mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	and put @file directives on their own comment line. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65920 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1643 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1643 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file describes how to lower LLVM code to machine code.  This has two
 | |
| // main components:
 | |
| //
 | |
| //  1. Which ValueTypes are natively supported by the target.
 | |
| //  2. Which operations are supported for supported ValueTypes.
 | |
| //  3. Cost thresholds for alternative implementations of certain operations.
 | |
| //
 | |
| // In addition it has a few other components, like information about FP
 | |
| // immediates.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TARGET_TARGETLOWERING_H
 | |
| #define LLVM_TARGET_TARGETLOWERING_H
 | |
| 
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/DebugLoc.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <climits>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
|   class AllocaInst;
 | |
|   class CallInst;
 | |
|   class Function;
 | |
|   class FastISel;
 | |
|   class MachineBasicBlock;
 | |
|   class MachineFunction;
 | |
|   class MachineFrameInfo;
 | |
|   class MachineInstr;
 | |
|   class MachineModuleInfo;
 | |
|   class DwarfWriter;
 | |
|   class SDNode;
 | |
|   class SDValue;
 | |
|   class SelectionDAG;
 | |
|   class TargetData;
 | |
|   class TargetMachine;
 | |
|   class TargetRegisterClass;
 | |
|   class TargetSubtarget;
 | |
|   class Value;
 | |
| 
 | |
|   // FIXME: should this be here?
 | |
|   namespace TLSModel {
 | |
|     enum Model {
 | |
|       GeneralDynamic,
 | |
|       LocalDynamic,
 | |
|       InitialExec,
 | |
|       LocalExec
 | |
|     };
 | |
|   }
 | |
|   TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// TargetLowering - This class defines information used to lower LLVM code to
 | |
| /// legal SelectionDAG operators that the target instruction selector can accept
 | |
| /// natively.
 | |
| ///
 | |
| /// This class also defines callbacks that targets must implement to lower
 | |
| /// target-specific constructs to SelectionDAG operators.
 | |
| ///
 | |
| class TargetLowering {
 | |
| public:
 | |
|   /// LegalizeAction - This enum indicates whether operations are valid for a
 | |
|   /// target, and if not, what action should be used to make them valid.
 | |
|   enum LegalizeAction {
 | |
|     Legal,      // The target natively supports this operation.
 | |
|     Promote,    // This operation should be executed in a larger type.
 | |
|     Expand,     // Try to expand this to other ops, otherwise use a libcall.
 | |
|     Custom      // Use the LowerOperation hook to implement custom lowering.
 | |
|   };
 | |
| 
 | |
|   enum OutOfRangeShiftAmount {
 | |
|     Undefined,  // Oversized shift amounts are undefined (default).
 | |
|     Mask,       // Shift amounts are auto masked (anded) to value size.
 | |
|     Extend      // Oversized shift pulls in zeros or sign bits.
 | |
|   };
 | |
| 
 | |
|   enum BooleanContent { // How the target represents true/false values.
 | |
|     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
 | |
|     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
 | |
|     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
 | |
|   };
 | |
| 
 | |
|   enum SchedPreference {
 | |
|     SchedulingForLatency,          // Scheduling for shortest total latency.
 | |
|     SchedulingForRegPressure       // Scheduling for lowest register pressure.
 | |
|   };
 | |
| 
 | |
|   explicit TargetLowering(TargetMachine &TM);
 | |
|   virtual ~TargetLowering();
 | |
| 
 | |
|   TargetMachine &getTargetMachine() const { return TM; }
 | |
|   const TargetData *getTargetData() const { return TD; }
 | |
| 
 | |
|   bool isBigEndian() const { return !IsLittleEndian; }
 | |
|   bool isLittleEndian() const { return IsLittleEndian; }
 | |
|   MVT getPointerTy() const { return PointerTy; }
 | |
|   MVT getShiftAmountTy() const { return ShiftAmountTy; }
 | |
|   OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
 | |
| 
 | |
|   /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
 | |
|   /// codegen.
 | |
|   bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
 | |
| 
 | |
|   /// isSelectExpensive - Return true if the select operation is expensive for
 | |
|   /// this target.
 | |
|   bool isSelectExpensive() const { return SelectIsExpensive; }
 | |
|   
 | |
|   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
 | |
|   /// a sequence of several shifts, adds, and multiplies for this target.
 | |
|   bool isIntDivCheap() const { return IntDivIsCheap; }
 | |
| 
 | |
|   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
 | |
|   /// srl/add/sra.
 | |
|   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
 | |
| 
 | |
|   /// getSetCCResultType - Return the ValueType of the result of SETCC
 | |
|   /// operations.  Also used to obtain the target's preferred type for
 | |
|   /// the condition operand of SELECT and BRCOND nodes.  In the case of
 | |
|   /// BRCOND the argument passed is MVT::Other since there are no other
 | |
|   /// operands to get a type hint from.
 | |
|   virtual MVT getSetCCResultType(MVT VT) const;
 | |
| 
 | |
|   /// getBooleanContents - For targets without i1 registers, this gives the
 | |
|   /// nature of the high-bits of boolean values held in types wider than i1.
 | |
|   /// "Boolean values" are special true/false values produced by nodes like
 | |
|   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
 | |
|   /// Not to be confused with general values promoted from i1.
 | |
|   BooleanContent getBooleanContents() const { return BooleanContents;}
 | |
| 
 | |
|   /// getSchedulingPreference - Return target scheduling preference.
 | |
|   SchedPreference getSchedulingPreference() const {
 | |
|     return SchedPreferenceInfo;
 | |
|   }
 | |
| 
 | |
|   /// getRegClassFor - Return the register class that should be used for the
 | |
|   /// specified value type.  This may only be called on legal types.
 | |
|   TargetRegisterClass *getRegClassFor(MVT VT) const {
 | |
|     assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
 | |
|     TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
 | |
|     assert(RC && "This value type is not natively supported!");
 | |
|     return RC;
 | |
|   }
 | |
| 
 | |
|   /// isTypeLegal - Return true if the target has native support for the
 | |
|   /// specified value type.  This means that it has a register that directly
 | |
|   /// holds it without promotions or expansions.
 | |
|   bool isTypeLegal(MVT VT) const {
 | |
|     assert(!VT.isSimple() ||
 | |
|            (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
 | |
|     return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
 | |
|   }
 | |
| 
 | |
|   class ValueTypeActionImpl {
 | |
|     /// ValueTypeActions - This is a bitvector that contains two bits for each
 | |
|     /// value type, where the two bits correspond to the LegalizeAction enum.
 | |
|     /// This can be queried with "getTypeAction(VT)".
 | |
|     uint32_t ValueTypeActions[2];
 | |
|   public:
 | |
|     ValueTypeActionImpl() {
 | |
|       ValueTypeActions[0] = ValueTypeActions[1] = 0;
 | |
|     }
 | |
|     ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
 | |
|       ValueTypeActions[0] = RHS.ValueTypeActions[0];
 | |
|       ValueTypeActions[1] = RHS.ValueTypeActions[1];
 | |
|     }
 | |
|     
 | |
|     LegalizeAction getTypeAction(MVT VT) const {
 | |
|       if (VT.isExtended()) {
 | |
|         if (VT.isVector()) {
 | |
|           return VT.isPow2VectorType() ? Expand : Promote;
 | |
|         }
 | |
|         if (VT.isInteger())
 | |
|           // First promote to a power-of-two size, then expand if necessary.
 | |
|           return VT == VT.getRoundIntegerType() ? Expand : Promote;
 | |
|         assert(0 && "Unsupported extended type!");
 | |
|         return Legal;
 | |
|       }
 | |
|       unsigned I = VT.getSimpleVT();
 | |
|       assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
 | |
|       return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
 | |
|     }
 | |
|     void setTypeAction(MVT VT, LegalizeAction Action) {
 | |
|       unsigned I = VT.getSimpleVT();
 | |
|       assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
 | |
|       ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
 | |
|     }
 | |
|   };
 | |
|   
 | |
|   const ValueTypeActionImpl &getValueTypeActions() const {
 | |
|     return ValueTypeActions;
 | |
|   }
 | |
| 
 | |
|   /// getTypeAction - Return how we should legalize values of this type, either
 | |
|   /// it is already legal (return 'Legal') or we need to promote it to a larger
 | |
|   /// type (return 'Promote'), or we need to expand it into multiple registers
 | |
|   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
 | |
|   LegalizeAction getTypeAction(MVT VT) const {
 | |
|     return ValueTypeActions.getTypeAction(VT);
 | |
|   }
 | |
| 
 | |
|   /// getTypeToTransformTo - For types supported by the target, this is an
 | |
|   /// identity function.  For types that must be promoted to larger types, this
 | |
|   /// returns the larger type to promote to.  For integer types that are larger
 | |
|   /// than the largest integer register, this contains one step in the expansion
 | |
|   /// to get to the smaller register. For illegal floating point types, this
 | |
|   /// returns the integer type to transform to.
 | |
|   MVT getTypeToTransformTo(MVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
 | |
|       MVT NVT = TransformToType[VT.getSimpleVT()];
 | |
|       assert(getTypeAction(NVT) != Promote &&
 | |
|              "Promote may not follow Expand or Promote");
 | |
|       return NVT;
 | |
|     }
 | |
| 
 | |
|     if (VT.isVector()) {
 | |
|       MVT NVT = VT.getPow2VectorType();
 | |
|       if (NVT == VT) {
 | |
|         // Vector length is a power of 2 - split to half the size.
 | |
|         unsigned NumElts = VT.getVectorNumElements();
 | |
|         MVT EltVT = VT.getVectorElementType();
 | |
|         return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
 | |
|       }
 | |
|       // Promote to a power of two size, avoiding multi-step promotion.
 | |
|       return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
 | |
|     } else if (VT.isInteger()) {
 | |
|       MVT NVT = VT.getRoundIntegerType();
 | |
|       if (NVT == VT)
 | |
|         // Size is a power of two - expand to half the size.
 | |
|         return MVT::getIntegerVT(VT.getSizeInBits() / 2);
 | |
|       else
 | |
|         // Promote to a power of two size, avoiding multi-step promotion.
 | |
|         return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
 | |
|     }
 | |
|     assert(0 && "Unsupported extended type!");
 | |
|     return MVT(); // Not reached
 | |
|   }
 | |
| 
 | |
|   /// getTypeToExpandTo - For types supported by the target, this is an
 | |
|   /// identity function.  For types that must be expanded (i.e. integer types
 | |
|   /// that are larger than the largest integer register or illegal floating
 | |
|   /// point types), this returns the largest legal type it will be expanded to.
 | |
|   MVT getTypeToExpandTo(MVT VT) const {
 | |
|     assert(!VT.isVector());
 | |
|     while (true) {
 | |
|       switch (getTypeAction(VT)) {
 | |
|       case Legal:
 | |
|         return VT;
 | |
|       case Expand:
 | |
|         VT = getTypeToTransformTo(VT);
 | |
|         break;
 | |
|       default:
 | |
|         assert(false && "Type is not legal nor is it to be expanded!");
 | |
|         return VT;
 | |
|       }
 | |
|     }
 | |
|     return VT;
 | |
|   }
 | |
| 
 | |
|   /// getVectorTypeBreakdown - Vector types are broken down into some number of
 | |
|   /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
 | |
|   /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
 | |
|   /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
 | |
|   ///
 | |
|   /// This method returns the number of registers needed, and the VT for each
 | |
|   /// register.  It also returns the VT and quantity of the intermediate values
 | |
|   /// before they are promoted/expanded.
 | |
|   ///
 | |
|   unsigned getVectorTypeBreakdown(MVT VT,
 | |
|                                   MVT &IntermediateVT,
 | |
|                                   unsigned &NumIntermediates,
 | |
|                                   MVT &RegisterVT) const;
 | |
| 
 | |
|   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
 | |
|   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
 | |
|   /// this is the case, it returns true and store the intrinsic
 | |
|   /// information into the IntrinsicInfo that was passed to the function.
 | |
|   typedef struct IntrinsicInfo { 
 | |
|     unsigned     opc;         // target opcode
 | |
|     MVT          memVT;       // memory VT
 | |
|     const Value* ptrVal;      // value representing memory location
 | |
|     int          offset;      // offset off of ptrVal 
 | |
|     unsigned     align;       // alignment
 | |
|     bool         vol;         // is volatile?
 | |
|     bool         readMem;     // reads memory?
 | |
|     bool         writeMem;    // writes memory?
 | |
|   } IntrinisicInfo;
 | |
| 
 | |
|   virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
 | |
|                                   CallInst &I, unsigned Intrinsic) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getWidenVectorType: given a vector type, returns the type to widen to
 | |
|   /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
 | |
|   /// If there is no vector type that we want to widen to, returns MVT::Other
 | |
|   /// When and were to widen is target dependent based on the cost of
 | |
|   /// scalarizing vs using the wider vector type.
 | |
|   virtual MVT getWidenVectorType(MVT VT) const;
 | |
| 
 | |
|   typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
 | |
|   legal_fpimm_iterator legal_fpimm_begin() const {
 | |
|     return LegalFPImmediates.begin();
 | |
|   }
 | |
|   legal_fpimm_iterator legal_fpimm_end() const {
 | |
|     return LegalFPImmediates.end();
 | |
|   }
 | |
|   
 | |
|   /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
|   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
|   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
|   /// are assumed to be legal.
 | |
|   virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
 | |
|   /// used by Targets can use this to indicate if there is a suitable
 | |
|   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
 | |
|   /// pool entry.
 | |
|   virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
 | |
|                                       MVT EVT,
 | |
|                                       SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getOperationAction - Return how this operation should be treated: either
 | |
|   /// it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
 | |
|     if (VT.isExtended()) return Expand;
 | |
|     assert(Op < array_lengthof(OpActions) &&
 | |
|            (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
 | |
|   }
 | |
| 
 | |
|   /// isOperationLegalOrCustom - Return true if the specified operation is
 | |
|   /// legal on this target or can be made legal with custom lowering. This
 | |
|   /// is used to help guide high-level lowering decisions.
 | |
|   bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|       (getOperationAction(Op, VT) == Legal ||
 | |
|        getOperationAction(Op, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// isOperationLegal - Return true if the specified operation is legal on this
 | |
|   /// target.
 | |
|   bool isOperationLegal(unsigned Op, MVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|            getOperationAction(Op, VT) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// getLoadExtAction - Return how this load with extension should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
 | |
|     assert(LType < array_lengthof(LoadExtActions) &&
 | |
|            (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
 | |
|   }
 | |
| 
 | |
|   /// isLoadExtLegal - Return true if the specified load with extension is legal
 | |
|   /// on this target.
 | |
|   bool isLoadExtLegal(unsigned LType, MVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getLoadExtAction(LType, VT) == Legal ||
 | |
|        getLoadExtAction(LType, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getTruncStoreAction - Return how this store with truncation should be
 | |
|   /// treated: either it is legal, needs to be promoted to a larger size, needs
 | |
|   /// to be expanded to some other code sequence, or the target has a custom
 | |
|   /// expander for it.
 | |
|   LegalizeAction getTruncStoreAction(MVT ValVT,
 | |
|                                      MVT MemVT) const {
 | |
|     assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
 | |
|            (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
 | |
|                              (2*MemVT.getSimpleVT())) & 3);
 | |
|   }
 | |
| 
 | |
|   /// isTruncStoreLegal - Return true if the specified store with truncation is
 | |
|   /// legal on this target.
 | |
|   bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
 | |
|     return isTypeLegal(ValVT) && MemVT.isSimple() &&
 | |
|       (getTruncStoreAction(ValVT, MemVT) == Legal ||
 | |
|        getTruncStoreAction(ValVT, MemVT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getIndexedLoadAction - Return how the indexed load should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction
 | |
|   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
 | |
|     assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
 | |
|            (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
 | |
|                              (2*VT.getSimpleVT())) & 3);
 | |
|   }
 | |
| 
 | |
|   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
 | |
|   /// on this target.
 | |
|   bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getIndexedLoadAction(IdxMode, VT) == Legal ||
 | |
|        getIndexedLoadAction(IdxMode, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getIndexedStoreAction - Return how the indexed store should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction
 | |
|   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
 | |
|     assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
 | |
|            (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
 | |
|                              (2*VT.getSimpleVT())) & 3);
 | |
|   }  
 | |
| 
 | |
|   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
 | |
|   /// on this target.
 | |
|   bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getIndexedStoreAction(IdxMode, VT) == Legal ||
 | |
|        getIndexedStoreAction(IdxMode, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getConvertAction - Return how the conversion should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction
 | |
|   getConvertAction(MVT FromVT, MVT ToVT) const {
 | |
|     assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
 | |
|            (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
 | |
|                              (2*ToVT.getSimpleVT())) & 3);
 | |
|   }
 | |
| 
 | |
|   /// isConvertLegal - Return true if the specified conversion is legal
 | |
|   /// on this target.
 | |
|   bool isConvertLegal(MVT FromVT, MVT ToVT) const {
 | |
|     return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
 | |
|       (getConvertAction(FromVT, ToVT) == Legal ||
 | |
|        getConvertAction(FromVT, ToVT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getCondCodeAction - Return how the condition code should be treated:
 | |
|   /// either it is legal, needs to be expanded to some other code sequence,
 | |
|   /// or the target has a custom expander for it.
 | |
|   LegalizeAction
 | |
|   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
 | |
|     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
 | |
|            (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     LegalizeAction Action = (LegalizeAction)
 | |
|       ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
 | |
|     assert(Action != Promote && "Can't promote condition code!");
 | |
|     return Action;
 | |
|   }
 | |
| 
 | |
|   /// isCondCodeLegal - Return true if the specified condition code is legal
 | |
|   /// on this target.
 | |
|   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
 | |
|     return getCondCodeAction(CC, VT) == Legal ||
 | |
|            getCondCodeAction(CC, VT) == Custom;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// getTypeToPromoteTo - If the action for this operation is to promote, this
 | |
|   /// method returns the ValueType to promote to.
 | |
|   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
 | |
|     assert(getOperationAction(Op, VT) == Promote &&
 | |
|            "This operation isn't promoted!");
 | |
| 
 | |
|     // See if this has an explicit type specified.
 | |
|     std::map<std::pair<unsigned, MVT::SimpleValueType>,
 | |
|              MVT::SimpleValueType>::const_iterator PTTI =
 | |
|       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
 | |
|     if (PTTI != PromoteToType.end()) return PTTI->second;
 | |
| 
 | |
|     assert((VT.isInteger() || VT.isFloatingPoint()) &&
 | |
|            "Cannot autopromote this type, add it with AddPromotedToType.");
 | |
|     
 | |
|     MVT NVT = VT;
 | |
|     do {
 | |
|       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
 | |
|       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
 | |
|              "Didn't find type to promote to!");
 | |
|     } while (!isTypeLegal(NVT) ||
 | |
|               getOperationAction(Op, NVT) == Promote);
 | |
|     return NVT;
 | |
|   }
 | |
| 
 | |
|   /// getValueType - Return the MVT corresponding to this LLVM type.
 | |
|   /// This is fixed by the LLVM operations except for the pointer size.  If
 | |
|   /// AllowUnknown is true, this will return MVT::Other for types with no MVT
 | |
|   /// counterpart (e.g. structs), otherwise it will assert.
 | |
|   MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
 | |
|     MVT VT = MVT::getMVT(Ty, AllowUnknown);
 | |
|     return VT == MVT::iPTR ? PointerTy : VT;
 | |
|   }
 | |
| 
 | |
|   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
|   /// function arguments in the caller parameter area.  This is the actual
 | |
|   /// alignment, not its logarithm.
 | |
|   virtual unsigned getByValTypeAlignment(const Type *Ty) const;
 | |
|   
 | |
|   /// getRegisterType - Return the type of registers that this ValueType will
 | |
|   /// eventually require.
 | |
|   MVT getRegisterType(MVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
 | |
|       return RegisterTypeForVT[VT.getSimpleVT()];
 | |
|     }
 | |
|     if (VT.isVector()) {
 | |
|       MVT VT1, RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
 | |
|       return RegisterVT;
 | |
|     }
 | |
|     if (VT.isInteger()) {
 | |
|       return getRegisterType(getTypeToTransformTo(VT));
 | |
|     }
 | |
|     assert(0 && "Unsupported extended type!");
 | |
|     return MVT(); // Not reached
 | |
|   }
 | |
| 
 | |
|   /// getNumRegisters - Return the number of registers that this ValueType will
 | |
|   /// eventually require.  This is one for any types promoted to live in larger
 | |
|   /// registers, but may be more than one for types (like i64) that are split
 | |
|   /// into pieces.  For types like i140, which are first promoted then expanded,
 | |
|   /// it is the number of registers needed to hold all the bits of the original
 | |
|   /// type.  For an i140 on a 32 bit machine this means 5 registers.
 | |
|   unsigned getNumRegisters(MVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
 | |
|       return NumRegistersForVT[VT.getSimpleVT()];
 | |
|     }
 | |
|     if (VT.isVector()) {
 | |
|       MVT VT1, VT2;
 | |
|       unsigned NumIntermediates;
 | |
|       return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
 | |
|     }
 | |
|     if (VT.isInteger()) {
 | |
|       unsigned BitWidth = VT.getSizeInBits();
 | |
|       unsigned RegWidth = getRegisterType(VT).getSizeInBits();
 | |
|       return (BitWidth + RegWidth - 1) / RegWidth;
 | |
|     }
 | |
|     assert(0 && "Unsupported extended type!");
 | |
|     return 0; // Not reached
 | |
|   }
 | |
| 
 | |
|   /// ShouldShrinkFPConstant - If true, then instruction selection should
 | |
|   /// seek to shrink the FP constant of the specified type to a smaller type
 | |
|   /// in order to save space and / or reduce runtime.
 | |
|   virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
 | |
| 
 | |
|   /// hasTargetDAGCombine - If true, the target has custom DAG combine
 | |
|   /// transformations that it can perform for the specified node.
 | |
|   bool hasTargetDAGCombine(ISD::NodeType NT) const {
 | |
|     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
 | |
|     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
 | |
|   }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memset. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memset
 | |
|   unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memcpy. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memcpy
 | |
|   unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memmove. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memmove
 | |
|   unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
 | |
| 
 | |
|   /// This function returns true if the target allows unaligned memory accesses.
 | |
|   /// This is used, for example, in situations where an array copy/move/set is 
 | |
|   /// converted to a sequence of store operations. It's use helps to ensure that
 | |
|   /// such replacements don't generate code that causes an alignment error 
 | |
|   /// (trap) on the target machine. 
 | |
|   /// @brief Determine if the target supports unaligned memory accesses.
 | |
|   bool allowsUnalignedMemoryAccesses() const {
 | |
|     return allowUnalignedMemoryAccesses;
 | |
|   }
 | |
| 
 | |
|   /// getOptimalMemOpType - Returns the target specific optimal type for load
 | |
|   /// and store operations as a result of memset, memcpy, and memmove lowering.
 | |
|   /// It returns MVT::iAny if SelectionDAG should be responsible for
 | |
|   /// determining it.
 | |
|   virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
 | |
|                                   bool isSrcConst, bool isSrcStr) const {
 | |
|     return MVT::iAny;
 | |
|   }
 | |
|   
 | |
|   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
 | |
|   /// to implement llvm.setjmp.
 | |
|   bool usesUnderscoreSetJmp() const {
 | |
|     return UseUnderscoreSetJmp;
 | |
|   }
 | |
| 
 | |
|   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
 | |
|   /// to implement llvm.longjmp.
 | |
|   bool usesUnderscoreLongJmp() const {
 | |
|     return UseUnderscoreLongJmp;
 | |
|   }
 | |
| 
 | |
|   /// getStackPointerRegisterToSaveRestore - If a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   unsigned getStackPointerRegisterToSaveRestore() const {
 | |
|     return StackPointerRegisterToSaveRestore;
 | |
|   }
 | |
| 
 | |
|   /// getExceptionAddressRegister - If a physical register, this returns
 | |
|   /// the register that receives the exception address on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned getExceptionAddressRegister() const {
 | |
|     return ExceptionPointerRegister;
 | |
|   }
 | |
| 
 | |
|   /// getExceptionSelectorRegister - If a physical register, this returns
 | |
|   /// the register that receives the exception typeid on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned getExceptionSelectorRegister() const {
 | |
|     return ExceptionSelectorRegister;
 | |
|   }
 | |
| 
 | |
|   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
 | |
|   /// set, the default is 200)
 | |
|   unsigned getJumpBufSize() const {
 | |
|     return JumpBufSize;
 | |
|   }
 | |
| 
 | |
|   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
 | |
|   /// (if never set, the default is 0)
 | |
|   unsigned getJumpBufAlignment() const {
 | |
|     return JumpBufAlignment;
 | |
|   }
 | |
| 
 | |
|   /// getIfCvtBlockLimit - returns the target specific if-conversion block size
 | |
|   /// limit. Any block whose size is greater should not be predicated.
 | |
|   unsigned getIfCvtBlockSizeLimit() const {
 | |
|     return IfCvtBlockSizeLimit;
 | |
|   }
 | |
| 
 | |
|   /// getIfCvtDupBlockLimit - returns the target specific size limit for a
 | |
|   /// block to be considered for duplication. Any block whose size is greater
 | |
|   /// should not be duplicated to facilitate its predication.
 | |
|   unsigned getIfCvtDupBlockSizeLimit() const {
 | |
|     return IfCvtDupBlockSizeLimit;
 | |
|   }
 | |
| 
 | |
|   /// getPrefLoopAlignment - return the preferred loop alignment.
 | |
|   ///
 | |
|   unsigned getPrefLoopAlignment() const {
 | |
|     return PrefLoopAlignment;
 | |
|   }
 | |
|   
 | |
|   /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
|   /// offset pointer and addressing mode by reference if the node's address
 | |
|   /// can be legally represented as pre-indexed load / store address.
 | |
|   virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                          SDValue &Offset,
 | |
|                                          ISD::MemIndexedMode &AM,
 | |
|                                          SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
|   /// offset pointer and addressing mode by reference if this node can be
 | |
|   /// combined with a load / store to form a post-indexed load / store.
 | |
|   virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                           SDValue &Base, SDValue &Offset,
 | |
|                                           ISD::MemIndexedMode &AM,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
 | |
|   /// jumptable.
 | |
|   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
 | |
|                                              SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// isOffsetFoldingLegal - Return true if folding a constant offset
 | |
|   /// with the given GlobalAddress is legal.  It is frequently not legal in
 | |
|   /// PIC relocation models.
 | |
|   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Optimization Methods
 | |
|   //
 | |
|   
 | |
|   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
 | |
|   /// SDValues for returning information from TargetLowering to its clients
 | |
|   /// that want to combine 
 | |
|   struct TargetLoweringOpt {
 | |
|     SelectionDAG &DAG;
 | |
|     SDValue Old;
 | |
|     SDValue New;
 | |
| 
 | |
|     explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
 | |
|     
 | |
|     bool CombineTo(SDValue O, SDValue N) { 
 | |
|       Old = O; 
 | |
|       New = N; 
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
|     /// specified instruction is a constant integer.  If so, check to see if
 | |
|     /// there are any bits set in the constant that are not demanded.  If so,
 | |
|     /// shrink the constant and return true.
 | |
|     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
 | |
|   };
 | |
|                                                 
 | |
|   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
|   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
|   /// use this information to simplify Op, create a new simplified DAG node and
 | |
|   /// return true, returning the original and new nodes in Old and New. 
 | |
|   /// Otherwise, analyze the expression and return a mask of KnownOne and 
 | |
|   /// KnownZero bits for the expression (used to simplify the caller).  
 | |
|   /// The KnownZero/One bits may only be accurate for those bits in the 
 | |
|   /// DemandedMask.
 | |
|   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 
 | |
|                             APInt &KnownZero, APInt &KnownOne,
 | |
|                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
 | |
|   
 | |
|   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
 | |
|   /// Mask are known to be either zero or one and return them in the 
 | |
|   /// KnownZero/KnownOne bitsets.
 | |
|   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                               const APInt &Mask,
 | |
|                                               APInt &KnownZero, 
 | |
|                                               APInt &KnownOne,
 | |
|                                               const SelectionDAG &DAG,
 | |
|                                               unsigned Depth = 0) const;
 | |
| 
 | |
|   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 | |
|   /// targets that want to expose additional information about sign bits to the
 | |
|   /// DAG Combiner.
 | |
|   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                    unsigned Depth = 0) const;
 | |
|   
 | |
|   struct DAGCombinerInfo {
 | |
|     void *DC;  // The DAG Combiner object.
 | |
|     bool BeforeLegalize;
 | |
|     bool CalledByLegalizer;
 | |
|   public:
 | |
|     SelectionDAG &DAG;
 | |
|     
 | |
|     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
 | |
|       : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
 | |
|     
 | |
|     bool isBeforeLegalize() const { return BeforeLegalize; }
 | |
|     bool isCalledByLegalizer() const { return CalledByLegalizer; }
 | |
|     
 | |
|     void AddToWorklist(SDNode *N);
 | |
|     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To);
 | |
|     SDValue CombineTo(SDNode *N, SDValue Res);
 | |
|     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1);
 | |
| 
 | |
|     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
 | |
|   };
 | |
| 
 | |
|   /// SimplifySetCC - Try to simplify a setcc built with the specified operands 
 | |
|   /// and cc. If it is unable to simplify it, return a null SDValue.
 | |
|   SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
 | |
|                           ISD::CondCode Cond, bool foldBooleans,
 | |
|                           DAGCombinerInfo &DCI, DebugLoc dl) const;
 | |
| 
 | |
|   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
|   /// node is a GlobalAddress + offset.
 | |
|   virtual bool
 | |
|   isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
 | |
| 
 | |
|   /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
 | |
|   /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
 | |
|   /// location that the 'Base' load is loading from.
 | |
|   bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
 | |
|                          const MachineFrameInfo *MFI) const;
 | |
| 
 | |
|   /// PerformDAGCombine - This method will be invoked for all target nodes and
 | |
|   /// for any target-independent nodes that the target has registered with
 | |
|   /// invoke it for.
 | |
|   ///
 | |
|   /// The semantics are as follows:
 | |
|   /// Return Value:
 | |
|   ///   SDValue.Val == 0   - No change was made
 | |
|   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
 | |
|   ///   otherwise          - N should be replaced by the returned Operand.
 | |
|   ///
 | |
|   /// In addition, methods provided by DAGCombinerInfo may be used to perform
 | |
|   /// more complex transformations.
 | |
|   ///
 | |
|   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Configuration Methods - These methods should be invoked by
 | |
|   // the derived class constructor to configure this object for the target.
 | |
|   //
 | |
| 
 | |
| protected:
 | |
|   /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
 | |
|   /// GOT for PC-relative code.
 | |
|   void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
 | |
| 
 | |
|   /// setShiftAmountType - Describe the type that should be used for shift
 | |
|   /// amounts.  This type defaults to the pointer type.
 | |
|   void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
 | |
| 
 | |
|   /// setBooleanContents - Specify how the target extends the result of a
 | |
|   /// boolean value from i1 to a wider type.  See getBooleanContents.
 | |
|   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
 | |
| 
 | |
|   /// setSchedulingPreference - Specify the target scheduling preference.
 | |
|   void setSchedulingPreference(SchedPreference Pref) {
 | |
|     SchedPreferenceInfo = Pref;
 | |
|   }
 | |
| 
 | |
|   /// setShiftAmountFlavor - Describe how the target handles out of range shift
 | |
|   /// amounts.
 | |
|   void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
 | |
|     ShiftAmtHandling = OORSA;
 | |
|   }
 | |
| 
 | |
|   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
 | |
|   /// use _setjmp to implement llvm.setjmp or the non _ version.
 | |
|   /// Defaults to false.
 | |
|   void setUseUnderscoreSetJmp(bool Val) {
 | |
|     UseUnderscoreSetJmp = Val;
 | |
|   }
 | |
| 
 | |
|   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
 | |
|   /// use _longjmp to implement llvm.longjmp or the non _ version.
 | |
|   /// Defaults to false.
 | |
|   void setUseUnderscoreLongJmp(bool Val) {
 | |
|     UseUnderscoreLongJmp = Val;
 | |
|   }
 | |
| 
 | |
|   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   void setStackPointerRegisterToSaveRestore(unsigned R) {
 | |
|     StackPointerRegisterToSaveRestore = R;
 | |
|   }
 | |
|   
 | |
|   /// setExceptionPointerRegister - If set to a physical register, this sets
 | |
|   /// the register that receives the exception address on entry to a landing
 | |
|   /// pad.
 | |
|   void setExceptionPointerRegister(unsigned R) {
 | |
|     ExceptionPointerRegister = R;
 | |
|   }
 | |
| 
 | |
|   /// setExceptionSelectorRegister - If set to a physical register, this sets
 | |
|   /// the register that receives the exception typeid on entry to a landing
 | |
|   /// pad.
 | |
|   void setExceptionSelectorRegister(unsigned R) {
 | |
|     ExceptionSelectorRegister = R;
 | |
|   }
 | |
| 
 | |
|   /// SelectIsExpensive - Tells the code generator not to expand operations
 | |
|   /// into sequences that use the select operations if possible.
 | |
|   void setSelectIsExpensive() { SelectIsExpensive = true; }
 | |
| 
 | |
|   /// setIntDivIsCheap - Tells the code generator that integer divide is
 | |
|   /// expensive, and if possible, should be replaced by an alternate sequence
 | |
|   /// of instructions not containing an integer divide.
 | |
|   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
 | |
|   
 | |
|   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
 | |
|   /// srl/add/sra for a signed divide by power of two, and let the target handle
 | |
|   /// it.
 | |
|   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
 | |
|   
 | |
|   /// addRegisterClass - Add the specified register class as an available
 | |
|   /// regclass for the specified value type.  This indicates the selector can
 | |
|   /// handle values of that class natively.
 | |
|   void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
 | |
|     assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
 | |
|     AvailableRegClasses.push_back(std::make_pair(VT, RC));
 | |
|     RegClassForVT[VT.getSimpleVT()] = RC;
 | |
|   }
 | |
| 
 | |
|   /// computeRegisterProperties - Once all of the register classes are added,
 | |
|   /// this allows us to compute derived properties we expose.
 | |
|   void computeRegisterProperties();
 | |
| 
 | |
|   /// setOperationAction - Indicate that the specified operation does not work
 | |
|   /// with the specified type and indicate what to do about it.
 | |
|   void setOperationAction(unsigned Op, MVT VT,
 | |
|                           LegalizeAction Action) {
 | |
|     assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
 | |
|            Op < array_lengthof(OpActions) && "Table isn't big enough!");
 | |
|     OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
 | |
|     OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
 | |
|   }
 | |
|   
 | |
|   /// setLoadExtAction - Indicate that the specified load with extension does
 | |
|   /// not work with the with specified type and indicate what to do about it.
 | |
|   void setLoadExtAction(unsigned ExtType, MVT VT,
 | |
|                       LegalizeAction Action) {
 | |
|     assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
 | |
|            ExtType < array_lengthof(LoadExtActions) &&
 | |
|            "Table isn't big enough!");
 | |
|     LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
 | |
|     LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
 | |
|   }
 | |
|   
 | |
|   /// setTruncStoreAction - Indicate that the specified truncating store does
 | |
|   /// not work with the with specified type and indicate what to do about it.
 | |
|   void setTruncStoreAction(MVT ValVT, MVT MemVT,
 | |
|                            LegalizeAction Action) {
 | |
|     assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
 | |
|            (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
 | |
|                                                 MemVT.getSimpleVT()*2);
 | |
|     TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
 | |
|       MemVT.getSimpleVT()*2;
 | |
|   }
 | |
| 
 | |
|   /// setIndexedLoadAction - Indicate that the specified indexed load does or
 | |
|   /// does not work with the with specified type and indicate what to do abort
 | |
|   /// it. NOTE: All indexed mode loads are initialized to Expand in
 | |
|   /// TargetLowering.cpp
 | |
|   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
 | |
|                             LegalizeAction Action) {
 | |
|     assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
 | |
|            IdxMode < array_lengthof(IndexedModeActions[0]) &&
 | |
|            "Table isn't big enough!");
 | |
|     IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
 | |
|     IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
 | |
|   }
 | |
|   
 | |
|   /// setIndexedStoreAction - Indicate that the specified indexed store does or
 | |
|   /// does not work with the with specified type and indicate what to do about
 | |
|   /// it. NOTE: All indexed mode stores are initialized to Expand in
 | |
|   /// TargetLowering.cpp
 | |
|   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
 | |
|                              LegalizeAction Action) {
 | |
|     assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
 | |
|            IdxMode < array_lengthof(IndexedModeActions[1]) &&
 | |
|            "Table isn't big enough!");
 | |
|     IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
 | |
|     IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
 | |
|   }
 | |
|   
 | |
|   /// setConvertAction - Indicate that the specified conversion does or does
 | |
|   /// not work with the with specified type and indicate what to do about it.
 | |
|   void setConvertAction(MVT FromVT, MVT ToVT,
 | |
|                         LegalizeAction Action) {
 | |
|     assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
 | |
|            (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
 | |
|                                               ToVT.getSimpleVT()*2);
 | |
|     ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
 | |
|       ToVT.getSimpleVT()*2;
 | |
|   }
 | |
| 
 | |
|   /// setCondCodeAction - Indicate that the specified condition code is or isn't
 | |
|   /// supported on the target and indicate what to do about it.
 | |
|   void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
 | |
|     assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
 | |
|            (unsigned)CC < array_lengthof(CondCodeActions) &&
 | |
|            "Table isn't big enough!");
 | |
|     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
 | |
|     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
 | |
|   }
 | |
| 
 | |
|   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
 | |
|   /// promotion code defaults to trying a larger integer/fp until it can find
 | |
|   /// one that works.  If that default is insufficient, this method can be used
 | |
|   /// by the target to override the default.
 | |
|   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
 | |
|     PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
 | |
|       DestVT.getSimpleVT();
 | |
|   }
 | |
| 
 | |
|   /// addLegalFPImmediate - Indicate that this target can instruction select
 | |
|   /// the specified FP immediate natively.
 | |
|   void addLegalFPImmediate(const APFloat& Imm) {
 | |
|     LegalFPImmediates.push_back(Imm);
 | |
|   }
 | |
| 
 | |
|   /// setTargetDAGCombine - Targets should invoke this method for each target
 | |
|   /// independent node that they want to provide a custom DAG combiner for by
 | |
|   /// implementing the PerformDAGCombine virtual method.
 | |
|   void setTargetDAGCombine(ISD::NodeType NT) {
 | |
|     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
 | |
|     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
 | |
|   }
 | |
|   
 | |
|   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
 | |
|   /// bytes); default is 200
 | |
|   void setJumpBufSize(unsigned Size) {
 | |
|     JumpBufSize = Size;
 | |
|   }
 | |
| 
 | |
|   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
 | |
|   /// alignment (in bytes); default is 0
 | |
|   void setJumpBufAlignment(unsigned Align) {
 | |
|     JumpBufAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
 | |
|   /// limit (in number of instructions); default is 2.
 | |
|   void setIfCvtBlockSizeLimit(unsigned Limit) {
 | |
|     IfCvtBlockSizeLimit = Limit;
 | |
|   }
 | |
|   
 | |
|   /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
 | |
|   /// of instructions) to be considered for code duplication during
 | |
|   /// if-conversion; default is 2.
 | |
|   void setIfCvtDupBlockSizeLimit(unsigned Limit) {
 | |
|     IfCvtDupBlockSizeLimit = Limit;
 | |
|   }
 | |
| 
 | |
|   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
 | |
|   /// alignment is zero, it means the target does not care about loop alignment.
 | |
|   void setPrefLoopAlignment(unsigned Align) {
 | |
|     PrefLoopAlignment = Align;
 | |
|   }
 | |
|   
 | |
| public:
 | |
| 
 | |
|   virtual const TargetSubtarget *getSubtarget() {
 | |
|     assert(0 && "Not Implemented");
 | |
|     return NULL;    // this is here to silence compiler errors
 | |
|   }
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Lowering methods - These methods must be implemented by targets so that
 | |
|   // the SelectionDAGLowering code knows how to lower these.
 | |
|   //
 | |
| 
 | |
|   /// LowerArguments - This hook must be implemented to indicate how we should
 | |
|   /// lower the arguments for the specified function, into the specified DAG.
 | |
|   virtual void
 | |
|   LowerArguments(Function &F, SelectionDAG &DAG,
 | |
|                  SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
 | |
| 
 | |
|   /// LowerCallTo - This hook lowers an abstract call to a function into an
 | |
|   /// actual call.  This returns a pair of operands.  The first element is the
 | |
|   /// return value for the function (if RetTy is not VoidTy).  The second
 | |
|   /// element is the outgoing token chain.
 | |
|   struct ArgListEntry {
 | |
|     SDValue Node;
 | |
|     const Type* Ty;
 | |
|     bool isSExt  : 1;
 | |
|     bool isZExt  : 1;
 | |
|     bool isInReg : 1;
 | |
|     bool isSRet  : 1;
 | |
|     bool isNest  : 1;
 | |
|     bool isByVal : 1;
 | |
|     uint16_t Alignment;
 | |
| 
 | |
|     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
 | |
|       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
 | |
|   };
 | |
|   typedef std::vector<ArgListEntry> ArgListTy;
 | |
|   virtual std::pair<SDValue, SDValue>
 | |
|   LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
 | |
|               bool isVarArg, bool isInreg, unsigned CallingConv, 
 | |
|               bool isTailCall, SDValue Callee, ArgListTy &Args, 
 | |
|               SelectionDAG &DAG, DebugLoc dl);
 | |
| 
 | |
|   /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
 | |
|   /// memcpy. This can be used by targets to provide code sequences for cases
 | |
|   /// that don't fit the target's parameters for simple loads/stores and can be
 | |
|   /// more efficient than using a library call. This function can return a null
 | |
|   /// SDValue if the target declines to use custom code and a different
 | |
|   /// lowering strategy should be used.
 | |
|   /// 
 | |
|   /// If AlwaysInline is true, the size is constant and the target should not
 | |
|   /// emit any calls and is strongly encouraged to attempt to emit inline code
 | |
|   /// even if it is beyond the usual threshold because this intrinsic is being
 | |
|   /// expanded in a place where calls are not feasible (e.g. within the prologue
 | |
|   /// for another call). If the target chooses to decline an AlwaysInline
 | |
|   /// request here, legalize will resort to using simple loads and stores.
 | |
|   virtual SDValue
 | |
|   EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
 | |
|                           SDValue Chain,
 | |
|                           SDValue Op1, SDValue Op2,
 | |
|                           SDValue Op3, unsigned Align,
 | |
|                           bool AlwaysInline,
 | |
|                           const Value *DstSV, uint64_t DstOff,
 | |
|                           const Value *SrcSV, uint64_t SrcOff) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
 | |
|   /// memmove. This can be used by targets to provide code sequences for cases
 | |
|   /// that don't fit the target's parameters for simple loads/stores and can be
 | |
|   /// more efficient than using a library call. This function can return a null
 | |
|   /// SDValue if the target declines to use custom code and a different
 | |
|   /// lowering strategy should be used.
 | |
|   virtual SDValue
 | |
|   EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
 | |
|                            SDValue Chain,
 | |
|                            SDValue Op1, SDValue Op2,
 | |
|                            SDValue Op3, unsigned Align,
 | |
|                            const Value *DstSV, uint64_t DstOff,
 | |
|                            const Value *SrcSV, uint64_t SrcOff) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   /// EmitTargetCodeForMemset - Emit target-specific code that performs a
 | |
|   /// memset. This can be used by targets to provide code sequences for cases
 | |
|   /// that don't fit the target's parameters for simple stores and can be more
 | |
|   /// efficient than using a library call. This function can return a null
 | |
|   /// SDValue if the target declines to use custom code and a different
 | |
|   /// lowering strategy should be used.
 | |
|   virtual SDValue
 | |
|   EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
 | |
|                           SDValue Chain,
 | |
|                           SDValue Op1, SDValue Op2,
 | |
|                           SDValue Op3, unsigned Align,
 | |
|                           const Value *DstSV, uint64_t DstOff) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   /// LowerOperationWrapper - This callback is invoked by the type legalizer
 | |
|   /// to legalize nodes with an illegal operand type but legal result types.
 | |
|   /// It replaces the LowerOperation callback in the type Legalizer.
 | |
|   /// The reason we can not do away with LowerOperation entirely is that
 | |
|   /// LegalizeDAG isn't yet ready to use this callback.
 | |
|   /// TODO: Consider merging with ReplaceNodeResults.
 | |
| 
 | |
|   /// The target places new result values for the node in Results (their number
 | |
|   /// and types must exactly match those of the original return values of
 | |
|   /// the node), or leaves Results empty, which indicates that the node is not
 | |
|   /// to be custom lowered after all.
 | |
|   /// The default implementation calls LowerOperation.
 | |
|   virtual void LowerOperationWrapper(SDNode *N,
 | |
|                                      SmallVectorImpl<SDValue> &Results,
 | |
|                                      SelectionDAG &DAG);
 | |
| 
 | |
|   /// LowerOperation - This callback is invoked for operations that are 
 | |
|   /// unsupported by the target, which are registered to use 'custom' lowering,
 | |
|   /// and whose defined values are all legal.
 | |
|   /// If the target has no operations that require custom lowering, it need not
 | |
|   /// implement this.  The default implementation of this aborts.
 | |
|   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
 | |
| 
 | |
|   /// ReplaceNodeResults - This callback is invoked when a node result type is
 | |
|   /// illegal for the target, and the operation was registered to use 'custom'
 | |
|   /// lowering for that result type.  The target places new result values for
 | |
|   /// the node in Results (their number and types must exactly match those of
 | |
|   /// the original return values of the node), or leaves Results empty, which
 | |
|   /// indicates that the node is not to be custom lowered after all.
 | |
|   ///
 | |
|   /// If the target has no operations that require custom lowering, it need not
 | |
|   /// implement this.  The default implementation aborts.
 | |
|   virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
 | |
|                                   SelectionDAG &DAG) {
 | |
|     assert(0 && "ReplaceNodeResults not implemented for this target!");
 | |
|   }
 | |
| 
 | |
|   /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
 | |
|   /// tail call optimization. Targets which want to do tail call optimization
 | |
|   /// should override this function. 
 | |
|   virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call, 
 | |
|                                                  SDValue Ret, 
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
 | |
|   /// preceeds the RET node and whether the return uses the result of the node
 | |
|   /// or is a void return. This function can be used by the target to determine
 | |
|   /// eligiblity of tail call optimization.
 | |
|   static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) {
 | |
|     unsigned NumOps = Ret.getNumOperands();
 | |
|     if ((NumOps == 1 &&
 | |
|        (Ret.getOperand(0) == SDValue(TheCall,1) ||
 | |
|         Ret.getOperand(0) == SDValue(TheCall,0))) ||
 | |
|       (NumOps > 1 &&
 | |
|        Ret.getOperand(0) == SDValue(TheCall,
 | |
|                                     TheCall->getNumValues()-1) &&
 | |
|        Ret.getOperand(1) == SDValue(TheCall,0)))
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
 | |
|   /// it exists. Skip a possible ISD::TokenFactor.
 | |
|   static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
 | |
|                                                  unsigned TailCallNodeOpCode) {
 | |
|     if (Chain.getOpcode() == TailCallNodeOpCode) {
 | |
|       return Chain;
 | |
|     } else if (Chain.getOpcode() == ISD::TokenFactor) {
 | |
|       if (Chain.getNumOperands() &&
 | |
|           Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
 | |
|         return Chain.getOperand(0);
 | |
|     }
 | |
|     return Chain;
 | |
|   }
 | |
| 
 | |
|   /// getTargetNodeName() - This method returns the name of a target specific
 | |
|   /// DAG node.
 | |
|   virtual const char *getTargetNodeName(unsigned Opcode) const;
 | |
| 
 | |
|   /// createFastISel - This method returns a target specific FastISel object,
 | |
|   /// or null if the target does not support "fast" ISel.
 | |
|   virtual FastISel *
 | |
|   createFastISel(MachineFunction &,
 | |
|                  MachineModuleInfo *, DwarfWriter *,
 | |
|                  DenseMap<const Value *, unsigned> &,
 | |
|                  DenseMap<const BasicBlock *, MachineBasicBlock *> &,
 | |
|                  DenseMap<const AllocaInst *, int> &
 | |
| #ifndef NDEBUG
 | |
|                  , SmallSet<Instruction*, 8> &CatchInfoLost
 | |
| #endif
 | |
|                  ) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Inline Asm Support hooks
 | |
|   //
 | |
|   
 | |
|   enum ConstraintType {
 | |
|     C_Register,            // Constraint represents specific register(s).
 | |
|     C_RegisterClass,       // Constraint represents any of register(s) in class.
 | |
|     C_Memory,              // Memory constraint.
 | |
|     C_Other,               // Something else.
 | |
|     C_Unknown              // Unsupported constraint.
 | |
|   };
 | |
|   
 | |
|   /// AsmOperandInfo - This contains information for each constraint that we are
 | |
|   /// lowering.
 | |
|   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
 | |
|     /// ConstraintCode - This contains the actual string for the code, like "m".
 | |
|     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
 | |
|     /// most closely matches the operand.
 | |
|     std::string ConstraintCode;
 | |
| 
 | |
|     /// ConstraintType - Information about the constraint code, e.g. Register,
 | |
|     /// RegisterClass, Memory, Other, Unknown.
 | |
|     TargetLowering::ConstraintType ConstraintType;
 | |
|   
 | |
|     /// CallOperandval - If this is the result output operand or a
 | |
|     /// clobber, this is null, otherwise it is the incoming operand to the
 | |
|     /// CallInst.  This gets modified as the asm is processed.
 | |
|     Value *CallOperandVal;
 | |
|   
 | |
|     /// ConstraintVT - The ValueType for the operand value.
 | |
|     MVT ConstraintVT;
 | |
|     
 | |
|     /// isMatchingInputConstraint - Return true of this is an input operand that
 | |
|     /// is a matching constraint like "4".
 | |
|     bool isMatchingInputConstraint() const;
 | |
|     
 | |
|     /// getMatchedOperand - If this is an input matching constraint, this method
 | |
|     /// returns the output operand it matches.
 | |
|     unsigned getMatchedOperand() const;
 | |
|   
 | |
|     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
 | |
|       : InlineAsm::ConstraintInfo(info), 
 | |
|         ConstraintType(TargetLowering::C_Unknown),
 | |
|         CallOperandVal(0), ConstraintVT(MVT::Other) {
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// ComputeConstraintToUse - Determines the constraint code and constraint
 | |
|   /// type to use for the specific AsmOperandInfo, setting
 | |
|   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
 | |
|   /// being passed in is available, it can be passed in as Op, otherwise an
 | |
|   /// empty SDValue can be passed. If hasMemory is true it means one of the asm
 | |
|   /// constraint of the inline asm instruction being processed is 'm'.
 | |
|   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | |
|                                       SDValue Op,
 | |
|                                       bool hasMemory,
 | |
|                                       SelectionDAG *DAG = 0) const;
 | |
|   
 | |
|   /// getConstraintType - Given a constraint, return the type of constraint it
 | |
|   /// is for this target.
 | |
|   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
 | |
|   
 | |
|   /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
 | |
|   /// return a list of registers that can be used to satisfy the constraint.
 | |
|   /// This should only be used for C_RegisterClass constraints.
 | |
|   virtual std::vector<unsigned> 
 | |
|   getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                     MVT VT) const;
 | |
| 
 | |
|   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
 | |
|   /// {edx}), return the register number and the register class for the
 | |
|   /// register.
 | |
|   ///
 | |
|   /// Given a register class constraint, like 'r', if this corresponds directly
 | |
|   /// to an LLVM register class, return a register of 0 and the register class
 | |
|   /// pointer.
 | |
|   ///
 | |
|   /// This should only be used for C_Register constraints.  On error,
 | |
|   /// this returns a register number of 0 and a null register class pointer..
 | |
|   virtual std::pair<unsigned, const TargetRegisterClass*> 
 | |
|     getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                  MVT VT) const;
 | |
|   
 | |
|   /// LowerXConstraint - try to replace an X constraint, which matches anything,
 | |
|   /// with another that has more specific requirements based on the type of the
 | |
|   /// corresponding operand.  This returns null if there is no replacement to
 | |
|   /// make.
 | |
|   virtual const char *LowerXConstraint(MVT ConstraintVT) const;
 | |
|   
 | |
|   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
|   /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
 | |
|   /// it means one of the asm constraint of the inline asm instruction being
 | |
|   /// processed is 'm'.
 | |
|   virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
 | |
|                                             bool hasMemory,
 | |
|                                             std::vector<SDValue> &Ops,
 | |
|                                             SelectionDAG &DAG) const;
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Scheduler hooks
 | |
|   //
 | |
|   
 | |
|   // EmitInstrWithCustomInserter - This method should be implemented by targets
 | |
|   // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | |
|   // instructions are special in various ways, which require special support to
 | |
|   // insert.  The specified MachineInstr is created but not inserted into any
 | |
|   // basic blocks, and the scheduler passes ownership of it to this method.
 | |
|   virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                   MachineBasicBlock *MBB) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing mode description hooks (used by LSR etc).
 | |
|   //
 | |
| 
 | |
|   /// AddrMode - This represents an addressing mode of:
 | |
|   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
 | |
|   /// If BaseGV is null,  there is no BaseGV.
 | |
|   /// If BaseOffs is zero, there is no base offset.
 | |
|   /// If HasBaseReg is false, there is no base register.
 | |
|   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
 | |
|   /// no scale.
 | |
|   ///
 | |
|   struct AddrMode {
 | |
|     GlobalValue *BaseGV;
 | |
|     int64_t      BaseOffs;
 | |
|     bool         HasBaseReg;
 | |
|     int64_t      Scale;
 | |
|     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
 | |
|   };
 | |
|   
 | |
|   /// isLegalAddressingMode - Return true if the addressing mode represented by
 | |
|   /// AM is legal for this target, for a load/store of the specified type.
 | |
|   /// TODO: Handle pre/postinc as well.
 | |
|   virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
 | |
| 
 | |
|   /// isTruncateFree - Return true if it's free to truncate a value of
 | |
|   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
 | |
|   /// register EAX to i16 by referencing its sub-register AX.
 | |
|   virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Div utility functions
 | |
|   //
 | |
|   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, 
 | |
|                       std::vector<SDNode*>* Created) const;
 | |
|   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, 
 | |
|                       std::vector<SDNode*>* Created) const;
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Runtime Library hooks
 | |
|   //
 | |
| 
 | |
|   /// setLibcallName - Rename the default libcall routine name for the specified
 | |
|   /// libcall.
 | |
|   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
 | |
|     LibcallRoutineNames[Call] = Name;
 | |
|   }
 | |
| 
 | |
|   /// getLibcallName - Get the libcall routine name for the specified libcall.
 | |
|   ///
 | |
|   const char *getLibcallName(RTLIB::Libcall Call) const {
 | |
|     return LibcallRoutineNames[Call];
 | |
|   }
 | |
| 
 | |
|   /// setCmpLibcallCC - Override the default CondCode to be used to test the
 | |
|   /// result of the comparison libcall against zero.
 | |
|   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
 | |
|     CmpLibcallCCs[Call] = CC;
 | |
|   }
 | |
| 
 | |
|   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
 | |
|   /// the comparison libcall against zero.
 | |
|   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
 | |
|     return CmpLibcallCCs[Call];
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   TargetMachine &TM;
 | |
|   const TargetData *TD;
 | |
| 
 | |
|   /// PointerTy - The type to use for pointers, usually i32 or i64.
 | |
|   ///
 | |
|   MVT PointerTy;
 | |
| 
 | |
|   /// IsLittleEndian - True if this is a little endian target.
 | |
|   ///
 | |
|   bool IsLittleEndian;
 | |
| 
 | |
|   /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
 | |
|   ///
 | |
|   bool UsesGlobalOffsetTable;
 | |
|   
 | |
|   /// SelectIsExpensive - Tells the code generator not to expand operations
 | |
|   /// into sequences that use the select operations if possible.
 | |
|   bool SelectIsExpensive;
 | |
| 
 | |
|   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
 | |
|   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
 | |
|   /// a real cost model is in place.  If we ever optimize for size, this will be
 | |
|   /// set to true unconditionally.
 | |
|   bool IntDivIsCheap;
 | |
|   
 | |
|   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
 | |
|   /// srl/add/sra for a signed divide by power of two, and let the target handle
 | |
|   /// it.
 | |
|   bool Pow2DivIsCheap;
 | |
|   
 | |
|   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
 | |
|   /// llvm.setjmp.  Defaults to false.
 | |
|   bool UseUnderscoreSetJmp;
 | |
| 
 | |
|   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
 | |
|   /// llvm.longjmp.  Defaults to false.
 | |
|   bool UseUnderscoreLongJmp;
 | |
| 
 | |
|   /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
 | |
|   /// PointerTy is.
 | |
|   MVT ShiftAmountTy;
 | |
| 
 | |
|   OutOfRangeShiftAmount ShiftAmtHandling;
 | |
| 
 | |
|   /// BooleanContents - Information about the contents of the high-bits in
 | |
|   /// boolean values held in a type wider than i1.  See getBooleanContents.
 | |
|   BooleanContent BooleanContents;
 | |
| 
 | |
|   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
 | |
|   /// total cycles or lowest register usage.
 | |
|   SchedPreference SchedPreferenceInfo;
 | |
|   
 | |
|   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
 | |
|   unsigned JumpBufSize;
 | |
|   
 | |
|   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
 | |
|   /// buffers
 | |
|   unsigned JumpBufAlignment;
 | |
| 
 | |
|   /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
 | |
|   /// if-converted.
 | |
|   unsigned IfCvtBlockSizeLimit;
 | |
|   
 | |
|   /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
 | |
|   /// duplicated during if-conversion.
 | |
|   unsigned IfCvtDupBlockSizeLimit;
 | |
| 
 | |
|   /// PrefLoopAlignment - The perferred loop alignment.
 | |
|   ///
 | |
|   unsigned PrefLoopAlignment;
 | |
| 
 | |
|   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   unsigned StackPointerRegisterToSaveRestore;
 | |
| 
 | |
|   /// ExceptionPointerRegister - If set to a physical register, this specifies
 | |
|   /// the register that receives the exception address on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned ExceptionPointerRegister;
 | |
| 
 | |
|   /// ExceptionSelectorRegister - If set to a physical register, this specifies
 | |
|   /// the register that receives the exception typeid on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned ExceptionSelectorRegister;
 | |
| 
 | |
|   /// RegClassForVT - This indicates the default register class to use for
 | |
|   /// each ValueType the target supports natively.
 | |
|   TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
 | |
|   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
 | |
|   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// TransformToType - For any value types we are promoting or expanding, this
 | |
|   /// contains the value type that we are changing to.  For Expanded types, this
 | |
|   /// contains one step of the expand (e.g. i64 -> i32), even if there are
 | |
|   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
 | |
|   /// by the system, this holds the same type (e.g. i32 -> i32).
 | |
|   MVT TransformToType[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// OpActions - For each operation and each value type, keep a LegalizeAction
 | |
|   /// that indicates how instruction selection should deal with the operation.
 | |
|   /// Most operations are Legal (aka, supported natively by the target), but
 | |
|   /// operations that are not should be described.  Note that operations on
 | |
|   /// non-legal value types are not described here.
 | |
|   uint64_t OpActions[ISD::BUILTIN_OP_END];
 | |
|   
 | |
|   /// LoadExtActions - For each load of load extension type and each value type,
 | |
|   /// keep a LegalizeAction that indicates how instruction selection should deal
 | |
|   /// with the load.
 | |
|   uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
 | |
|   
 | |
|   /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
 | |
|   /// indicates how instruction selection should deal with the store.
 | |
|   uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// IndexedModeActions - For each indexed mode and each value type, keep a
 | |
|   /// pair of LegalizeAction that indicates how instruction selection should
 | |
|   /// deal with the load / store.
 | |
|   uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
 | |
|   
 | |
|   /// ConvertActions - For each conversion from source type to destination type,
 | |
|   /// keep a LegalizeAction that indicates how instruction selection should
 | |
|   /// deal with the conversion.
 | |
|   /// Currently, this is used only for floating->floating conversions
 | |
|   /// (FP_EXTEND and FP_ROUND).
 | |
|   uint64_t ConvertActions[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
 | |
|   /// LegalizeAction that indicates how instruction selection should
 | |
|   /// deal with the condition code.
 | |
|   uint64_t CondCodeActions[ISD::SETCC_INVALID];
 | |
| 
 | |
|   ValueTypeActionImpl ValueTypeActions;
 | |
| 
 | |
|   std::vector<APFloat> LegalFPImmediates;
 | |
| 
 | |
|   std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
 | |
| 
 | |
|   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
 | |
|   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
 | |
|   /// which sets a bit in this array.
 | |
|   unsigned char
 | |
|   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
 | |
|   
 | |
|   /// PromoteToType - For operations that must be promoted to a specific type,
 | |
|   /// this holds the destination type.  This map should be sparse, so don't hold
 | |
|   /// it as an array.
 | |
|   ///
 | |
|   /// Targets add entries to this map with AddPromotedToType(..), clients access
 | |
|   /// this with getTypeToPromoteTo(..).
 | |
|   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
 | |
|     PromoteToType;
 | |
| 
 | |
|   /// LibcallRoutineNames - Stores the name each libcall.
 | |
|   ///
 | |
|   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
|   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
 | |
|   /// of each of the comparison libcall against zero.
 | |
|   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
| protected:
 | |
|   /// When lowering \@llvm.memset this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for the call to memset. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memset will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
 | |
|   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
 | |
|   /// store.  This only applies to setting a constant array of a constant size.
 | |
|   /// @brief Specify maximum number of store instructions per memset call.
 | |
|   unsigned maxStoresPerMemset;
 | |
| 
 | |
|   /// When lowering \@llvm.memcpy this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for a call to memcpy. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memcpy will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
 | |
|   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
 | |
|   /// and one 1-byte store. This only applies to copying a constant array of
 | |
|   /// constant size.
 | |
|   /// @brief Specify maximum bytes of store instructions per memcpy call.
 | |
|   unsigned maxStoresPerMemcpy;
 | |
| 
 | |
|   /// When lowering \@llvm.memmove this field specifies the maximum number of
 | |
|   /// store instructions that may be substituted for a call to memmove. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memmove will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
 | |
|   /// with 8-bit alignment would result in nine 1-byte stores.  This only
 | |
|   /// applies to copying a constant array of constant size.
 | |
|   /// @brief Specify maximum bytes of store instructions per memmove call.
 | |
|   unsigned maxStoresPerMemmove;
 | |
| 
 | |
|   /// This field specifies whether the target machine permits unaligned memory
 | |
|   /// accesses.  This is used, for example, to determine the size of store 
 | |
|   /// operations when copying small arrays and other similar tasks.
 | |
|   /// @brief Indicate whether the target permits unaligned memory accesses.
 | |
|   bool allowUnalignedMemoryAccesses;
 | |
| };
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |