mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	handles Intrinsic::trap if TargetOptions::TrapFuncName is set. This fixes a bug in which the trap function was not taken into consideration when a program was compiled without optimization (at -O0). <rdar://problem/16291933> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206323 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1635 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1635 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the FastISel class.
 | |
| //
 | |
| // "Fast" instruction selection is designed to emit very poor code quickly.
 | |
| // Also, it is not designed to be able to do much lowering, so most illegal
 | |
| // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
 | |
| // also not intended to be able to do much optimization, except in a few cases
 | |
| // where doing optimizations reduces overall compile time.  For example, folding
 | |
| // constants into immediate fields is often done, because it's cheap and it
 | |
| // reduces the number of instructions later phases have to examine.
 | |
| //
 | |
| // "Fast" instruction selection is able to fail gracefully and transfer
 | |
| // control to the SelectionDAG selector for operations that it doesn't
 | |
| // support.  In many cases, this allows us to avoid duplicating a lot of
 | |
| // the complicated lowering logic that SelectionDAG currently has.
 | |
| //
 | |
| // The intended use for "fast" instruction selection is "-O0" mode
 | |
| // compilation, where the quality of the generated code is irrelevant when
 | |
| // weighed against the speed at which the code can be generated.  Also,
 | |
| // at -O0, the LLVM optimizers are not running, and this makes the
 | |
| // compile time of codegen a much higher portion of the overall compile
 | |
| // time.  Despite its limitations, "fast" instruction selection is able to
 | |
| // handle enough code on its own to provide noticeable overall speedups
 | |
| // in -O0 compiles.
 | |
| //
 | |
| // Basic operations are supported in a target-independent way, by reading
 | |
| // the same instruction descriptions that the SelectionDAG selector reads,
 | |
| // and identifying simple arithmetic operations that can be directly selected
 | |
| // from simple operators.  More complicated operations currently require
 | |
| // target-specific code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
 | |
|           "target-independent selector");
 | |
| STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
 | |
|           "target-specific selector");
 | |
| STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
 | |
| 
 | |
| /// startNewBlock - Set the current block to which generated machine
 | |
| /// instructions will be appended, and clear the local CSE map.
 | |
| ///
 | |
| void FastISel::startNewBlock() {
 | |
|   LocalValueMap.clear();
 | |
| 
 | |
|   // Instructions are appended to FuncInfo.MBB. If the basic block already
 | |
|   // contains labels or copies, use the last instruction as the last local
 | |
|   // value.
 | |
|   EmitStartPt = nullptr;
 | |
|   if (!FuncInfo.MBB->empty())
 | |
|     EmitStartPt = &FuncInfo.MBB->back();
 | |
|   LastLocalValue = EmitStartPt;
 | |
| }
 | |
| 
 | |
| bool FastISel::LowerArguments() {
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     // Fallback to SDISel argument lowering code to deal with sret pointer
 | |
|     // parameter.
 | |
|     return false;
 | |
| 
 | |
|   if (!FastLowerArguments())
 | |
|     return false;
 | |
| 
 | |
|   // Enter arguments into ValueMap for uses in non-entry BBs.
 | |
|   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
 | |
|          E = FuncInfo.Fn->arg_end(); I != E; ++I) {
 | |
|     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
 | |
|     assert(VI != LocalValueMap.end() && "Missed an argument?");
 | |
|     FuncInfo.ValueMap[I] = VI->second;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void FastISel::flushLocalValueMap() {
 | |
|   LocalValueMap.clear();
 | |
|   LastLocalValue = EmitStartPt;
 | |
|   recomputeInsertPt();
 | |
| }
 | |
| 
 | |
| bool FastISel::hasTrivialKill(const Value *V) const {
 | |
|   // Don't consider constants or arguments to have trivial kills.
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return false;
 | |
| 
 | |
|   // No-op casts are trivially coalesced by fast-isel.
 | |
|   if (const CastInst *Cast = dyn_cast<CastInst>(I))
 | |
|     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
 | |
|         !hasTrivialKill(Cast->getOperand(0)))
 | |
|       return false;
 | |
| 
 | |
|   // GEPs with all zero indices are trivially coalesced by fast-isel.
 | |
|   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
 | |
|     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
 | |
|       return false;
 | |
| 
 | |
|   // Only instructions with a single use in the same basic block are considered
 | |
|   // to have trivial kills.
 | |
|   return I->hasOneUse() &&
 | |
|          !(I->getOpcode() == Instruction::BitCast ||
 | |
|            I->getOpcode() == Instruction::PtrToInt ||
 | |
|            I->getOpcode() == Instruction::IntToPtr) &&
 | |
|          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
 | |
| }
 | |
| 
 | |
| unsigned FastISel::getRegForValue(const Value *V) {
 | |
|   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
 | |
|   // Don't handle non-simple values in FastISel.
 | |
|   if (!RealVT.isSimple())
 | |
|     return 0;
 | |
| 
 | |
|   // Ignore illegal types. We must do this before looking up the value
 | |
|   // in ValueMap because Arguments are given virtual registers regardless
 | |
|   // of whether FastISel can handle them.
 | |
|   MVT VT = RealVT.getSimpleVT();
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     // Handle integer promotions, though, because they're common and easy.
 | |
|     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
 | |
|       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
 | |
|     else
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Look up the value to see if we already have a register for it.
 | |
|   unsigned Reg = lookUpRegForValue(V);
 | |
|   if (Reg != 0)
 | |
|     return Reg;
 | |
| 
 | |
|   // In bottom-up mode, just create the virtual register which will be used
 | |
|   // to hold the value. It will be materialized later.
 | |
|   if (isa<Instruction>(V) &&
 | |
|       (!isa<AllocaInst>(V) ||
 | |
|        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
 | |
|     return FuncInfo.InitializeRegForValue(V);
 | |
| 
 | |
|   SavePoint SaveInsertPt = enterLocalValueArea();
 | |
| 
 | |
|   // Materialize the value in a register. Emit any instructions in the
 | |
|   // local value area.
 | |
|   Reg = materializeRegForValue(V, VT);
 | |
| 
 | |
|   leaveLocalValueArea(SaveInsertPt);
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// materializeRegForValue - Helper for getRegForValue. This function is
 | |
| /// called when the value isn't already available in a register and must
 | |
| /// be materialized with new instructions.
 | |
| unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
 | |
|   unsigned Reg = 0;
 | |
| 
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     if (CI->getValue().getActiveBits() <= 64)
 | |
|       Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
 | |
|   } else if (isa<AllocaInst>(V)) {
 | |
|     Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
 | |
|   } else if (isa<ConstantPointerNull>(V)) {
 | |
|     // Translate this as an integer zero so that it can be
 | |
|     // local-CSE'd with actual integer zeros.
 | |
|     Reg =
 | |
|       getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext())));
 | |
|   } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|     if (CF->isNullValue()) {
 | |
|       Reg = TargetMaterializeFloatZero(CF);
 | |
|     } else {
 | |
|       // Try to emit the constant directly.
 | |
|       Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
 | |
|     }
 | |
| 
 | |
|     if (!Reg) {
 | |
|       // Try to emit the constant by using an integer constant with a cast.
 | |
|       const APFloat &Flt = CF->getValueAPF();
 | |
|       EVT IntVT = TLI.getPointerTy();
 | |
| 
 | |
|       uint64_t x[2];
 | |
|       uint32_t IntBitWidth = IntVT.getSizeInBits();
 | |
|       bool isExact;
 | |
|       (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | |
|                                   APFloat::rmTowardZero, &isExact);
 | |
|       if (isExact) {
 | |
|         APInt IntVal(IntBitWidth, x);
 | |
| 
 | |
|         unsigned IntegerReg =
 | |
|           getRegForValue(ConstantInt::get(V->getContext(), IntVal));
 | |
|         if (IntegerReg != 0)
 | |
|           Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
 | |
|                            IntegerReg, /*Kill=*/false);
 | |
|       }
 | |
|     }
 | |
|   } else if (const Operator *Op = dyn_cast<Operator>(V)) {
 | |
|     if (!SelectOperator(Op, Op->getOpcode()))
 | |
|       if (!isa<Instruction>(Op) ||
 | |
|           !TargetSelectInstruction(cast<Instruction>(Op)))
 | |
|         return 0;
 | |
|     Reg = lookUpRegForValue(Op);
 | |
|   } else if (isa<UndefValue>(V)) {
 | |
|     Reg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
 | |
|   }
 | |
| 
 | |
|   // If target-independent code couldn't handle the value, give target-specific
 | |
|   // code a try.
 | |
|   if (!Reg && isa<Constant>(V))
 | |
|     Reg = TargetMaterializeConstant(cast<Constant>(V));
 | |
| 
 | |
|   // Don't cache constant materializations in the general ValueMap.
 | |
|   // To do so would require tracking what uses they dominate.
 | |
|   if (Reg != 0) {
 | |
|     LocalValueMap[V] = Reg;
 | |
|     LastLocalValue = MRI.getVRegDef(Reg);
 | |
|   }
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::lookUpRegForValue(const Value *V) {
 | |
|   // Look up the value to see if we already have a register for it. We
 | |
|   // cache values defined by Instructions across blocks, and other values
 | |
|   // only locally. This is because Instructions already have the SSA
 | |
|   // def-dominates-use requirement enforced.
 | |
|   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
 | |
|   if (I != FuncInfo.ValueMap.end())
 | |
|     return I->second;
 | |
|   return LocalValueMap[V];
 | |
| }
 | |
| 
 | |
| /// UpdateValueMap - Update the value map to include the new mapping for this
 | |
| /// instruction, or insert an extra copy to get the result in a previous
 | |
| /// determined register.
 | |
| /// NOTE: This is only necessary because we might select a block that uses
 | |
| /// a value before we select the block that defines the value.  It might be
 | |
| /// possible to fix this by selecting blocks in reverse postorder.
 | |
| void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
 | |
|   if (!isa<Instruction>(I)) {
 | |
|     LocalValueMap[I] = Reg;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned &AssignedReg = FuncInfo.ValueMap[I];
 | |
|   if (AssignedReg == 0)
 | |
|     // Use the new register.
 | |
|     AssignedReg = Reg;
 | |
|   else if (Reg != AssignedReg) {
 | |
|     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
 | |
|     for (unsigned i = 0; i < NumRegs; i++)
 | |
|       FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
 | |
| 
 | |
|     AssignedReg = Reg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
 | |
|   unsigned IdxN = getRegForValue(Idx);
 | |
|   if (IdxN == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return std::pair<unsigned, bool>(0, false);
 | |
| 
 | |
|   bool IdxNIsKill = hasTrivialKill(Idx);
 | |
| 
 | |
|   // If the index is smaller or larger than intptr_t, truncate or extend it.
 | |
|   MVT PtrVT = TLI.getPointerTy();
 | |
|   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
 | |
|   if (IdxVT.bitsLT(PtrVT)) {
 | |
|     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
 | |
|                       IdxN, IdxNIsKill);
 | |
|     IdxNIsKill = true;
 | |
|   }
 | |
|   else if (IdxVT.bitsGT(PtrVT)) {
 | |
|     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
 | |
|                       IdxN, IdxNIsKill);
 | |
|     IdxNIsKill = true;
 | |
|   }
 | |
|   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
 | |
| }
 | |
| 
 | |
| void FastISel::recomputeInsertPt() {
 | |
|   if (getLastLocalValue()) {
 | |
|     FuncInfo.InsertPt = getLastLocalValue();
 | |
|     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
 | |
|     ++FuncInfo.InsertPt;
 | |
|   } else
 | |
|     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
 | |
| 
 | |
|   // Now skip past any EH_LABELs, which must remain at the beginning.
 | |
|   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
 | |
|          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
 | |
|     ++FuncInfo.InsertPt;
 | |
| }
 | |
| 
 | |
| void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
 | |
|                               MachineBasicBlock::iterator E) {
 | |
|   assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
 | |
|   while (I != E) {
 | |
|     MachineInstr *Dead = &*I;
 | |
|     ++I;
 | |
|     Dead->eraseFromParent();
 | |
|     ++NumFastIselDead;
 | |
|   }
 | |
|   recomputeInsertPt();
 | |
| }
 | |
| 
 | |
| FastISel::SavePoint FastISel::enterLocalValueArea() {
 | |
|   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
 | |
|   DebugLoc OldDL = DbgLoc;
 | |
|   recomputeInsertPt();
 | |
|   DbgLoc = DebugLoc();
 | |
|   SavePoint SP = { OldInsertPt, OldDL };
 | |
|   return SP;
 | |
| }
 | |
| 
 | |
| void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
 | |
|   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
 | |
|     LastLocalValue = std::prev(FuncInfo.InsertPt);
 | |
| 
 | |
|   // Restore the previous insert position.
 | |
|   FuncInfo.InsertPt = OldInsertPt.InsertPt;
 | |
|   DbgLoc = OldInsertPt.DL;
 | |
| }
 | |
| 
 | |
| /// SelectBinaryOp - Select and emit code for a binary operator instruction,
 | |
| /// which has an opcode which directly corresponds to the given ISD opcode.
 | |
| ///
 | |
| bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
 | |
|   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
 | |
|   if (VT == MVT::Other || !VT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // We only handle legal types. For example, on x86-32 the instruction
 | |
|   // selector contains all of the 64-bit instructions from x86-64,
 | |
|   // under the assumption that i64 won't be used if the target doesn't
 | |
|   // support it.
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     // MVT::i1 is special. Allow AND, OR, or XOR because they
 | |
|     // don't require additional zeroing, which makes them easy.
 | |
|     if (VT == MVT::i1 &&
 | |
|         (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
 | |
|          ISDOpcode == ISD::XOR))
 | |
|       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
 | |
|   // we don't have anything that canonicalizes operand order.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
 | |
|     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
 | |
|       unsigned Op1 = getRegForValue(I->getOperand(1));
 | |
|       if (Op1 == 0) return false;
 | |
| 
 | |
|       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
 | |
| 
 | |
|       unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
 | |
|                                         Op1IsKill, CI->getZExtValue(),
 | |
|                                         VT.getSimpleVT());
 | |
|       if (ResultReg == 0) return false;
 | |
| 
 | |
|       // We successfully emitted code for the given LLVM Instruction.
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   unsigned Op0 = getRegForValue(I->getOperand(0));
 | |
|   if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   // Check if the second operand is a constant and handle it appropriately.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|     uint64_t Imm = CI->getZExtValue();
 | |
| 
 | |
|     // Transform "sdiv exact X, 8" -> "sra X, 3".
 | |
|     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
 | |
|         cast<BinaryOperator>(I)->isExact() &&
 | |
|         isPowerOf2_64(Imm)) {
 | |
|       Imm = Log2_64(Imm);
 | |
|       ISDOpcode = ISD::SRA;
 | |
|     }
 | |
| 
 | |
|     // Transform "urem x, pow2" -> "and x, pow2-1".
 | |
|     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
 | |
|         isPowerOf2_64(Imm)) {
 | |
|       --Imm;
 | |
|       ISDOpcode = ISD::AND;
 | |
|     }
 | |
| 
 | |
|     unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
 | |
|                                       Op0IsKill, Imm, VT.getSimpleVT());
 | |
|     if (ResultReg == 0) return false;
 | |
| 
 | |
|     // We successfully emitted code for the given LLVM Instruction.
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if the second operand is a constant float.
 | |
|   if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
 | |
|     unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                      ISDOpcode, Op0, Op0IsKill, CF);
 | |
|     if (ResultReg != 0) {
 | |
|       // We successfully emitted code for the given LLVM Instruction.
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Op1 = getRegForValue(I->getOperand(1));
 | |
|   if (Op1 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
 | |
| 
 | |
|   // Now we have both operands in registers. Emit the instruction.
 | |
|   unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                    ISDOpcode,
 | |
|                                    Op0, Op0IsKill,
 | |
|                                    Op1, Op1IsKill);
 | |
|   if (ResultReg == 0)
 | |
|     // Target-specific code wasn't able to find a machine opcode for
 | |
|     // the given ISD opcode and type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // We successfully emitted code for the given LLVM Instruction.
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectGetElementPtr(const User *I) {
 | |
|   unsigned N = getRegForValue(I->getOperand(0));
 | |
|   if (N == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool NIsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
 | |
|   // into a single N = N + TotalOffset.
 | |
|   uint64_t TotalOffs = 0;
 | |
|   // FIXME: What's a good SWAG number for MaxOffs?
 | |
|   uint64_t MaxOffs = 2048;
 | |
|   Type *Ty = I->getOperand(0)->getType();
 | |
|   MVT VT = TLI.getPointerTy();
 | |
|   for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
 | |
|        E = I->op_end(); OI != E; ++OI) {
 | |
|     const Value *Idx = *OI;
 | |
|     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
 | |
|         if (TotalOffs >= MaxOffs) {
 | |
|           N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | |
|           if (N == 0)
 | |
|             // Unhandled operand. Halt "fast" selection and bail.
 | |
|             return false;
 | |
|           NIsKill = true;
 | |
|           TotalOffs = 0;
 | |
|         }
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->isZero()) continue;
 | |
|         // N = N + Offset
 | |
|         TotalOffs +=
 | |
|           DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | |
|         if (TotalOffs >= MaxOffs) {
 | |
|           N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | |
|           if (N == 0)
 | |
|             // Unhandled operand. Halt "fast" selection and bail.
 | |
|             return false;
 | |
|           NIsKill = true;
 | |
|           TotalOffs = 0;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       if (TotalOffs) {
 | |
|         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | |
|         if (N == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|         NIsKill = true;
 | |
|         TotalOffs = 0;
 | |
|       }
 | |
| 
 | |
|       // N = N + Idx * ElementSize;
 | |
|       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
 | |
|       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
 | |
|       unsigned IdxN = Pair.first;
 | |
|       bool IdxNIsKill = Pair.second;
 | |
|       if (IdxN == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
| 
 | |
|       if (ElementSize != 1) {
 | |
|         IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
 | |
|         if (IdxN == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|         IdxNIsKill = true;
 | |
|       }
 | |
|       N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
 | |
|       if (N == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   if (TotalOffs) {
 | |
|     N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | |
|     if (N == 0)
 | |
|       // Unhandled operand. Halt "fast" selection and bail.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We successfully emitted code for the given LLVM Instruction.
 | |
|   UpdateValueMap(I, N);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectCall(const User *I) {
 | |
|   const CallInst *Call = cast<CallInst>(I);
 | |
| 
 | |
|   // Handle simple inline asms.
 | |
|   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
 | |
|     // Don't attempt to handle constraints.
 | |
|     if (!IA->getConstraintString().empty())
 | |
|       return false;
 | |
| 
 | |
|     unsigned ExtraInfo = 0;
 | |
|     if (IA->hasSideEffects())
 | |
|       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
 | |
|     if (IA->isAlignStack())
 | |
|       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
 | |
| 
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::INLINEASM))
 | |
|       .addExternalSymbol(IA->getAsmString().c_str())
 | |
|       .addImm(ExtraInfo);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
 | |
|   ComputeUsesVAFloatArgument(*Call, &MMI);
 | |
| 
 | |
|   const Function *F = Call->getCalledFunction();
 | |
|   if (!F) return false;
 | |
| 
 | |
|   // Handle selected intrinsic function calls.
 | |
|   switch (F->getIntrinsicID()) {
 | |
|   default: break;
 | |
|     // At -O0 we don't care about the lifetime intrinsics.
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end:
 | |
|     // The donothing intrinsic does, well, nothing.
 | |
|   case Intrinsic::donothing:
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
 | |
|     DIVariable DIVar(DI->getVariable());
 | |
|     assert((!DIVar || DIVar.isVariable()) &&
 | |
|       "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | |
|     if (!DIVar ||
 | |
|         !FuncInfo.MF->getMMI().hasDebugInfo()) {
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const Value *Address = DI->getAddress();
 | |
|     if (!Address || isa<UndefValue>(Address)) {
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     unsigned Offset = 0;
 | |
|     Optional<MachineOperand> Op;
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(Address))
 | |
|       // Some arguments' frame index is recorded during argument lowering.
 | |
|       Offset = FuncInfo.getArgumentFrameIndex(Arg);
 | |
|     if (Offset)
 | |
|         Op = MachineOperand::CreateFI(Offset);
 | |
|     if (!Op)
 | |
|       if (unsigned Reg = lookUpRegForValue(Address))
 | |
|         Op = MachineOperand::CreateReg(Reg, false);
 | |
| 
 | |
|     // If we have a VLA that has a "use" in a metadata node that's then used
 | |
|     // here but it has no other uses, then we have a problem. E.g.,
 | |
|     //
 | |
|     //   int foo (const int *x) {
 | |
|     //     char a[*x];
 | |
|     //     return 0;
 | |
|     //   }
 | |
|     //
 | |
|     // If we assign 'a' a vreg and fast isel later on has to use the selection
 | |
|     // DAG isel, it will want to copy the value to the vreg. However, there are
 | |
|     // no uses, which goes counter to what selection DAG isel expects.
 | |
|     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
 | |
|         (!isa<AllocaInst>(Address) ||
 | |
|          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
 | |
|       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
 | |
|                                      false);
 | |
| 
 | |
|     if (Op) {
 | |
|       if (Op->isReg()) {
 | |
|         Op->setIsDebug(true);
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
 | |
|                 DI->getVariable());
 | |
|       } else
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(TargetOpcode::DBG_VALUE))
 | |
|             .addOperand(*Op)
 | |
|             .addImm(0)
 | |
|             .addMetadata(DI->getVariable());
 | |
|     } else {
 | |
|       // We can't yet handle anything else here because it would require
 | |
|       // generating code, thus altering codegen because of debug info.
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_value: {
 | |
|     // This form of DBG_VALUE is target-independent.
 | |
|     const DbgValueInst *DI = cast<DbgValueInst>(Call);
 | |
|     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | |
|     const Value *V = DI->getValue();
 | |
|     if (!V) {
 | |
|       // Currently the optimizer can produce this; insert an undef to
 | |
|       // help debugging.  Probably the optimizer should not do this.
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|         .addReg(0U).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       if (CI->getBitWidth() > 64)
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|           .addCImm(CI).addImm(DI->getOffset())
 | |
|           .addMetadata(DI->getVariable());
 | |
|       else
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|           .addImm(CI->getZExtValue()).addImm(DI->getOffset())
 | |
|           .addMetadata(DI->getVariable());
 | |
|     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|         .addFPImm(CF).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     } else if (unsigned Reg = lookUpRegForValue(V)) {
 | |
|       // FIXME: This does not handle register-indirect values at offset 0.
 | |
|       bool IsIndirect = DI->getOffset() != 0;
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect,
 | |
|               Reg, DI->getOffset(), DI->getVariable());
 | |
|     } else {
 | |
|       // We can't yet handle anything else here because it would require
 | |
|       // generating code, thus altering codegen because of debug info.
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::objectsize: {
 | |
|     ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
 | |
|     unsigned long long Res = CI->isZero() ? -1ULL : 0;
 | |
|     Constant *ResCI = ConstantInt::get(Call->getType(), Res);
 | |
|     unsigned ResultReg = getRegForValue(ResCI);
 | |
|     if (ResultReg == 0)
 | |
|       return false;
 | |
|     UpdateValueMap(Call, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::expect: {
 | |
|     unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
 | |
|     if (ResultReg == 0)
 | |
|       return false;
 | |
|     UpdateValueMap(Call, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Usually, it does not make sense to initialize a value,
 | |
|   // make an unrelated function call and use the value, because
 | |
|   // it tends to be spilled on the stack. So, we move the pointer
 | |
|   // to the last local value to the beginning of the block, so that
 | |
|   // all the values which have already been materialized,
 | |
|   // appear after the call. It also makes sense to skip intrinsics
 | |
|   // since they tend to be inlined.
 | |
|   if (!isa<IntrinsicInst>(Call))
 | |
|     flushLocalValueMap();
 | |
| 
 | |
|   // An arbitrary call. Bail.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectCast(const User *I, unsigned Opcode) {
 | |
|   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(I->getType());
 | |
| 
 | |
|   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | |
|       DstVT == MVT::Other || !DstVT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // Check if the destination type is legal.
 | |
|   if (!TLI.isTypeLegal(DstVT))
 | |
|     return false;
 | |
| 
 | |
|   // Check if the source operand is legal.
 | |
|   if (!TLI.isTypeLegal(SrcVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned InputReg = getRegForValue(I->getOperand(0));
 | |
|   if (!InputReg)
 | |
|     // Unhandled operand.  Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
 | |
|                                   DstVT.getSimpleVT(),
 | |
|                                   Opcode,
 | |
|                                   InputReg, InputRegIsKill);
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectBitCast(const User *I) {
 | |
|   // If the bitcast doesn't change the type, just use the operand value.
 | |
|   if (I->getType() == I->getOperand(0)->getType()) {
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Bitcasts of other values become reg-reg copies or BITCAST operators.
 | |
|   EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   EVT DstEVT = TLI.getValueType(I->getType());
 | |
|   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
 | |
|       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
|   MVT DstVT = DstEVT.getSimpleVT();
 | |
|   unsigned Op0 = getRegForValue(I->getOperand(0));
 | |
|   if (Op0 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   // First, try to perform the bitcast by inserting a reg-reg copy.
 | |
|   unsigned ResultReg = 0;
 | |
|   if (SrcVT == DstVT) {
 | |
|     const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
 | |
|     const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
 | |
|     // Don't attempt a cross-class copy. It will likely fail.
 | |
|     if (SrcClass == DstClass) {
 | |
|       ResultReg = createResultReg(DstClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the reg-reg copy failed, select a BITCAST opcode.
 | |
|   if (!ResultReg)
 | |
|     ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
 | |
| 
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectInstruction(const Instruction *I) {
 | |
|   // Just before the terminator instruction, insert instructions to
 | |
|   // feed PHI nodes in successor blocks.
 | |
|   if (isa<TerminatorInst>(I))
 | |
|     if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
 | |
|       return false;
 | |
| 
 | |
|   DbgLoc = I->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
 | |
| 
 | |
|   if (const CallInst *Call = dyn_cast<CallInst>(I)) {
 | |
|     const Function *F = Call->getCalledFunction();
 | |
|     LibFunc::Func Func;
 | |
| 
 | |
|     // As a special case, don't handle calls to builtin library functions that
 | |
|     // may be translated directly to target instructions.
 | |
|     if (F && !F->hasLocalLinkage() && F->hasName() &&
 | |
|         LibInfo->getLibFunc(F->getName(), Func) &&
 | |
|         LibInfo->hasOptimizedCodeGen(Func))
 | |
|       return false;
 | |
| 
 | |
|     // Don't handle Intrinsic::trap if a trap funciton is specified.
 | |
|     if (F && F->getIntrinsicID() == Intrinsic::trap &&
 | |
|         !TM.Options.getTrapFunctionName().empty())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // First, try doing target-independent selection.
 | |
|   if (SelectOperator(I, I->getOpcode())) {
 | |
|     ++NumFastIselSuccessIndependent;
 | |
|     DbgLoc = DebugLoc();
 | |
|     return true;
 | |
|   }
 | |
|   // Remove dead code.  However, ignore call instructions since we've flushed
 | |
|   // the local value map and recomputed the insert point.
 | |
|   if (!isa<CallInst>(I)) {
 | |
|     recomputeInsertPt();
 | |
|     if (SavedInsertPt != FuncInfo.InsertPt)
 | |
|       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
 | |
|   }
 | |
| 
 | |
|   // Next, try calling the target to attempt to handle the instruction.
 | |
|   SavedInsertPt = FuncInfo.InsertPt;
 | |
|   if (TargetSelectInstruction(I)) {
 | |
|     ++NumFastIselSuccessTarget;
 | |
|     DbgLoc = DebugLoc();
 | |
|     return true;
 | |
|   }
 | |
|   // Check for dead code and remove as necessary.
 | |
|   recomputeInsertPt();
 | |
|   if (SavedInsertPt != FuncInfo.InsertPt)
 | |
|     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
 | |
| 
 | |
|   DbgLoc = DebugLoc();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FastEmitBranch - Emit an unconditional branch to the given block,
 | |
| /// unless it is the immediate (fall-through) successor, and update
 | |
| /// the CFG.
 | |
| void
 | |
| FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
 | |
| 
 | |
|   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
 | |
|       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
 | |
|     // For more accurate line information if this is the only instruction
 | |
|     // in the block then emit it, otherwise we have the unconditional
 | |
|     // fall-through case, which needs no instructions.
 | |
|   } else {
 | |
|     // The unconditional branch case.
 | |
|     TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
 | |
|                      SmallVector<MachineOperand, 0>(), DbgLoc);
 | |
|   }
 | |
|   FuncInfo.MBB->addSuccessor(MSucc);
 | |
| }
 | |
| 
 | |
| /// SelectFNeg - Emit an FNeg operation.
 | |
| ///
 | |
| bool
 | |
| FastISel::SelectFNeg(const User *I) {
 | |
|   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
 | |
|   if (OpReg == 0) return false;
 | |
| 
 | |
|   bool OpRegIsKill = hasTrivialKill(I);
 | |
| 
 | |
|   // If the target has ISD::FNEG, use it.
 | |
|   EVT VT = TLI.getValueType(I->getType());
 | |
|   unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                   ISD::FNEG, OpReg, OpRegIsKill);
 | |
|   if (ResultReg != 0) {
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Bitcast the value to integer, twiddle the sign bit with xor,
 | |
|   // and then bitcast it back to floating-point.
 | |
|   if (VT.getSizeInBits() > 64) return false;
 | |
|   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
 | |
|   if (!TLI.isTypeLegal(IntVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
 | |
|                                ISD::BITCAST, OpReg, OpRegIsKill);
 | |
|   if (IntReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
 | |
|                                        IntReg, /*Kill=*/true,
 | |
|                                        UINT64_C(1) << (VT.getSizeInBits()-1),
 | |
|                                        IntVT.getSimpleVT());
 | |
|   if (IntResultReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                          ISD::BITCAST, IntResultReg, /*Kill=*/true);
 | |
|   if (ResultReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectExtractValue(const User *U) {
 | |
|   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
 | |
|   if (!EVI)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure we only try to handle extracts with a legal result.  But also
 | |
|   // allow i1 because it's easy.
 | |
|   EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
 | |
|   if (!RealVT.isSimple())
 | |
|     return false;
 | |
|   MVT VT = RealVT.getSimpleVT();
 | |
|   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Op0 = EVI->getOperand(0);
 | |
|   Type *AggTy = Op0->getType();
 | |
| 
 | |
|   // Get the base result register.
 | |
|   unsigned ResultReg;
 | |
|   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
 | |
|   if (I != FuncInfo.ValueMap.end())
 | |
|     ResultReg = I->second;
 | |
|   else if (isa<Instruction>(Op0))
 | |
|     ResultReg = FuncInfo.InitializeRegForValue(Op0);
 | |
|   else
 | |
|     return false; // fast-isel can't handle aggregate constants at the moment
 | |
| 
 | |
|   // Get the actual result register, which is an offset from the base register.
 | |
|   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
 | |
| 
 | |
|   SmallVector<EVT, 4> AggValueVTs;
 | |
|   ComputeValueVTs(TLI, AggTy, AggValueVTs);
 | |
| 
 | |
|   for (unsigned i = 0; i < VTIndex; i++)
 | |
|     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
 | |
| 
 | |
|   UpdateValueMap(EVI, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectOperator(const User *I, unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SelectBinaryOp(I, ISD::ADD);
 | |
|   case Instruction::FAdd:
 | |
|     return SelectBinaryOp(I, ISD::FADD);
 | |
|   case Instruction::Sub:
 | |
|     return SelectBinaryOp(I, ISD::SUB);
 | |
|   case Instruction::FSub:
 | |
|     // FNeg is currently represented in LLVM IR as a special case of FSub.
 | |
|     if (BinaryOperator::isFNeg(I))
 | |
|       return SelectFNeg(I);
 | |
|     return SelectBinaryOp(I, ISD::FSUB);
 | |
|   case Instruction::Mul:
 | |
|     return SelectBinaryOp(I, ISD::MUL);
 | |
|   case Instruction::FMul:
 | |
|     return SelectBinaryOp(I, ISD::FMUL);
 | |
|   case Instruction::SDiv:
 | |
|     return SelectBinaryOp(I, ISD::SDIV);
 | |
|   case Instruction::UDiv:
 | |
|     return SelectBinaryOp(I, ISD::UDIV);
 | |
|   case Instruction::FDiv:
 | |
|     return SelectBinaryOp(I, ISD::FDIV);
 | |
|   case Instruction::SRem:
 | |
|     return SelectBinaryOp(I, ISD::SREM);
 | |
|   case Instruction::URem:
 | |
|     return SelectBinaryOp(I, ISD::UREM);
 | |
|   case Instruction::FRem:
 | |
|     return SelectBinaryOp(I, ISD::FREM);
 | |
|   case Instruction::Shl:
 | |
|     return SelectBinaryOp(I, ISD::SHL);
 | |
|   case Instruction::LShr:
 | |
|     return SelectBinaryOp(I, ISD::SRL);
 | |
|   case Instruction::AShr:
 | |
|     return SelectBinaryOp(I, ISD::SRA);
 | |
|   case Instruction::And:
 | |
|     return SelectBinaryOp(I, ISD::AND);
 | |
|   case Instruction::Or:
 | |
|     return SelectBinaryOp(I, ISD::OR);
 | |
|   case Instruction::Xor:
 | |
|     return SelectBinaryOp(I, ISD::XOR);
 | |
| 
 | |
|   case Instruction::GetElementPtr:
 | |
|     return SelectGetElementPtr(I);
 | |
| 
 | |
|   case Instruction::Br: {
 | |
|     const BranchInst *BI = cast<BranchInst>(I);
 | |
| 
 | |
|     if (BI->isUnconditional()) {
 | |
|       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
 | |
|       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
 | |
|       FastEmitBranch(MSucc, BI->getDebugLoc());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Conditional branches are not handed yet.
 | |
|     // Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Unreachable:
 | |
|     // Nothing to emit.
 | |
|     return true;
 | |
| 
 | |
|   case Instruction::Alloca:
 | |
|     // FunctionLowering has the static-sized case covered.
 | |
|     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|       return true;
 | |
| 
 | |
|     // Dynamic-sized alloca is not handled yet.
 | |
|     return false;
 | |
| 
 | |
|   case Instruction::Call:
 | |
|     return SelectCall(I);
 | |
| 
 | |
|   case Instruction::BitCast:
 | |
|     return SelectBitCast(I);
 | |
| 
 | |
|   case Instruction::FPToSI:
 | |
|     return SelectCast(I, ISD::FP_TO_SINT);
 | |
|   case Instruction::ZExt:
 | |
|     return SelectCast(I, ISD::ZERO_EXTEND);
 | |
|   case Instruction::SExt:
 | |
|     return SelectCast(I, ISD::SIGN_EXTEND);
 | |
|   case Instruction::Trunc:
 | |
|     return SelectCast(I, ISD::TRUNCATE);
 | |
|   case Instruction::SIToFP:
 | |
|     return SelectCast(I, ISD::SINT_TO_FP);
 | |
| 
 | |
|   case Instruction::IntToPtr: // Deliberate fall-through.
 | |
|   case Instruction::PtrToInt: {
 | |
|     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|     EVT DstVT = TLI.getValueType(I->getType());
 | |
|     if (DstVT.bitsGT(SrcVT))
 | |
|       return SelectCast(I, ISD::ZERO_EXTEND);
 | |
|     if (DstVT.bitsLT(SrcVT))
 | |
|       return SelectCast(I, ISD::TRUNCATE);
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0) return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Instruction::ExtractValue:
 | |
|     return SelectExtractValue(I);
 | |
| 
 | |
|   case Instruction::PHI:
 | |
|     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
 | |
| 
 | |
|   default:
 | |
|     // Unhandled instruction. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FastISel::FastISel(FunctionLoweringInfo &funcInfo,
 | |
|                    const TargetLibraryInfo *libInfo)
 | |
|   : FuncInfo(funcInfo),
 | |
|     MRI(FuncInfo.MF->getRegInfo()),
 | |
|     MFI(*FuncInfo.MF->getFrameInfo()),
 | |
|     MCP(*FuncInfo.MF->getConstantPool()),
 | |
|     TM(FuncInfo.MF->getTarget()),
 | |
|     DL(*TM.getDataLayout()),
 | |
|     TII(*TM.getInstrInfo()),
 | |
|     TLI(*TM.getTargetLowering()),
 | |
|     TRI(*TM.getRegisterInfo()),
 | |
|     LibInfo(libInfo) {
 | |
| }
 | |
| 
 | |
| FastISel::~FastISel() {}
 | |
| 
 | |
| bool FastISel::FastLowerArguments() {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_(MVT, MVT,
 | |
|                              unsigned) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_r(MVT, MVT,
 | |
|                               unsigned,
 | |
|                               unsigned /*Op0*/, bool /*Op0IsKill*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rr(MVT, MVT,
 | |
|                                unsigned,
 | |
|                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                unsigned /*Op1*/, bool /*Op1IsKill*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_f(MVT, MVT,
 | |
|                               unsigned, const ConstantFP * /*FPImm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_ri(MVT, MVT,
 | |
|                                unsigned,
 | |
|                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rf(MVT, MVT,
 | |
|                                unsigned,
 | |
|                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                const ConstantFP * /*FPImm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rri(MVT, MVT,
 | |
|                                 unsigned,
 | |
|                                 unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                 unsigned /*Op1*/, bool /*Op1IsKill*/,
 | |
|                                 uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
 | |
| /// to emit an instruction with an immediate operand using FastEmit_ri.
 | |
| /// If that fails, it materializes the immediate into a register and try
 | |
| /// FastEmit_rr instead.
 | |
| unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
 | |
|                                 unsigned Op0, bool Op0IsKill,
 | |
|                                 uint64_t Imm, MVT ImmType) {
 | |
|   // If this is a multiply by a power of two, emit this as a shift left.
 | |
|   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
 | |
|     Opcode = ISD::SHL;
 | |
|     Imm = Log2_64(Imm);
 | |
|   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
 | |
|     // div x, 8 -> srl x, 3
 | |
|     Opcode = ISD::SRL;
 | |
|     Imm = Log2_64(Imm);
 | |
|   }
 | |
| 
 | |
|   // Horrible hack (to be removed), check to make sure shift amounts are
 | |
|   // in-range.
 | |
|   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
 | |
|       Imm >= VT.getSizeInBits())
 | |
|     return 0;
 | |
| 
 | |
|   // First check if immediate type is legal. If not, we can't use the ri form.
 | |
|   unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
 | |
|   if (ResultReg != 0)
 | |
|     return ResultReg;
 | |
|   unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
 | |
|   if (MaterialReg == 0) {
 | |
|     // This is a bit ugly/slow, but failing here means falling out of
 | |
|     // fast-isel, which would be very slow.
 | |
|     IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
 | |
|                                               VT.getSizeInBits());
 | |
|     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
 | |
|     assert (MaterialReg != 0 && "Unable to materialize imm.");
 | |
|     if (MaterialReg == 0) return 0;
 | |
|   }
 | |
|   return FastEmit_rr(VT, VT, Opcode,
 | |
|                      Op0, Op0IsKill,
 | |
|                      MaterialReg, /*Kill=*/true);
 | |
| }
 | |
| 
 | |
| unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
 | |
|   return MRI.createVirtualRegister(RC);
 | |
| }
 | |
| 
 | |
| unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II,
 | |
|                                             unsigned Op, unsigned OpNum) {
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Op)) {
 | |
|     const TargetRegisterClass *RegClass =
 | |
|         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
 | |
|     if (!MRI.constrainRegClass(Op, RegClass)) {
 | |
|       // If it's not legal to COPY between the register classes, something
 | |
|       // has gone very wrong before we got here.
 | |
|       unsigned NewOp = createResultReg(RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
 | |
|       return NewOp;
 | |
|     }
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
 | |
|                                  const TargetRegisterClass* RC) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   unsigned Op0, bool Op0IsKill) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    unsigned Op1, bool Op1IsKill) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
|   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    unsigned Op1, bool Op1IsKill,
 | |
|                                    unsigned Op2, bool Op2IsKill) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
|   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | |
|   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addReg(Op2, Op2IsKill * RegState::Kill);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addReg(Op2, Op2IsKill * RegState::Kill);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    uint64_t Imm) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF);
 | |
|   MRI.constrainRegClass(Op0, RC);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    uint64_t Imm1, uint64_t Imm2) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Imm1)
 | |
|       .addImm(Imm2);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Imm1)
 | |
|       .addImm(Imm2);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    const ConstantFP *FPImm) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addFPImm(FPImm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addFPImm(FPImm);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
 | |
|                                     const TargetRegisterClass *RC,
 | |
|                                     unsigned Op0, bool Op0IsKill,
 | |
|                                     unsigned Op1, bool Op1IsKill,
 | |
|                                     uint64_t Imm) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
|   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
 | |
|                                      const TargetRegisterClass *RC,
 | |
|                                      unsigned Op0, bool Op0IsKill,
 | |
|                                      unsigned Op1, bool Op1IsKill,
 | |
|                                      uint64_t Imm1, uint64_t Imm2) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
|   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addImm(Imm1).addImm(Imm2);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addImm(Imm1).addImm(Imm2);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   uint64_t Imm1, uint64_t Imm2) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|       .addImm(Imm1).addImm(Imm2);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
 | |
|                                               unsigned Op0, bool Op0IsKill,
 | |
|                                               uint32_t Idx) {
 | |
|   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
 | |
|          "Cannot yet extract from physregs");
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
 | |
|   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|           DbgLoc, TII.get(TargetOpcode::COPY), ResultReg)
 | |
|     .addReg(Op0, getKillRegState(Op0IsKill), Idx);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
 | |
| /// with all but the least significant bit set to zero.
 | |
| unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
 | |
|   return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
 | |
| }
 | |
| 
 | |
| /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
 | |
| /// Emit code to ensure constants are copied into registers when needed.
 | |
| /// Remember the virtual registers that need to be added to the Machine PHI
 | |
| /// nodes as input.  We cannot just directly add them, because expansion
 | |
| /// might result in multiple MBB's for one BB.  As such, the start of the
 | |
| /// BB might correspond to a different MBB than the end.
 | |
| bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
 | |
|   const TerminatorInst *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | |
|   unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
 | |
| 
 | |
|   // Check successor nodes' PHI nodes that expect a constant to be available
 | |
|   // from this block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     const BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | |
| 
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     if (!SuccsHandled.insert(SuccMBB)) continue;
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::const_iterator I = SuccBB->begin();
 | |
|          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
| 
 | |
|       // Ignore dead phi's.
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Only handle legal types. Two interesting things to note here. First,
 | |
|       // by bailing out early, we may leave behind some dead instructions,
 | |
|       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
 | |
|       // own moves. Second, this check is necessary because FastISel doesn't
 | |
|       // use CreateRegs to create registers, so it always creates
 | |
|       // exactly one register for each non-void instruction.
 | |
|       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
 | |
|       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
 | |
|         // Handle integer promotions, though, because they're common and easy.
 | |
|         if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
 | |
|           VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
 | |
|         else {
 | |
|           FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
| 
 | |
|       // Set the DebugLoc for the copy. Prefer the location of the operand
 | |
|       // if there is one; use the location of the PHI otherwise.
 | |
|       DbgLoc = PN->getDebugLoc();
 | |
|       if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
 | |
|         DbgLoc = Inst->getDebugLoc();
 | |
| 
 | |
|       unsigned Reg = getRegForValue(PHIOp);
 | |
|       if (Reg == 0) {
 | |
|         FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | |
|         return false;
 | |
|       }
 | |
|       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
 | |
|       DbgLoc = DebugLoc();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
 | |
|   assert(LI->hasOneUse() &&
 | |
|       "tryToFoldLoad expected a LoadInst with a single use");
 | |
|   // We know that the load has a single use, but don't know what it is.  If it
 | |
|   // isn't one of the folded instructions, then we can't succeed here.  Handle
 | |
|   // this by scanning the single-use users of the load until we get to FoldInst.
 | |
|   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
 | |
| 
 | |
|   const Instruction *TheUser = LI->user_back();
 | |
|   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
 | |
|          // Stay in the right block.
 | |
|          TheUser->getParent() == FoldInst->getParent() &&
 | |
|          --MaxUsers) {  // Don't scan too far.
 | |
|     // If there are multiple or no uses of this instruction, then bail out.
 | |
|     if (!TheUser->hasOneUse())
 | |
|       return false;
 | |
| 
 | |
|     TheUser = TheUser->user_back();
 | |
|   }
 | |
| 
 | |
|   // If we didn't find the fold instruction, then we failed to collapse the
 | |
|   // sequence.
 | |
|   if (TheUser != FoldInst)
 | |
|     return false;
 | |
| 
 | |
|   // Don't try to fold volatile loads.  Target has to deal with alignment
 | |
|   // constraints.
 | |
|   if (LI->isVolatile())
 | |
|     return false;
 | |
| 
 | |
|   // Figure out which vreg this is going into.  If there is no assigned vreg yet
 | |
|   // then there actually was no reference to it.  Perhaps the load is referenced
 | |
|   // by a dead instruction.
 | |
|   unsigned LoadReg = getRegForValue(LI);
 | |
|   if (LoadReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
 | |
|   // may mean that the instruction got lowered to multiple MIs, or the use of
 | |
|   // the loaded value ended up being multiple operands of the result.
 | |
|   if (!MRI.hasOneUse(LoadReg))
 | |
|     return false;
 | |
| 
 | |
|   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
 | |
|   MachineInstr *User = RI->getParent();
 | |
| 
 | |
|   // Set the insertion point properly.  Folding the load can cause generation of
 | |
|   // other random instructions (like sign extends) for addressing modes; make
 | |
|   // sure they get inserted in a logical place before the new instruction.
 | |
|   FuncInfo.InsertPt = User;
 | |
|   FuncInfo.MBB = User->getParent();
 | |
| 
 | |
|   // Ask the target to try folding the load.
 | |
|   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
 | |
| }
 | |
| 
 | |
| bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
 | |
|   // Must be an add.
 | |
|   if (!isa<AddOperator>(Add))
 | |
|     return false;
 | |
|   // Type size needs to match.
 | |
|   if (DL.getTypeSizeInBits(GEP->getType()) !=
 | |
|       DL.getTypeSizeInBits(Add->getType()))
 | |
|     return false;
 | |
|   // Must be in the same basic block.
 | |
|   if (isa<Instruction>(Add) &&
 | |
|       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
 | |
|     return false;
 | |
|   // Must have a constant operand.
 | |
|   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
 | |
| }
 | |
| 
 |