mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Differential Revision: http://reviews.llvm.org/D7363 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229715 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			693 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			693 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CloneFunction.cpp - Clone a function into another function ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CloneFunctionInto interface, which is used as the
 | |
| // low-level function cloner.  This is used by the CloneFunction and function
 | |
| // inliner to do the dirty work of copying the body of a function around.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| // CloneBasicBlock - See comments in Cloning.h
 | |
| BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
 | |
|                                   ValueToValueMapTy &VMap,
 | |
|                                   const Twine &NameSuffix, Function *F,
 | |
|                                   ClonedCodeInfo *CodeInfo) {
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
 | |
|   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | |
| 
 | |
|   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | |
|   
 | |
|   // Loop over all instructions, and copy them over.
 | |
|   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
 | |
|        II != IE; ++II) {
 | |
|     Instruction *NewInst = II->clone();
 | |
|     if (II->hasName())
 | |
|       NewInst->setName(II->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     VMap[II] = NewInst;                // Add instruction map to value.
 | |
|     
 | |
|     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (isa<ConstantInt>(AI->getArraySize()))
 | |
|         hasStaticAllocas = true;
 | |
|       else
 | |
|         hasDynamicAllocas = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (CodeInfo) {
 | |
|     CodeInfo->ContainsCalls          |= hasCalls;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | |
|                                         BB != &BB->getParent()->getEntryBlock();
 | |
|   }
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| // Clone OldFunc into NewFunc, transforming the old arguments into references to
 | |
| // VMap values.
 | |
| //
 | |
| void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | |
|                              ValueToValueMapTy &VMap,
 | |
|                              bool ModuleLevelChanges,
 | |
|                              SmallVectorImpl<ReturnInst*> &Returns,
 | |
|                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
 | |
|                              ValueMapTypeRemapper *TypeMapper,
 | |
|                              ValueMaterializer *Materializer) {
 | |
|   assert(NameSuffix && "NameSuffix cannot be null!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
 | |
|        E = OldFunc->arg_end(); I != E; ++I)
 | |
|     assert(VMap.count(I) && "No mapping from source argument specified!");
 | |
| #endif
 | |
| 
 | |
|   // Copy all attributes other than those stored in the AttributeSet.  We need
 | |
|   // to remap the parameter indices of the AttributeSet.
 | |
|   AttributeSet NewAttrs = NewFunc->getAttributes();
 | |
|   NewFunc->copyAttributesFrom(OldFunc);
 | |
|   NewFunc->setAttributes(NewAttrs);
 | |
| 
 | |
|   AttributeSet OldAttrs = OldFunc->getAttributes();
 | |
|   // Clone any argument attributes that are present in the VMap.
 | |
|   for (const Argument &OldArg : OldFunc->args())
 | |
|     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
 | |
|       AttributeSet attrs =
 | |
|           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
 | |
|       if (attrs.getNumSlots() > 0)
 | |
|         NewArg->addAttr(attrs);
 | |
|     }
 | |
| 
 | |
|   NewFunc->setAttributes(
 | |
|       NewFunc->getAttributes()
 | |
|           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
 | |
|                          OldAttrs.getRetAttributes())
 | |
|           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
 | |
|                          OldAttrs.getFnAttributes()));
 | |
| 
 | |
|   // Loop over all of the basic blocks in the function, cloning them as
 | |
|   // appropriate.  Note that we save BE this way in order to handle cloning of
 | |
|   // recursive functions into themselves.
 | |
|   //
 | |
|   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | |
|        BI != BE; ++BI) {
 | |
|     const BasicBlock &BB = *BI;
 | |
| 
 | |
|     // Create a new basic block and copy instructions into it!
 | |
|     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
 | |
| 
 | |
|     // Add basic block mapping.
 | |
|     VMap[&BB] = CBB;
 | |
| 
 | |
|     // It is only legal to clone a function if a block address within that
 | |
|     // function is never referenced outside of the function.  Given that, we
 | |
|     // want to map block addresses from the old function to block addresses in
 | |
|     // the clone. (This is different from the generic ValueMapper
 | |
|     // implementation, which generates an invalid blockaddress when
 | |
|     // cloning a function.)
 | |
|     if (BB.hasAddressTaken()) {
 | |
|       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
 | |
|                                               const_cast<BasicBlock*>(&BB));
 | |
|       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);                                         
 | |
|     }
 | |
| 
 | |
|     // Note return instructions for the caller.
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
 | |
|       Returns.push_back(RI);
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the instructions in the function, fixing up operand
 | |
|   // references as we go.  This uses VMap to do all the hard work.
 | |
|   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
 | |
|          BE = NewFunc->end(); BB != BE; ++BB)
 | |
|     // Loop over all instructions, fixing each one as we find it...
 | |
|     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
 | |
|       RemapInstruction(II, VMap,
 | |
|                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | |
|                        TypeMapper, Materializer);
 | |
| }
 | |
| 
 | |
| // Find the MDNode which corresponds to the DISubprogram data that described F.
 | |
| static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
 | |
|   for (DISubprogram Subprogram : Finder.subprograms()) {
 | |
|     if (Subprogram.describes(F)) return Subprogram;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Add an operand to an existing MDNode. The new operand will be added at the
 | |
| // back of the operand list.
 | |
| static void AddOperand(DICompileUnit CU, DIArray SPs, Metadata *NewSP) {
 | |
|   SmallVector<Metadata *, 16> NewSPs;
 | |
|   NewSPs.reserve(SPs->getNumOperands() + 1);
 | |
|   for (unsigned I = 0, E = SPs->getNumOperands(); I != E; ++I)
 | |
|     NewSPs.push_back(SPs->getOperand(I));
 | |
|   NewSPs.push_back(NewSP);
 | |
|   CU.replaceSubprograms(DIArray(MDNode::get(CU->getContext(), NewSPs)));
 | |
| }
 | |
| 
 | |
| // Clone the module-level debug info associated with OldFunc. The cloned data
 | |
| // will point to NewFunc instead.
 | |
| static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
 | |
|                             ValueToValueMapTy &VMap) {
 | |
|   DebugInfoFinder Finder;
 | |
|   Finder.processModule(*OldFunc->getParent());
 | |
| 
 | |
|   const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
 | |
|   if (!OldSubprogramMDNode) return;
 | |
| 
 | |
|   // Ensure that OldFunc appears in the map.
 | |
|   // (if it's already there it must point to NewFunc anyway)
 | |
|   VMap[OldFunc] = NewFunc;
 | |
|   DISubprogram NewSubprogram(MapMetadata(OldSubprogramMDNode, VMap));
 | |
| 
 | |
|   for (DICompileUnit CU : Finder.compile_units()) {
 | |
|     DIArray Subprograms(CU.getSubprograms());
 | |
| 
 | |
|     // If the compile unit's function list contains the old function, it should
 | |
|     // also contain the new one.
 | |
|     for (unsigned i = 0; i < Subprograms.getNumElements(); i++) {
 | |
|       if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) {
 | |
|         AddOperand(CU, Subprograms, NewSubprogram);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CloneFunction - Return a copy of the specified function, but without
 | |
| /// embedding the function into another module.  Also, any references specified
 | |
| /// in the VMap are changed to refer to their mapped value instead of the
 | |
| /// original one.  If any of the arguments to the function are in the VMap,
 | |
| /// the arguments are deleted from the resultant function.  The VMap is
 | |
| /// updated to include mappings from all of the instructions and basicblocks in
 | |
| /// the function from their old to new values.
 | |
| ///
 | |
| Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
 | |
|                               bool ModuleLevelChanges,
 | |
|                               ClonedCodeInfo *CodeInfo) {
 | |
|   std::vector<Type*> ArgTypes;
 | |
| 
 | |
|   // The user might be deleting arguments to the function by specifying them in
 | |
|   // the VMap.  If so, we need to not add the arguments to the arg ty vector
 | |
|   //
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I)
 | |
|     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
 | |
|       ArgTypes.push_back(I->getType());
 | |
| 
 | |
|   // Create a new function type...
 | |
|   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
 | |
|                                     ArgTypes, F->getFunctionType()->isVarArg());
 | |
| 
 | |
|   // Create the new function...
 | |
|   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
 | |
| 
 | |
|   // Loop over the arguments, copying the names of the mapped arguments over...
 | |
|   Function::arg_iterator DestI = NewF->arg_begin();
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I)
 | |
|     if (VMap.count(I) == 0) {   // Is this argument preserved?
 | |
|       DestI->setName(I->getName()); // Copy the name over...
 | |
|       VMap[I] = DestI++;        // Add mapping to VMap
 | |
|     }
 | |
| 
 | |
|   if (ModuleLevelChanges)
 | |
|     CloneDebugInfoMetadata(NewF, F, VMap);
 | |
| 
 | |
|   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
 | |
|   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
 | |
|   return NewF;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// PruningFunctionCloner - This class is a private class used to implement
 | |
|   /// the CloneAndPruneFunctionInto method.
 | |
|   struct PruningFunctionCloner {
 | |
|     Function *NewFunc;
 | |
|     const Function *OldFunc;
 | |
|     ValueToValueMapTy &VMap;
 | |
|     bool ModuleLevelChanges;
 | |
|     const char *NameSuffix;
 | |
|     ClonedCodeInfo *CodeInfo;
 | |
|     const DataLayout *DL;
 | |
|     CloningDirector *Director;
 | |
| 
 | |
|   public:
 | |
|     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
 | |
|                           ValueToValueMapTy &valueMap,
 | |
|                           bool moduleLevelChanges,
 | |
|                           const char *nameSuffix, 
 | |
|                           ClonedCodeInfo *codeInfo,
 | |
|                           const DataLayout *DL,
 | |
|                           CloningDirector *Director)
 | |
|     : NewFunc(newFunc), OldFunc(oldFunc),
 | |
|       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
 | |
|       NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL),
 | |
|       Director(Director) {
 | |
|     }
 | |
| 
 | |
|     /// CloneBlock - The specified block is found to be reachable, clone it and
 | |
|     /// anything that it can reach.
 | |
|     void CloneBlock(const BasicBlock *BB, 
 | |
|                     BasicBlock::const_iterator StartingInst,
 | |
|                     std::vector<const BasicBlock*> &ToClone);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// CloneBlock - The specified block is found to be reachable, clone it and
 | |
| /// anything that it can reach.
 | |
| void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
 | |
|                                        BasicBlock::const_iterator StartingInst,
 | |
|                                        std::vector<const BasicBlock*> &ToClone){
 | |
|   WeakVH &BBEntry = VMap[BB];
 | |
| 
 | |
|   // Have we already cloned this block?
 | |
|   if (BBEntry) return;
 | |
|   
 | |
|   // Nope, clone it now.
 | |
|   BasicBlock *NewBB;
 | |
|   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
 | |
|   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | |
| 
 | |
|   // It is only legal to clone a function if a block address within that
 | |
|   // function is never referenced outside of the function.  Given that, we
 | |
|   // want to map block addresses from the old function to block addresses in
 | |
|   // the clone. (This is different from the generic ValueMapper
 | |
|   // implementation, which generates an invalid blockaddress when
 | |
|   // cloning a function.)
 | |
|   //
 | |
|   // Note that we don't need to fix the mapping for unreachable blocks;
 | |
|   // the default mapping there is safe.
 | |
|   if (BB->hasAddressTaken()) {
 | |
|     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
 | |
|                                             const_cast<BasicBlock*>(BB));
 | |
|     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
 | |
|   }
 | |
| 
 | |
|   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | |
| 
 | |
|   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
 | |
|   // loop doesn't include the terminator.
 | |
|   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
 | |
|        II != IE; ++II) {
 | |
|     // If the "Director" remaps the instruction, don't clone it.
 | |
|     if (Director) {
 | |
|       CloningDirector::CloningAction Action 
 | |
|                               = Director->handleInstruction(VMap, II, NewBB);
 | |
|       // If the cloning director says stop, we want to stop everything, not
 | |
|       // just break out of the loop (which would cause the terminator to be
 | |
|       // cloned).  The cloning director is responsible for inserting a proper
 | |
|       // terminator into the new basic block in this case.
 | |
|       if (Action == CloningDirector::StopCloningBB)
 | |
|         return;
 | |
|       // If the cloning director says skip, continue to the next instruction.
 | |
|       // In this case, the cloning director is responsible for mapping the
 | |
|       // skipped instruction to some value that is defined in the new
 | |
|       // basic block.
 | |
|       if (Action == CloningDirector::SkipInstruction)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     Instruction *NewInst = II->clone();
 | |
| 
 | |
|     // Eagerly remap operands to the newly cloned instruction, except for PHI
 | |
|     // nodes for which we defer processing until we update the CFG.
 | |
|     if (!isa<PHINode>(NewInst)) {
 | |
|       RemapInstruction(NewInst, VMap,
 | |
|                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | |
| 
 | |
|       // If we can simplify this instruction to some other value, simply add
 | |
|       // a mapping to that value rather than inserting a new instruction into
 | |
|       // the basic block.
 | |
|       if (Value *V = SimplifyInstruction(NewInst, DL)) {
 | |
|         // On the off-chance that this simplifies to an instruction in the old
 | |
|         // function, map it back into the new function.
 | |
|         if (Value *MappedV = VMap.lookup(V))
 | |
|           V = MappedV;
 | |
| 
 | |
|         VMap[II] = V;
 | |
|         delete NewInst;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (II->hasName())
 | |
|       NewInst->setName(II->getName()+NameSuffix);
 | |
|     VMap[II] = NewInst;                // Add instruction map to value.
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (isa<ConstantInt>(AI->getArraySize()))
 | |
|         hasStaticAllocas = true;
 | |
|       else
 | |
|         hasDynamicAllocas = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finally, clone over the terminator.
 | |
|   const TerminatorInst *OldTI = BB->getTerminator();
 | |
|   bool TerminatorDone = false;
 | |
|   if (Director) {
 | |
|     CloningDirector::CloningAction Action 
 | |
|                            = Director->handleInstruction(VMap, OldTI, NewBB);
 | |
|     // If the cloning director says stop, we want to stop everything, not
 | |
|     // just break out of the loop (which would cause the terminator to be
 | |
|     // cloned).  The cloning director is responsible for inserting a proper
 | |
|     // terminator into the new basic block in this case.
 | |
|     if (Action == CloningDirector::StopCloningBB)
 | |
|       return;
 | |
|     assert(Action != CloningDirector::SkipInstruction && 
 | |
|            "SkipInstruction is not valid for terminators.");
 | |
|   }
 | |
|   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
 | |
|     if (BI->isConditional()) {
 | |
|       // If the condition was a known constant in the callee...
 | |
|       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
 | |
|       // Or is a known constant in the caller...
 | |
|       if (!Cond) {
 | |
|         Value *V = VMap[BI->getCondition()];
 | |
|         Cond = dyn_cast_or_null<ConstantInt>(V);
 | |
|       }
 | |
| 
 | |
|       // Constant fold to uncond branch!
 | |
|       if (Cond) {
 | |
|         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
 | |
|         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | |
|         ToClone.push_back(Dest);
 | |
|         TerminatorDone = true;
 | |
|       }
 | |
|     }
 | |
|   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
 | |
|     // If switching on a value known constant in the caller.
 | |
|     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     if (!Cond) { // Or known constant after constant prop in the callee...
 | |
|       Value *V = VMap[SI->getCondition()];
 | |
|       Cond = dyn_cast_or_null<ConstantInt>(V);
 | |
|     }
 | |
|     if (Cond) {     // Constant fold to uncond branch!
 | |
|       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
 | |
|       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
 | |
|       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | |
|       ToClone.push_back(Dest);
 | |
|       TerminatorDone = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!TerminatorDone) {
 | |
|     Instruction *NewInst = OldTI->clone();
 | |
|     if (OldTI->hasName())
 | |
|       NewInst->setName(OldTI->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     VMap[OldTI] = NewInst;             // Add instruction map to value.
 | |
|     
 | |
|     // Recursively clone any reachable successor blocks.
 | |
|     const TerminatorInst *TI = BB->getTerminator();
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       ToClone.push_back(TI->getSuccessor(i));
 | |
|   }
 | |
|   
 | |
|   if (CodeInfo) {
 | |
|     CodeInfo->ContainsCalls          |= hasCalls;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | |
|       BB != &BB->getParent()->front();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CloneAndPruneIntoFromInst - This works like CloneAndPruneFunctionInto, except
 | |
| /// that it does not clone the entire function. Instead it starts at an
 | |
| /// instruction provided by the caller and copies (and prunes) only the code 
 | |
| /// reachable from that instruction.
 | |
| void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
 | |
|                                      const Instruction *StartingInst,
 | |
|                                      ValueToValueMapTy &VMap,
 | |
|                                      bool ModuleLevelChanges,
 | |
|                                      SmallVectorImpl<ReturnInst *> &Returns,
 | |
|                                      const char *NameSuffix, 
 | |
|                                      ClonedCodeInfo *CodeInfo,
 | |
|                                      const DataLayout *DL,
 | |
|                                      CloningDirector *Director) {
 | |
|   assert(NameSuffix && "NameSuffix cannot be null!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // If the cloning starts at the begining of the function, verify that
 | |
|   // the function arguments are mapped.
 | |
|   if (!StartingInst)
 | |
|     for (Function::const_arg_iterator II = OldFunc->arg_begin(),
 | |
|          E = OldFunc->arg_end(); II != E; ++II)
 | |
|       assert(VMap.count(II) && "No mapping from source argument specified!");
 | |
| #endif
 | |
| 
 | |
|   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
 | |
|                             NameSuffix, CodeInfo, DL, Director);
 | |
|   const BasicBlock *StartingBB;
 | |
|   if (StartingInst)
 | |
|     StartingBB = StartingInst->getParent();
 | |
|   else {
 | |
|     StartingBB = &OldFunc->getEntryBlock();
 | |
|     StartingInst = StartingBB->begin();
 | |
|   }
 | |
| 
 | |
|   // Clone the entry block, and anything recursively reachable from it.
 | |
|   std::vector<const BasicBlock*> CloneWorklist;
 | |
|   PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist);
 | |
|   while (!CloneWorklist.empty()) {
 | |
|     const BasicBlock *BB = CloneWorklist.back();
 | |
|     CloneWorklist.pop_back();
 | |
|     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
 | |
|   }
 | |
|   
 | |
|   // Loop over all of the basic blocks in the old function.  If the block was
 | |
|   // reachable, we have cloned it and the old block is now in the value map:
 | |
|   // insert it into the new function in the right order.  If not, ignore it.
 | |
|   //
 | |
|   // Defer PHI resolution until rest of function is resolved.
 | |
|   SmallVector<const PHINode*, 16> PHIToResolve;
 | |
|   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | |
|        BI != BE; ++BI) {
 | |
|     Value *V = VMap[BI];
 | |
|     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
 | |
|     if (!NewBB) continue;  // Dead block.
 | |
| 
 | |
|     // Add the new block to the new function.
 | |
|     NewFunc->getBasicBlockList().push_back(NewBB);
 | |
| 
 | |
|     // Handle PHI nodes specially, as we have to remove references to dead
 | |
|     // blocks.
 | |
|     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
 | |
|       if (const PHINode *PN = dyn_cast<PHINode>(I))
 | |
|         PHIToResolve.push_back(PN);
 | |
|       else
 | |
|         break;
 | |
| 
 | |
|     // Finally, remap the terminator instructions, as those can't be remapped
 | |
|     // until all BBs are mapped.
 | |
|     RemapInstruction(NewBB->getTerminator(), VMap,
 | |
|                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | |
|   }
 | |
|   
 | |
|   // Defer PHI resolution until rest of function is resolved, PHI resolution
 | |
|   // requires the CFG to be up-to-date.
 | |
|   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
 | |
|     const PHINode *OPN = PHIToResolve[phino];
 | |
|     unsigned NumPreds = OPN->getNumIncomingValues();
 | |
|     const BasicBlock *OldBB = OPN->getParent();
 | |
|     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
 | |
| 
 | |
|     // Map operands for blocks that are live and remove operands for blocks
 | |
|     // that are dead.
 | |
|     for (; phino != PHIToResolve.size() &&
 | |
|          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
 | |
|       OPN = PHIToResolve[phino];
 | |
|       PHINode *PN = cast<PHINode>(VMap[OPN]);
 | |
|       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
 | |
|         Value *V = VMap[PN->getIncomingBlock(pred)];
 | |
|         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
 | |
|           Value *InVal = MapValue(PN->getIncomingValue(pred),
 | |
|                                   VMap, 
 | |
|                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | |
|           assert(InVal && "Unknown input value?");
 | |
|           PN->setIncomingValue(pred, InVal);
 | |
|           PN->setIncomingBlock(pred, MappedBlock);
 | |
|         } else {
 | |
|           PN->removeIncomingValue(pred, false);
 | |
|           --pred, --e;  // Revisit the next entry.
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
|     
 | |
|     // The loop above has removed PHI entries for those blocks that are dead
 | |
|     // and has updated others.  However, if a block is live (i.e. copied over)
 | |
|     // but its terminator has been changed to not go to this block, then our
 | |
|     // phi nodes will have invalid entries.  Update the PHI nodes in this
 | |
|     // case.
 | |
|     PHINode *PN = cast<PHINode>(NewBB->begin());
 | |
|     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
 | |
|     if (NumPreds != PN->getNumIncomingValues()) {
 | |
|       assert(NumPreds < PN->getNumIncomingValues());
 | |
|       // Count how many times each predecessor comes to this block.
 | |
|       std::map<BasicBlock*, unsigned> PredCount;
 | |
|       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
 | |
|            PI != E; ++PI)
 | |
|         --PredCount[*PI];
 | |
|       
 | |
|       // Figure out how many entries to remove from each PHI.
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         ++PredCount[PN->getIncomingBlock(i)];
 | |
|       
 | |
|       // At this point, the excess predecessor entries are positive in the
 | |
|       // map.  Loop over all of the PHIs and remove excess predecessor
 | |
|       // entries.
 | |
|       BasicBlock::iterator I = NewBB->begin();
 | |
|       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
 | |
|              E = PredCount.end(); PCI != E; ++PCI) {
 | |
|           BasicBlock *Pred     = PCI->first;
 | |
|           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
 | |
|             PN->removeIncomingValue(Pred, false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the loops above have made these phi nodes have 0 or 1 operand,
 | |
|     // replace them with undef or the input value.  We must do this for
 | |
|     // correctness, because 0-operand phis are not valid.
 | |
|     PN = cast<PHINode>(NewBB->begin());
 | |
|     if (PN->getNumIncomingValues() == 0) {
 | |
|       BasicBlock::iterator I = NewBB->begin();
 | |
|       BasicBlock::const_iterator OldI = OldBB->begin();
 | |
|       while ((PN = dyn_cast<PHINode>(I++))) {
 | |
|         Value *NV = UndefValue::get(PN->getType());
 | |
|         PN->replaceAllUsesWith(NV);
 | |
|         assert(VMap[OldI] == PN && "VMap mismatch");
 | |
|         VMap[OldI] = NV;
 | |
|         PN->eraseFromParent();
 | |
|         ++OldI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make a second pass over the PHINodes now that all of them have been
 | |
|   // remapped into the new function, simplifying the PHINode and performing any
 | |
|   // recursive simplifications exposed. This will transparently update the
 | |
|   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
 | |
|   // two PHINodes, the iteration over the old PHIs remains valid, and the
 | |
|   // mapping will just map us to the new node (which may not even be a PHI
 | |
|   // node).
 | |
|   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
 | |
|       recursivelySimplifyInstruction(PN, DL);
 | |
| 
 | |
|   // Now that the inlined function body has been fully constructed, go through
 | |
|   // and zap unconditional fall-through branches.  This happen all the time when
 | |
|   // specializing code: code specialization turns conditional branches into
 | |
|   // uncond branches, and this code folds them.
 | |
|   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]);
 | |
|   Function::iterator I = Begin;
 | |
|   while (I != NewFunc->end()) {
 | |
|     // Check if this block has become dead during inlining or other
 | |
|     // simplifications. Note that the first block will appear dead, as it has
 | |
|     // not yet been wired up properly.
 | |
|     if (I != Begin && (pred_begin(I) == pred_end(I) ||
 | |
|                        I->getSinglePredecessor() == I)) {
 | |
|       BasicBlock *DeadBB = I++;
 | |
|       DeleteDeadBlock(DeadBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We need to simplify conditional branches and switches with a constant
 | |
|     // operand. We try to prune these out when cloning, but if the
 | |
|     // simplification required looking through PHI nodes, those are only
 | |
|     // available after forming the full basic block. That may leave some here,
 | |
|     // and we still want to prune the dead code as early as possible.
 | |
|     ConstantFoldTerminator(I);
 | |
| 
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
 | |
|     if (!BI || BI->isConditional()) { ++I; continue; }
 | |
|     
 | |
|     BasicBlock *Dest = BI->getSuccessor(0);
 | |
|     if (!Dest->getSinglePredecessor()) {
 | |
|       ++I; continue;
 | |
|     }
 | |
| 
 | |
|     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
 | |
|     // above should have zapped all of them..
 | |
|     assert(!isa<PHINode>(Dest->begin()));
 | |
| 
 | |
|     // We know all single-entry PHI nodes in the inlined function have been
 | |
|     // removed, so we just need to splice the blocks.
 | |
|     BI->eraseFromParent();
 | |
|     
 | |
|     // Make all PHI nodes that referred to Dest now refer to I as their source.
 | |
|     Dest->replaceAllUsesWith(I);
 | |
| 
 | |
|     // Move all the instructions in the succ to the pred.
 | |
|     I->getInstList().splice(I->end(), Dest->getInstList());
 | |
|     
 | |
|     // Remove the dest block.
 | |
|     Dest->eraseFromParent();
 | |
|     
 | |
|     // Do not increment I, iteratively merge all things this block branches to.
 | |
|   }
 | |
| 
 | |
|   // Make a final pass over the basic blocks from theh old function to gather
 | |
|   // any return instructions which survived folding. We have to do this here
 | |
|   // because we can iteratively remove and merge returns above.
 | |
|   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]),
 | |
|                           E = NewFunc->end();
 | |
|        I != E; ++I)
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
 | |
|       Returns.push_back(RI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
 | |
| /// except that it does some simple constant prop and DCE on the fly.  The
 | |
| /// effect of this is to copy significantly less code in cases where (for
 | |
| /// example) a function call with constant arguments is inlined, and those
 | |
| /// constant arguments cause a significant amount of code in the callee to be
 | |
| /// dead.  Since this doesn't produce an exact copy of the input, it can't be
 | |
| /// used for things like CloneFunction or CloneModule.
 | |
| void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | |
|                                      ValueToValueMapTy &VMap,
 | |
|                                      bool ModuleLevelChanges,
 | |
|                                      SmallVectorImpl<ReturnInst*> &Returns,
 | |
|                                      const char *NameSuffix, 
 | |
|                                      ClonedCodeInfo *CodeInfo,
 | |
|                                      const DataLayout *DL,
 | |
|                                      Instruction *TheCall) {
 | |
|   CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(),
 | |
|                             VMap, ModuleLevelChanges, Returns, NameSuffix,
 | |
|                             CodeInfo, DL, nullptr);
 | |
| }
 |