mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
329c1c6c94
getSubLoops/getTopLevelLoops methods, replacing them with iterator-based accessors. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10714 91177308-0d34-0410-b5e6-96231b3b80d8
373 lines
14 KiB
C++
373 lines
14 KiB
C++
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Guarantees that all loops with identifiable, linear, induction variables will
|
|
// be transformed to have a single, canonical, induction variable. After this
|
|
// pass runs, it guarantees the the first PHI node of the header block in the
|
|
// loop is the canonical induction variable if there is one.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "indvar"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/InductionVariable.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
|
|
Statistic<> NumInserted("indvars", "Number of canonical indvars added");
|
|
|
|
class IndVarSimplify : public FunctionPass {
|
|
LoopInfo *Loops;
|
|
TargetData *TD;
|
|
bool Changed;
|
|
public:
|
|
virtual bool runOnFunction(Function &) {
|
|
Loops = &getAnalysis<LoopInfo>();
|
|
TD = &getAnalysis<TargetData>();
|
|
Changed = false;
|
|
|
|
// Induction Variables live in the header nodes of loops
|
|
for (LoopInfo::iterator I = Loops->begin(), E = Loops->end(); I != E; ++I)
|
|
runOnLoop(*I);
|
|
return Changed;
|
|
}
|
|
|
|
unsigned getTypeSize(const Type *Ty) {
|
|
if (unsigned Size = Ty->getPrimitiveSize())
|
|
return Size;
|
|
return TD->getTypeSize(Ty); // Must be a pointer
|
|
}
|
|
|
|
Value *ComputeAuxIndVarValue(InductionVariable &IV, Value *CIV);
|
|
void ReplaceIndVar(InductionVariable &IV, Value *Counter);
|
|
|
|
void runOnLoop(Loop *L);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetData>(); // Need pointer size
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
|
|
}
|
|
|
|
Pass *llvm::createIndVarSimplifyPass() {
|
|
return new IndVarSimplify();
|
|
}
|
|
|
|
|
|
void IndVarSimplify::runOnLoop(Loop *Loop) {
|
|
// Transform all subloops before this loop...
|
|
for (LoopInfo::iterator I = Loop->begin(), E = Loop->end(); I != E; ++I)
|
|
runOnLoop(*I);
|
|
|
|
// Get the header node for this loop. All of the phi nodes that could be
|
|
// induction variables must live in this basic block.
|
|
//
|
|
BasicBlock *Header = Loop->getHeader();
|
|
|
|
// Loop over all of the PHI nodes in the basic block, calculating the
|
|
// induction variables that they represent... stuffing the induction variable
|
|
// info into a vector...
|
|
//
|
|
std::vector<InductionVariable> IndVars; // Induction variables for block
|
|
BasicBlock::iterator AfterPHIIt = Header->begin();
|
|
for (; PHINode *PN = dyn_cast<PHINode>(AfterPHIIt); ++AfterPHIIt)
|
|
IndVars.push_back(InductionVariable(PN, Loops));
|
|
// AfterPHIIt now points to first non-phi instruction...
|
|
|
|
// If there are no phi nodes in this basic block, there can't be indvars...
|
|
if (IndVars.empty()) return;
|
|
|
|
// Loop over the induction variables, looking for a canonical induction
|
|
// variable, and checking to make sure they are not all unknown induction
|
|
// variables. Keep track of the largest integer size of the induction
|
|
// variable.
|
|
//
|
|
InductionVariable *Canonical = 0;
|
|
unsigned MaxSize = 0;
|
|
|
|
for (unsigned i = 0; i != IndVars.size(); ++i) {
|
|
InductionVariable &IV = IndVars[i];
|
|
|
|
if (IV.InductionType != InductionVariable::Unknown) {
|
|
unsigned IVSize = getTypeSize(IV.Phi->getType());
|
|
|
|
if (IV.InductionType == InductionVariable::Canonical &&
|
|
!isa<PointerType>(IV.Phi->getType()) && IVSize >= MaxSize)
|
|
Canonical = &IV;
|
|
|
|
if (IVSize > MaxSize) MaxSize = IVSize;
|
|
|
|
// If this variable is larger than the currently identified canonical
|
|
// indvar, the canonical indvar is not usable.
|
|
if (Canonical && IVSize > getTypeSize(Canonical->Phi->getType()))
|
|
Canonical = 0;
|
|
}
|
|
}
|
|
|
|
// No induction variables, bail early... don't add a canonical indvar
|
|
if (MaxSize == 0) return;
|
|
|
|
|
|
// Figure out what the exit condition of the loop is. We can currently only
|
|
// handle loops with a single exit. If we cannot figure out what the
|
|
// termination condition is, we leave this variable set to null.
|
|
//
|
|
SetCondInst *TermCond = 0;
|
|
if (Loop->getExitBlocks().size() == 1) {
|
|
// Get ExitingBlock - the basic block in the loop which contains the branch
|
|
// out of the loop.
|
|
BasicBlock *Exit = Loop->getExitBlocks()[0];
|
|
pred_iterator PI = pred_begin(Exit);
|
|
assert(PI != pred_end(Exit) && "Should have one predecessor in loop!");
|
|
BasicBlock *ExitingBlock = *PI;
|
|
assert(++PI == pred_end(Exit) && "Exit block should have one pred!");
|
|
assert(Loop->isLoopExit(ExitingBlock) && "Exiting block is not loop exit!");
|
|
|
|
// Since the block is in the loop, yet branches out of it, we know that the
|
|
// block must end with multiple destination terminator. Which means it is
|
|
// either a conditional branch, a switch instruction, or an invoke.
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
|
|
assert(BI->isConditional() && "Unconditional branch has multiple succs?");
|
|
TermCond = dyn_cast<SetCondInst>(BI->getCondition());
|
|
} else {
|
|
// NOTE: if people actually exit loops with switch instructions, we could
|
|
// handle them, but I don't think this is important enough to spend time
|
|
// thinking about.
|
|
assert(isa<SwitchInst>(ExitingBlock->getTerminator()) ||
|
|
isa<InvokeInst>(ExitingBlock->getTerminator()) &&
|
|
"Unknown multi-successor terminator!");
|
|
}
|
|
}
|
|
|
|
if (TermCond)
|
|
DEBUG(std::cerr << "INDVAR: Found termination condition: " << *TermCond);
|
|
|
|
// Okay, we want to convert other induction variables to use a canonical
|
|
// indvar. If we don't have one, add one now...
|
|
if (!Canonical) {
|
|
// Create the PHI node for the new induction variable, and insert the phi
|
|
// node at the start of the PHI nodes...
|
|
const Type *IVType;
|
|
switch (MaxSize) {
|
|
default: assert(0 && "Unknown integer type size!");
|
|
case 1: IVType = Type::UByteTy; break;
|
|
case 2: IVType = Type::UShortTy; break;
|
|
case 4: IVType = Type::UIntTy; break;
|
|
case 8: IVType = Type::ULongTy; break;
|
|
}
|
|
|
|
PHINode *PN = new PHINode(IVType, "cann-indvar", Header->begin());
|
|
|
|
// Create the increment instruction to add one to the counter...
|
|
Instruction *Add = BinaryOperator::create(Instruction::Add, PN,
|
|
ConstantUInt::get(IVType, 1),
|
|
"next-indvar", AfterPHIIt);
|
|
|
|
// Figure out which block is incoming and which is the backedge for the loop
|
|
BasicBlock *Incoming, *BackEdgeBlock;
|
|
pred_iterator PI = pred_begin(Header);
|
|
assert(PI != pred_end(Header) && "Loop headers should have 2 preds!");
|
|
if (Loop->contains(*PI)) { // First pred is back edge...
|
|
BackEdgeBlock = *PI++;
|
|
Incoming = *PI++;
|
|
} else {
|
|
Incoming = *PI++;
|
|
BackEdgeBlock = *PI++;
|
|
}
|
|
assert(PI == pred_end(Header) && "Loop headers should have 2 preds!");
|
|
|
|
// Add incoming values for the PHI node...
|
|
PN->addIncoming(Constant::getNullValue(IVType), Incoming);
|
|
PN->addIncoming(Add, BackEdgeBlock);
|
|
|
|
// Analyze the new induction variable...
|
|
IndVars.push_back(InductionVariable(PN, Loops));
|
|
assert(IndVars.back().InductionType == InductionVariable::Canonical &&
|
|
"Just inserted canonical indvar that is not canonical!");
|
|
Canonical = &IndVars.back();
|
|
++NumInserted;
|
|
Changed = true;
|
|
DEBUG(std::cerr << "INDVAR: Inserted canonical iv: " << *PN);
|
|
} else {
|
|
// If we have a canonical induction variable, make sure that it is the first
|
|
// one in the basic block.
|
|
if (&Header->front() != Canonical->Phi)
|
|
Header->getInstList().splice(Header->begin(), Header->getInstList(),
|
|
Canonical->Phi);
|
|
DEBUG(std::cerr << "IndVar: Existing canonical iv used: "
|
|
<< *Canonical->Phi);
|
|
}
|
|
|
|
DEBUG(std::cerr << "INDVAR: Replacing Induction variables:\n");
|
|
|
|
// Get the current loop iteration count, which is always the value of the
|
|
// canonical phi node...
|
|
//
|
|
PHINode *IterCount = Canonical->Phi;
|
|
|
|
// Loop through and replace all of the auxiliary induction variables with
|
|
// references to the canonical induction variable...
|
|
//
|
|
for (unsigned i = 0; i != IndVars.size(); ++i) {
|
|
InductionVariable *IV = &IndVars[i];
|
|
|
|
DEBUG(IV->print(std::cerr));
|
|
|
|
// Don't modify the canonical indvar or unrecognized indvars...
|
|
if (IV != Canonical && IV->InductionType != InductionVariable::Unknown) {
|
|
ReplaceIndVar(*IV, IterCount);
|
|
Changed = true;
|
|
++NumRemoved;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ComputeAuxIndVarValue - Given an auxillary induction variable, compute and
|
|
/// return a value which will always be equal to the induction variable PHI, but
|
|
/// is based off of the canonical induction variable CIV.
|
|
///
|
|
Value *IndVarSimplify::ComputeAuxIndVarValue(InductionVariable &IV, Value *CIV){
|
|
Instruction *Phi = IV.Phi;
|
|
const Type *IVTy = Phi->getType();
|
|
if (isa<PointerType>(IVTy)) // If indexing into a pointer, make the
|
|
IVTy = TD->getIntPtrType(); // index the appropriate type.
|
|
|
|
BasicBlock::iterator AfterPHIIt = Phi;
|
|
while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;
|
|
|
|
Value *Val = CIV;
|
|
if (Val->getType() != IVTy)
|
|
Val = new CastInst(Val, IVTy, Val->getName(), AfterPHIIt);
|
|
|
|
if (!isa<ConstantInt>(IV.Step) || // If the step != 1
|
|
!cast<ConstantInt>(IV.Step)->equalsInt(1)) {
|
|
|
|
// If the types are not compatible, insert a cast now...
|
|
if (IV.Step->getType() != IVTy)
|
|
IV.Step = new CastInst(IV.Step, IVTy, IV.Step->getName(), AfterPHIIt);
|
|
|
|
Val = BinaryOperator::create(Instruction::Mul, Val, IV.Step,
|
|
Phi->getName()+"-scale", AfterPHIIt);
|
|
}
|
|
|
|
// If this is a pointer indvar...
|
|
if (isa<PointerType>(Phi->getType())) {
|
|
std::vector<Value*> Idx;
|
|
// FIXME: this should not be needed when we fix PR82!
|
|
if (Val->getType() != Type::LongTy)
|
|
Val = new CastInst(Val, Type::LongTy, Val->getName(), AfterPHIIt);
|
|
Idx.push_back(Val);
|
|
Val = new GetElementPtrInst(IV.Start, Idx,
|
|
Phi->getName()+"-offset",
|
|
AfterPHIIt);
|
|
|
|
} else if (!isa<Constant>(IV.Start) || // If Start != 0...
|
|
!cast<Constant>(IV.Start)->isNullValue()) {
|
|
// If the types are not compatible, insert a cast now...
|
|
if (IV.Start->getType() != IVTy)
|
|
IV.Start = new CastInst(IV.Start, IVTy, IV.Start->getName(),
|
|
AfterPHIIt);
|
|
|
|
// Insert the instruction after the phi nodes...
|
|
Val = BinaryOperator::create(Instruction::Add, Val, IV.Start,
|
|
Phi->getName()+"-offset", AfterPHIIt);
|
|
}
|
|
|
|
// If the PHI node has a different type than val is, insert a cast now...
|
|
if (Val->getType() != Phi->getType())
|
|
Val = new CastInst(Val, Phi->getType(), Val->getName(), AfterPHIIt);
|
|
|
|
// Move the PHI name to it's new equivalent value...
|
|
std::string OldName = Phi->getName();
|
|
Phi->setName("");
|
|
Val->setName(OldName);
|
|
|
|
return Val;
|
|
}
|
|
|
|
// ReplaceIndVar - Replace all uses of the specified induction variable with
|
|
// expressions computed from the specified loop iteration counter variable.
|
|
// Return true if instructions were deleted.
|
|
void IndVarSimplify::ReplaceIndVar(InductionVariable &IV, Value *CIV) {
|
|
Value *IndVarVal = 0;
|
|
PHINode *Phi = IV.Phi;
|
|
|
|
assert(Phi->getNumOperands() == 4 &&
|
|
"Only expect induction variables in canonical loops!");
|
|
|
|
// Remember the incoming values used by the PHI node
|
|
std::vector<Value*> PHIOps;
|
|
PHIOps.reserve(2);
|
|
PHIOps.push_back(Phi->getIncomingValue(0));
|
|
PHIOps.push_back(Phi->getIncomingValue(1));
|
|
|
|
// Delete all of the operands of the PHI node... so that the to-be-deleted PHI
|
|
// node does not cause any expressions to be computed that would not otherwise
|
|
// be.
|
|
Phi->dropAllReferences();
|
|
|
|
// Now that we are rid of unneeded uses of the PHI node, replace any remaining
|
|
// ones with the appropriate code using the canonical induction variable.
|
|
while (!Phi->use_empty()) {
|
|
Instruction *U = cast<Instruction>(Phi->use_back());
|
|
|
|
// TODO: Perform LFTR here if possible
|
|
if (0) {
|
|
|
|
} else {
|
|
// Replace all uses of the old PHI node with the new computed value...
|
|
if (IndVarVal == 0)
|
|
IndVarVal = ComputeAuxIndVarValue(IV, CIV);
|
|
U->replaceUsesOfWith(Phi, IndVarVal);
|
|
}
|
|
}
|
|
|
|
// If the PHI is the last user of any instructions for computing PHI nodes
|
|
// that are irrelevant now, delete those instructions.
|
|
while (!PHIOps.empty()) {
|
|
Instruction *MaybeDead = dyn_cast<Instruction>(PHIOps.back());
|
|
PHIOps.pop_back();
|
|
|
|
if (MaybeDead && isInstructionTriviallyDead(MaybeDead) &&
|
|
(!isa<PHINode>(MaybeDead) ||
|
|
MaybeDead->getParent() != Phi->getParent())) {
|
|
PHIOps.insert(PHIOps.end(), MaybeDead->op_begin(),
|
|
MaybeDead->op_end());
|
|
MaybeDead->getParent()->getInstList().erase(MaybeDead);
|
|
|
|
// Erase any duplicates entries in the PHIOps list.
|
|
std::vector<Value*>::iterator It =
|
|
std::find(PHIOps.begin(), PHIOps.end(), MaybeDead);
|
|
while (It != PHIOps.end()) {
|
|
PHIOps.erase(It);
|
|
It = std::find(PHIOps.begin(), PHIOps.end(), MaybeDead);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Delete the old, now unused, phi node...
|
|
Phi->getParent()->getInstList().erase(Phi);
|
|
}
|
|
|