> &Users) {
 | 
						|
  for (SmallInstructionVector::const_iterator I = Roots.begin(),
 | 
						|
       IE = Roots.end(); I != IE; ++I)
 | 
						|
    collectInLoopUserSet(*I, Exclude, Final, Users);
 | 
						|
}
 | 
						|
 | 
						|
static bool isSimpleLoadStore(Instruction *I) {
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->isSimple();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isSimple();
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | 
						|
    return !MI->isVolatile();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if IVU is a "simple" arithmetic operation.
 | 
						|
/// This is used for narrowing the search space for DAGRoots; only arithmetic
 | 
						|
/// and GEPs can be part of a DAGRoot.
 | 
						|
static bool isSimpleArithmeticOp(User *IVU) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    default: return false;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isLoopIncrement(User *U, Instruction *IV) {
 | 
						|
  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
 | 
						|
  if (!BO || BO->getOpcode() != Instruction::Add)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto *UU : BO->users()) {
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(UU);
 | 
						|
    if (PN && PN == IV)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::
 | 
						|
collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
 | 
						|
  SmallInstructionVector BaseUsers;
 | 
						|
 | 
						|
  for (auto *I : Base->users()) {
 | 
						|
    ConstantInt *CI = nullptr;
 | 
						|
 | 
						|
    if (isLoopIncrement(I, IV)) {
 | 
						|
      LoopIncs.push_back(cast<Instruction>(I));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The root nodes must be either GEPs, ORs or ADDs.
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
      if (BO->getOpcode() == Instruction::Add ||
 | 
						|
          BO->getOpcode() == Instruction::Or)
 | 
						|
        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
 | 
						|
    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
 | 
						|
      CI = dyn_cast<ConstantInt>(LastOperand);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CI) {
 | 
						|
      if (Instruction *II = dyn_cast<Instruction>(I)) {
 | 
						|
        BaseUsers.push_back(II);
 | 
						|
        continue;
 | 
						|
      } else {
 | 
						|
        DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    int64_t V = CI->getValue().getSExtValue();
 | 
						|
    if (Roots.find(V) != Roots.end())
 | 
						|
      // No duplicates, please.
 | 
						|
      return false;
 | 
						|
 | 
						|
    // FIXME: Add support for negative values.
 | 
						|
    if (V < 0) {
 | 
						|
      DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Roots[V] = cast<Instruction>(I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Roots.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we found non-loop-inc, non-root users of Base, assume they are
 | 
						|
  // for the zeroth root index. This is because "add %a, 0" gets optimized
 | 
						|
  // away.
 | 
						|
  if (BaseUsers.size()) {
 | 
						|
    if (Roots.find(0) != Roots.end()) {
 | 
						|
      DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Roots[0] = Base;
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate the number of users of the base, or lowest indexed, iteration.
 | 
						|
  unsigned NumBaseUses = BaseUsers.size();
 | 
						|
  if (NumBaseUses == 0)
 | 
						|
    NumBaseUses = Roots.begin()->second->getNumUses();
 | 
						|
  
 | 
						|
  // Check that every node has the same number of users.
 | 
						|
  for (auto &KV : Roots) {
 | 
						|
    if (KV.first == 0)
 | 
						|
      continue;
 | 
						|
    if (KV.second->getNumUses() != NumBaseUses) {
 | 
						|
      DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
 | 
						|
            << "#Base=" << NumBaseUses << ", #Root=" <<
 | 
						|
            KV.second->getNumUses() << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true; 
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::
 | 
						|
findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
 | 
						|
  // Does the user look like it could be part of a root set?
 | 
						|
  // All its users must be simple arithmetic ops.
 | 
						|
  if (I->getNumUses() > IL_MaxRerollIterations)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if ((I->getOpcode() == Instruction::Mul ||
 | 
						|
       I->getOpcode() == Instruction::PHI) &&
 | 
						|
      I != IV &&
 | 
						|
      findRootsBase(I, SubsumedInsts))
 | 
						|
    return true;
 | 
						|
 | 
						|
  SubsumedInsts.insert(I);
 | 
						|
 | 
						|
  for (User *V : I->users()) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
    if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!I || !isSimpleArithmeticOp(I) ||
 | 
						|
        !findRootsRecursive(I, SubsumedInsts))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::
 | 
						|
findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
 | 
						|
 | 
						|
  // The base instruction needs to be a multiply so
 | 
						|
  // that we can erase it.
 | 
						|
  if (IVU->getOpcode() != Instruction::Mul &&
 | 
						|
      IVU->getOpcode() != Instruction::PHI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  std::map<int64_t, Instruction*> V;
 | 
						|
  if (!collectPossibleRoots(IVU, V))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we didn't get a root for index zero, then IVU must be 
 | 
						|
  // subsumed.
 | 
						|
  if (V.find(0) == V.end())
 | 
						|
    SubsumedInsts.insert(IVU);
 | 
						|
 | 
						|
  // Partition the vector into monotonically increasing indexes.
 | 
						|
  DAGRootSet DRS;
 | 
						|
  DRS.BaseInst = nullptr;
 | 
						|
 | 
						|
  for (auto &KV : V) {
 | 
						|
    if (!DRS.BaseInst) {
 | 
						|
      DRS.BaseInst = KV.second;
 | 
						|
      DRS.SubsumedInsts = SubsumedInsts;
 | 
						|
    } else if (DRS.Roots.empty()) {
 | 
						|
      DRS.Roots.push_back(KV.second);
 | 
						|
    } else if (V.find(KV.first - 1) != V.end()) {
 | 
						|
      DRS.Roots.push_back(KV.second);
 | 
						|
    } else {
 | 
						|
      // Linear sequence terminated.
 | 
						|
      RootSets.push_back(DRS);
 | 
						|
      DRS.BaseInst = KV.second;
 | 
						|
      DRS.SubsumedInsts = SubsumedInsts;
 | 
						|
      DRS.Roots.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  RootSets.push_back(DRS);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::findRoots() {
 | 
						|
 | 
						|
  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
 | 
						|
  Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
 | 
						|
    getValue()->getZExtValue();
 | 
						|
 | 
						|
  assert(RootSets.empty() && "Unclean state!");
 | 
						|
  if (Inc == 1) {
 | 
						|
    for (auto *IVU : IV->users()) {
 | 
						|
      if (isLoopIncrement(IVU, IV))
 | 
						|
        LoopIncs.push_back(cast<Instruction>(IVU));
 | 
						|
    }
 | 
						|
    if (!findRootsRecursive(IV, SmallInstructionSet()))
 | 
						|
      return false;
 | 
						|
    LoopIncs.push_back(IV);
 | 
						|
  } else {
 | 
						|
    if (!findRootsBase(IV, SmallInstructionSet()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure all sets have the same size.
 | 
						|
  if (RootSets.empty()) {
 | 
						|
    DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  for (auto &V : RootSets) {
 | 
						|
    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
 | 
						|
      DEBUG(dbgs()
 | 
						|
            << "LRR: Aborting because not all root sets have the same size\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // And ensure all loop iterations are consecutive. We rely on std::map
 | 
						|
  // providing ordered traversal.
 | 
						|
  for (auto &V : RootSets) {
 | 
						|
    const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
 | 
						|
    if (!ADR)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Consider a DAGRootSet with N-1 roots (so N different values including
 | 
						|
    //   BaseInst).
 | 
						|
    // Define d = Roots[0] - BaseInst, which should be the same as
 | 
						|
    //   Roots[I] - Roots[I-1] for all I in [1..N).
 | 
						|
    // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
 | 
						|
    //   loop iteration J.
 | 
						|
    //
 | 
						|
    // Now, For the loop iterations to be consecutive:
 | 
						|
    //   D = d * N
 | 
						|
 | 
						|
    unsigned N = V.Roots.size() + 1;
 | 
						|
    const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
 | 
						|
    const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
 | 
						|
    if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
 | 
						|
      DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Scale = RootSets[0].Roots.size() + 1;
 | 
						|
 | 
						|
  if (Scale > IL_MaxRerollIterations) {
 | 
						|
    DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
 | 
						|
          << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
 | 
						|
          << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
 | 
						|
  // Populate the MapVector with all instructions in the block, in order first,
 | 
						|
  // so we can iterate over the contents later in perfect order.
 | 
						|
  for (auto &I : *L->getHeader()) {
 | 
						|
    Uses[&I].resize(IL_End);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallInstructionSet Exclude;
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
 | 
						|
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
 | 
						|
    Exclude.insert(DRS.BaseInst);
 | 
						|
  }
 | 
						|
  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
 | 
						|
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    DenseSet<Instruction*> VBase;
 | 
						|
    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
 | 
						|
    for (auto *I : VBase) {
 | 
						|
      Uses[I].set(0);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (auto *Root : DRS.Roots) {
 | 
						|
      DenseSet<Instruction*> V;
 | 
						|
      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
 | 
						|
 | 
						|
      // While we're here, check the use sets are the same size.
 | 
						|
      if (V.size() != VBase.size()) {
 | 
						|
        DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      for (auto *I : V) {
 | 
						|
        Uses[I].set(Idx);
 | 
						|
      }
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure our subsumed instructions are remembered too.
 | 
						|
    for (auto *I : DRS.SubsumedInsts) {
 | 
						|
      Uses[I].set(IL_All);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the loop increments are also accounted for.
 | 
						|
 | 
						|
  Exclude.clear();
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
 | 
						|
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
 | 
						|
    Exclude.insert(DRS.BaseInst);
 | 
						|
  }
 | 
						|
 | 
						|
  DenseSet<Instruction*> V;
 | 
						|
  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
 | 
						|
  for (auto *I : V) {
 | 
						|
    Uses[I].set(IL_All);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// Get the next instruction in "In" that is a member of set Val.
 | 
						|
/// Start searching from StartI, and do not return anything in Exclude.
 | 
						|
/// If StartI is not given, start from In.begin().
 | 
						|
LoopReroll::DAGRootTracker::UsesTy::iterator
 | 
						|
LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
 | 
						|
                                      const SmallInstructionSet &Exclude,
 | 
						|
                                      UsesTy::iterator *StartI) {
 | 
						|
  UsesTy::iterator I = StartI ? *StartI : In.begin();
 | 
						|
  while (I != In.end() && (I->second.test(Val) == 0 ||
 | 
						|
                           Exclude.count(I->first) != 0))
 | 
						|
    ++I;
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    if (DRS.BaseInst == I)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if instruction I depends on any instruction between
 | 
						|
/// Start and End.
 | 
						|
bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
 | 
						|
                                                UsesTy::iterator Start,
 | 
						|
                                                UsesTy::iterator End) {
 | 
						|
  for (auto *U : I->users()) {
 | 
						|
    for (auto It = Start; It != End; ++It)
 | 
						|
      if (U == It->first)
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
 | 
						|
  // We now need to check for equivalence of the use graph of each root with
 | 
						|
  // that of the primary induction variable (excluding the roots). Our goal
 | 
						|
  // here is not to solve the full graph isomorphism problem, but rather to
 | 
						|
  // catch common cases without a lot of work. As a result, we will assume
 | 
						|
  // that the relative order of the instructions in each unrolled iteration
 | 
						|
  // is the same (although we will not make an assumption about how the
 | 
						|
  // different iterations are intermixed). Note that while the order must be
 | 
						|
  // the same, the instructions may not be in the same basic block.
 | 
						|
 | 
						|
  // An array of just the possible reductions for this scale factor. When we
 | 
						|
  // collect the set of all users of some root instructions, these reduction
 | 
						|
  // instructions are treated as 'final' (their uses are not considered).
 | 
						|
  // This is important because we don't want the root use set to search down
 | 
						|
  // the reduction chain.
 | 
						|
  SmallInstructionSet PossibleRedSet;
 | 
						|
  SmallInstructionSet PossibleRedLastSet;
 | 
						|
  SmallInstructionSet PossibleRedPHISet;
 | 
						|
  Reductions.restrictToScale(Scale, PossibleRedSet,
 | 
						|
                             PossibleRedPHISet, PossibleRedLastSet);
 | 
						|
 | 
						|
  // Populate "Uses" with where each instruction is used.
 | 
						|
  if (!collectUsedInstructions(PossibleRedSet))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure we mark the reduction PHIs as used in all iterations.
 | 
						|
  for (auto *I : PossibleRedPHISet) {
 | 
						|
    Uses[I].set(IL_All);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure all instructions in the loop are in one and only one
 | 
						|
  // set.
 | 
						|
  for (auto &KV : Uses) {
 | 
						|
    if (KV.second.count() != 1) {
 | 
						|
      DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
 | 
						|
            << *KV.first << " (#uses=" << KV.second.count() << ")\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(
 | 
						|
    for (auto &KV : Uses) {
 | 
						|
      dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
 | 
						|
    }
 | 
						|
    );
 | 
						|
 | 
						|
  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
 | 
						|
    // In addition to regular aliasing information, we need to look for
 | 
						|
    // instructions from later (future) iterations that have side effects
 | 
						|
    // preventing us from reordering them past other instructions with side
 | 
						|
    // effects.
 | 
						|
    bool FutureSideEffects = false;
 | 
						|
    AliasSetTracker AST(*AA);
 | 
						|
    // The map between instructions in f(%iv.(i+1)) and f(%iv).
 | 
						|
    DenseMap<Value *, Value *> BaseMap;
 | 
						|
 | 
						|
    // Compare iteration Iter to the base.
 | 
						|
    SmallInstructionSet Visited;
 | 
						|
    auto BaseIt = nextInstr(0, Uses, Visited);
 | 
						|
    auto RootIt = nextInstr(Iter, Uses, Visited);
 | 
						|
    auto LastRootIt = Uses.begin();
 | 
						|
 | 
						|
    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
 | 
						|
      Instruction *BaseInst = BaseIt->first;
 | 
						|
      Instruction *RootInst = RootIt->first;
 | 
						|
 | 
						|
      // Skip over the IV or root instructions; only match their users.
 | 
						|
      bool Continue = false;
 | 
						|
      if (isBaseInst(BaseInst)) {
 | 
						|
        Visited.insert(BaseInst);
 | 
						|
        BaseIt = nextInstr(0, Uses, Visited);
 | 
						|
        Continue = true;
 | 
						|
      }
 | 
						|
      if (isRootInst(RootInst)) {
 | 
						|
        LastRootIt = RootIt;
 | 
						|
        Visited.insert(RootInst);
 | 
						|
        RootIt = nextInstr(Iter, Uses, Visited);
 | 
						|
        Continue = true;
 | 
						|
      }
 | 
						|
      if (Continue) continue;
 | 
						|
 | 
						|
      if (!BaseInst->isSameOperationAs(RootInst)) {
 | 
						|
        // Last chance saloon. We don't try and solve the full isomorphism
 | 
						|
        // problem, but try and at least catch the case where two instructions
 | 
						|
        // *of different types* are round the wrong way. We won't be able to
 | 
						|
        // efficiently tell, given two ADD instructions, which way around we
 | 
						|
        // should match them, but given an ADD and a SUB, we can at least infer
 | 
						|
        // which one is which.
 | 
						|
        //
 | 
						|
        // This should allow us to deal with a greater subset of the isomorphism
 | 
						|
        // problem. It does however change a linear algorithm into a quadratic
 | 
						|
        // one, so limit the number of probes we do.
 | 
						|
        auto TryIt = RootIt;
 | 
						|
        unsigned N = NumToleratedFailedMatches;
 | 
						|
        while (TryIt != Uses.end() &&
 | 
						|
               !BaseInst->isSameOperationAs(TryIt->first) &&
 | 
						|
               N--) {
 | 
						|
          ++TryIt;
 | 
						|
          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
 | 
						|
        }
 | 
						|
 | 
						|
        if (TryIt == Uses.end() || TryIt == RootIt ||
 | 
						|
            instrDependsOn(TryIt->first, RootIt, TryIt)) {
 | 
						|
          DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | 
						|
                " vs. " << *RootInst << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        
 | 
						|
        RootIt = TryIt;
 | 
						|
        RootInst = TryIt->first;
 | 
						|
      }
 | 
						|
 | 
						|
      // All instructions between the last root and this root
 | 
						|
      // may belong to some other iteration. If they belong to a 
 | 
						|
      // future iteration, then they're dangerous to alias with.
 | 
						|
      // 
 | 
						|
      // Note that because we allow a limited amount of flexibility in the order
 | 
						|
      // that we visit nodes, LastRootIt might be *before* RootIt, in which
 | 
						|
      // case we've already checked this set of instructions so we shouldn't
 | 
						|
      // do anything.
 | 
						|
      for (; LastRootIt < RootIt; ++LastRootIt) {
 | 
						|
        Instruction *I = LastRootIt->first;
 | 
						|
        if (LastRootIt->second.find_first() < (int)Iter)
 | 
						|
          continue;
 | 
						|
        if (I->mayWriteToMemory())
 | 
						|
          AST.add(I);
 | 
						|
        // Note: This is specifically guarded by a check on isa<PHINode>,
 | 
						|
        // which while a valid (somewhat arbitrary) micro-optimization, is
 | 
						|
        // needed because otherwise isSafeToSpeculativelyExecute returns
 | 
						|
        // false on PHI nodes.
 | 
						|
        if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
 | 
						|
            !isSafeToSpeculativelyExecute(I, DL))
 | 
						|
          // Intervening instructions cause side effects.
 | 
						|
          FutureSideEffects = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that this instruction, which is in the use set of this
 | 
						|
      // root instruction, does not also belong to the base set or the set of
 | 
						|
      // some other root instruction.
 | 
						|
      if (RootIt->second.count() > 1) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | 
						|
                        " vs. " << *RootInst << " (prev. case overlap)\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that we don't alias with any instruction in the alias set
 | 
						|
      // tracker. If we do, then we depend on a future iteration, and we
 | 
						|
      // can't reroll.
 | 
						|
      if (RootInst->mayReadFromMemory())
 | 
						|
        for (auto &K : AST) {
 | 
						|
          if (K.aliasesUnknownInst(RootInst, *AA)) {
 | 
						|
            DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | 
						|
                            " vs. " << *RootInst << " (depends on future store)\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      // If we've past an instruction from a future iteration that may have
 | 
						|
      // side effects, and this instruction might also, then we can't reorder
 | 
						|
      // them, and this matching fails. As an exception, we allow the alias
 | 
						|
      // set tracker to handle regular (simple) load/store dependencies.
 | 
						|
      if (FutureSideEffects &&
 | 
						|
            ((!isSimpleLoadStore(BaseInst) &&
 | 
						|
              !isSafeToSpeculativelyExecute(BaseInst, DL)) ||
 | 
						|
             (!isSimpleLoadStore(RootInst) &&
 | 
						|
              !isSafeToSpeculativelyExecute(RootInst, DL)))) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | 
						|
                        " vs. " << *RootInst <<
 | 
						|
                        " (side effects prevent reordering)\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // For instructions that are part of a reduction, if the operation is
 | 
						|
      // associative, then don't bother matching the operands (because we
 | 
						|
      // already know that the instructions are isomorphic, and the order
 | 
						|
      // within the iteration does not matter). For non-associative reductions,
 | 
						|
      // we do need to match the operands, because we need to reject
 | 
						|
      // out-of-order instructions within an iteration!
 | 
						|
      // For example (assume floating-point addition), we need to reject this:
 | 
						|
      //   x += a[i]; x += b[i];
 | 
						|
      //   x += a[i+1]; x += b[i+1];
 | 
						|
      //   x += b[i+2]; x += a[i+2];
 | 
						|
      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
 | 
						|
 | 
						|
      if (!(InReduction && BaseInst->isAssociative())) {
 | 
						|
        bool Swapped = false, SomeOpMatched = false;
 | 
						|
        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
 | 
						|
          Value *Op2 = RootInst->getOperand(j);
 | 
						|
 | 
						|
          // If this is part of a reduction (and the operation is not
 | 
						|
          // associatve), then we match all operands, but not those that are
 | 
						|
          // part of the reduction.
 | 
						|
          if (InReduction)
 | 
						|
            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
 | 
						|
              if (Reductions.isPairInSame(RootInst, Op2I))
 | 
						|
                continue;
 | 
						|
 | 
						|
          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
 | 
						|
          if (BMI != BaseMap.end()) {
 | 
						|
            Op2 = BMI->second;
 | 
						|
          } else {
 | 
						|
            for (auto &DRS : RootSets) {
 | 
						|
              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
 | 
						|
                Op2 = DRS.BaseInst;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
 | 
						|
            // If we've not already decided to swap the matched operands, and
 | 
						|
            // we've not already matched our first operand (note that we could
 | 
						|
            // have skipped matching the first operand because it is part of a
 | 
						|
            // reduction above), and the instruction is commutative, then try
 | 
						|
            // the swapped match.
 | 
						|
            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
 | 
						|
                BaseInst->getOperand(!j) == Op2) {
 | 
						|
              Swapped = true;
 | 
						|
            } else {
 | 
						|
              DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
 | 
						|
                    << " vs. " << *RootInst << " (operand " << j << ")\n");
 | 
						|
              return false;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          SomeOpMatched = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if ((!PossibleRedLastSet.count(BaseInst) &&
 | 
						|
           hasUsesOutsideLoop(BaseInst, L)) ||
 | 
						|
          (!PossibleRedLastSet.count(RootInst) &&
 | 
						|
           hasUsesOutsideLoop(RootInst, L))) {
 | 
						|
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | 
						|
                        " vs. " << *RootInst << " (uses outside loop)\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      Reductions.recordPair(BaseInst, RootInst, Iter);
 | 
						|
      BaseMap.insert(std::make_pair(RootInst, BaseInst));
 | 
						|
 | 
						|
      LastRootIt = RootIt;
 | 
						|
      Visited.insert(BaseInst);
 | 
						|
      Visited.insert(RootInst);
 | 
						|
      BaseIt = nextInstr(0, Uses, Visited);
 | 
						|
      RootIt = nextInstr(Iter, Uses, Visited);
 | 
						|
    }
 | 
						|
    assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
 | 
						|
            "Mismatched set sizes!");
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
 | 
						|
                  *IV << "\n");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  // Remove instructions associated with non-base iterations.
 | 
						|
  for (BasicBlock::reverse_iterator J = Header->rbegin();
 | 
						|
       J != Header->rend();) {
 | 
						|
    unsigned I = Uses[&*J].find_first();
 | 
						|
    if (I > 0 && I < IL_All) {
 | 
						|
      Instruction *D = &*J;
 | 
						|
      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
 | 
						|
      D->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++J;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to create a new induction variable for each different BaseInst.
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    // Insert the new induction variable.
 | 
						|
    const SCEVAddRecExpr *RealIVSCEV =
 | 
						|
      cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
 | 
						|
    const SCEV *Start = RealIVSCEV->getStart();
 | 
						|
    const SCEVAddRecExpr *H = cast<SCEVAddRecExpr>
 | 
						|
      (SE->getAddRecExpr(Start,
 | 
						|
                         SE->getConstant(RealIVSCEV->getType(), 1),
 | 
						|
                         L, SCEV::FlagAnyWrap));
 | 
						|
    { // Limit the lifetime of SCEVExpander.
 | 
						|
      SCEVExpander Expander(*SE, "reroll");
 | 
						|
      Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
 | 
						|
 | 
						|
      for (auto &KV : Uses) {
 | 
						|
        if (KV.second.find_first() == 0)
 | 
						|
          KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV);
 | 
						|
      }
 | 
						|
 | 
						|
      if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
 | 
						|
        // FIXME: Why do we need this check?
 | 
						|
        if (Uses[BI].find_first() == IL_All) {
 | 
						|
          const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
 | 
						|
 | 
						|
          // Iteration count SCEV minus 1
 | 
						|
          const SCEV *ICMinus1SCEV =
 | 
						|
            SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
 | 
						|
 | 
						|
          Value *ICMinus1; // Iteration count minus 1
 | 
						|
          if (isa<SCEVConstant>(ICMinus1SCEV)) {
 | 
						|
            ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
 | 
						|
          } else {
 | 
						|
            BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
            if (!Preheader)
 | 
						|
              Preheader = InsertPreheaderForLoop(L, Parent);
 | 
						|
 | 
						|
            ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
 | 
						|
                                              Preheader->getTerminator());
 | 
						|
          }
 | 
						|
 | 
						|
          Value *Cond =
 | 
						|
            new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
 | 
						|
          BI->setCondition(Cond);
 | 
						|
 | 
						|
          if (BI->getSuccessor(1) != Header)
 | 
						|
            BI->swapSuccessors();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SimplifyInstructionsInBlock(Header, DL, TLI);
 | 
						|
  DeleteDeadPHIs(Header, TLI);
 | 
						|
}
 | 
						|
 | 
						|
// Validate the selected reductions. All iterations must have an isomorphic
 | 
						|
// part of the reduction chain and, for non-associative reductions, the chain
 | 
						|
// entries must appear in order.
 | 
						|
bool LoopReroll::ReductionTracker::validateSelected() {
 | 
						|
  // For a non-associative reduction, the chain entries must appear in order.
 | 
						|
  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | 
						|
       RI != RIE; ++RI) {
 | 
						|
    int i = *RI;
 | 
						|
    int PrevIter = 0, BaseCount = 0, Count = 0;
 | 
						|
    for (Instruction *J : PossibleReds[i]) {
 | 
						|
      // Note that all instructions in the chain must have been found because
 | 
						|
      // all instructions in the function must have been assigned to some
 | 
						|
      // iteration.
 | 
						|
      int Iter = PossibleRedIter[J];
 | 
						|
      if (Iter != PrevIter && Iter != PrevIter + 1 &&
 | 
						|
          !PossibleReds[i].getReducedValue()->isAssociative()) {
 | 
						|
        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
 | 
						|
                        J << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Iter != PrevIter) {
 | 
						|
        if (Count != BaseCount) {
 | 
						|
          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
 | 
						|
                " reduction use count " << Count <<
 | 
						|
                " is not equal to the base use count " <<
 | 
						|
                BaseCount << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        Count = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      ++Count;
 | 
						|
      if (Iter == 0)
 | 
						|
        ++BaseCount;
 | 
						|
 | 
						|
      PrevIter = Iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// For all selected reductions, remove all parts except those in the first
 | 
						|
// iteration (and the PHI). Replace outside uses of the reduced value with uses
 | 
						|
// of the first-iteration reduced value (in other words, reroll the selected
 | 
						|
// reductions).
 | 
						|
void LoopReroll::ReductionTracker::replaceSelected() {
 | 
						|
  // Fixup reductions to refer to the last instruction associated with the
 | 
						|
  // first iteration (not the last).
 | 
						|
  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | 
						|
       RI != RIE; ++RI) {
 | 
						|
    int i = *RI;
 | 
						|
    int j = 0;
 | 
						|
    for (int e = PossibleReds[i].size(); j != e; ++j)
 | 
						|
      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
 | 
						|
        --j;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // Replace users with the new end-of-chain value.
 | 
						|
    SmallInstructionVector Users;
 | 
						|
    for (User *U : PossibleReds[i].getReducedValue()->users()) {
 | 
						|
      Users.push_back(cast<Instruction>(U));
 | 
						|
    }
 | 
						|
 | 
						|
    for (SmallInstructionVector::iterator J = Users.begin(),
 | 
						|
         JE = Users.end(); J != JE; ++J)
 | 
						|
      (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
 | 
						|
                              PossibleReds[i][j]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Reroll the provided loop with respect to the provided induction variable.
 | 
						|
// Generally, we're looking for a loop like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// f(%iv)
 | 
						|
// %iv.1 = add %iv, 1                <-- a root increment
 | 
						|
// f(%iv.1)
 | 
						|
// %iv.2 = add %iv, 2                <-- a root increment
 | 
						|
// f(%iv.2)
 | 
						|
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | 
						|
// f(%iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, scale
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
 | 
						|
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
 | 
						|
// be intermixed with eachother. The restriction imposed by this algorithm is
 | 
						|
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
 | 
						|
// etc. be the same.
 | 
						|
//
 | 
						|
// First, we collect the use set of %iv, excluding the other increment roots.
 | 
						|
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
 | 
						|
// times, having collected the use set of f(%iv.(i+1)), during which we:
 | 
						|
//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
 | 
						|
//     the next unmatched instruction in f(%iv.(i+1)).
 | 
						|
//   - Ensure that both matched instructions don't have any external users
 | 
						|
//     (with the exception of last-in-chain reduction instructions).
 | 
						|
//   - Track the (aliasing) write set, and other side effects, of all
 | 
						|
//     instructions that belong to future iterations that come before the matched
 | 
						|
//     instructions. If the matched instructions read from that write set, then
 | 
						|
//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
 | 
						|
//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
 | 
						|
//     if any of these future instructions had side effects (could not be
 | 
						|
//     speculatively executed), and so do the matched instructions, when we
 | 
						|
//     cannot reorder those side-effect-producing instructions, and rerolling
 | 
						|
//     fails.
 | 
						|
//
 | 
						|
// Finally, we make sure that all loop instructions are either loop increment
 | 
						|
// roots, belong to simple latch code, parts of validated reductions, part of
 | 
						|
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
 | 
						|
// have been validated), then we reroll the loop.
 | 
						|
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
 | 
						|
                        const SCEV *IterCount,
 | 
						|
                        ReductionTracker &Reductions) {
 | 
						|
  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DL);
 | 
						|
 | 
						|
  if (!DAGRoots.findRoots())
 | 
						|
    return false;
 | 
						|
  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
 | 
						|
                  *IV << "\n");
 | 
						|
  
 | 
						|
  if (!DAGRoots.validate(Reductions))
 | 
						|
    return false;
 | 
						|
  if (!Reductions.validateSelected())
 | 
						|
    return false;
 | 
						|
  // At this point, we've validated the rerolling, and we're committed to
 | 
						|
  // making changes!
 | 
						|
 | 
						|
  Reductions.replaceSelected();
 | 
						|
  DAGRoots.replace(IterCount);
 | 
						|
 | 
						|
  ++NumRerolledLoops;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  if (skipOptnoneFunction(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
 | 
						|
        "] Loop %" << Header->getName() << " (" <<
 | 
						|
        L->getNumBlocks() << " block(s))\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // For now, we'll handle only single BB loops.
 | 
						|
  if (L->getNumBlocks() > 1)
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
 | 
						|
  const SCEV *IterCount =
 | 
						|
    SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
 | 
						|
  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
 | 
						|
 | 
						|
  // First, we need to find the induction variable with respect to which we can
 | 
						|
  // reroll (there may be several possible options).
 | 
						|
  SmallInstructionVector PossibleIVs;
 | 
						|
  collectPossibleIVs(L, PossibleIVs);
 | 
						|
 | 
						|
  if (PossibleIVs.empty()) {
 | 
						|
    DEBUG(dbgs() << "LRR: No possible IVs found\n");
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  ReductionTracker Reductions;
 | 
						|
  collectPossibleReductions(L, Reductions);
 | 
						|
 | 
						|
  // For each possible IV, collect the associated possible set of 'root' nodes
 | 
						|
  // (i+1, i+2, etc.).
 | 
						|
  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
 | 
						|
       IE = PossibleIVs.end(); I != IE; ++I)
 | 
						|
    if (reroll(*I, L, Header, IterCount, Reductions)) {
 | 
						|
      Changed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |