mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	the PassManager code into a regular verifyAnalysis method. Also, reorganize loop verification. Make the LoopPass infrastructure call verifyLoop as needed instead of having LoopInfo::verifyAnalysis check every loop in the function after each looop pass. Add a new command-line argument, -verify-loop-info, to enable the expensive full checking. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82952 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			414 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			414 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the LoopInfo class that is used to identify natural loops
 | |
| // and determine the loop depth of various nodes of the CFG.  Note that the
 | |
| // loops identified may actually be several natural loops that share the same
 | |
| // header node... not just a single natural loop.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Always verify loopinfo if expensive checking is enabled.
 | |
| #ifdef XDEBUG
 | |
| bool VerifyLoopInfo = true;
 | |
| #else
 | |
| bool VerifyLoopInfo = false;
 | |
| #endif
 | |
| static cl::opt<bool,true>
 | |
| VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
 | |
|                 cl::desc("Verify loop info (time consuming)"));
 | |
| 
 | |
| char LoopInfo::ID = 0;
 | |
| static RegisterPass<LoopInfo>
 | |
| X("loops", "Natural Loop Information", true, true);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Loop implementation
 | |
| //
 | |
| 
 | |
| /// isLoopInvariant - Return true if the specified value is loop invariant
 | |
| ///
 | |
| bool Loop::isLoopInvariant(Value *V) const {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return isLoopInvariant(I);
 | |
|   return true;  // All non-instructions are loop invariant
 | |
| }
 | |
| 
 | |
| /// isLoopInvariant - Return true if the specified instruction is
 | |
| /// loop-invariant.
 | |
| ///
 | |
| bool Loop::isLoopInvariant(Instruction *I) const {
 | |
|   return !contains(I->getParent());
 | |
| }
 | |
| 
 | |
| /// makeLoopInvariant - If the given value is an instruciton inside of the
 | |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant.
 | |
| /// Return true if the value after any hoisting is loop invariant. This
 | |
| /// function can be used as a slightly more aggressive replacement for
 | |
| /// isLoopInvariant.
 | |
| ///
 | |
| /// If InsertPt is specified, it is the point to hoist instructions to.
 | |
| /// If null, the terminator of the loop preheader is used.
 | |
| ///
 | |
| bool Loop::makeLoopInvariant(Value *V, bool &Changed,
 | |
|                              Instruction *InsertPt) const {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return makeLoopInvariant(I, Changed, InsertPt);
 | |
|   return true;  // All non-instructions are loop-invariant.
 | |
| }
 | |
| 
 | |
| /// makeLoopInvariant - If the given instruction is inside of the
 | |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant.
 | |
| /// Return true if the instruction after any hoisting is loop invariant. This
 | |
| /// function can be used as a slightly more aggressive replacement for
 | |
| /// isLoopInvariant.
 | |
| ///
 | |
| /// If InsertPt is specified, it is the point to hoist instructions to.
 | |
| /// If null, the terminator of the loop preheader is used.
 | |
| ///
 | |
| bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
 | |
|                              Instruction *InsertPt) const {
 | |
|   // Test if the value is already loop-invariant.
 | |
|   if (isLoopInvariant(I))
 | |
|     return true;
 | |
|   if (!I->isSafeToSpeculativelyExecute())
 | |
|     return false;
 | |
|   if (I->mayReadFromMemory())
 | |
|     return false;
 | |
|   // Determine the insertion point, unless one was given.
 | |
|   if (!InsertPt) {
 | |
|     BasicBlock *Preheader = getLoopPreheader();
 | |
|     // Without a preheader, hoisting is not feasible.
 | |
|     if (!Preheader)
 | |
|       return false;
 | |
|     InsertPt = Preheader->getTerminator();
 | |
|   }
 | |
|   // Don't hoist instructions with loop-variant operands.
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
 | |
|       return false;
 | |
|   // Hoist.
 | |
|   I->moveBefore(InsertPt);
 | |
|   Changed = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | |
| /// induction variable: an integer recurrence that starts at 0 and increments
 | |
| /// by one each time through the loop.  If so, return the phi node that
 | |
| /// corresponds to it.
 | |
| ///
 | |
| /// The IndVarSimplify pass transforms loops to have a canonical induction
 | |
| /// variable.
 | |
| ///
 | |
| PHINode *Loop::getCanonicalInductionVariable() const {
 | |
|   BasicBlock *H = getHeader();
 | |
| 
 | |
|   BasicBlock *Incoming = 0, *Backedge = 0;
 | |
|   typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
 | |
|   InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
 | |
|   assert(PI != InvBlockTraits::child_end(H) &&
 | |
|          "Loop must have at least one backedge!");
 | |
|   Backedge = *PI++;
 | |
|   if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
 | |
|   Incoming = *PI++;
 | |
|   if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
 | |
| 
 | |
|   if (contains(Incoming)) {
 | |
|     if (contains(Backedge))
 | |
|       return 0;
 | |
|     std::swap(Incoming, Backedge);
 | |
|   } else if (!contains(Backedge))
 | |
|     return 0;
 | |
| 
 | |
|   // Loop over all of the PHI nodes, looking for a canonical indvar.
 | |
|   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | |
|       if (CI->isNullValue())
 | |
|         if (Instruction *Inc =
 | |
|             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | |
|           if (Inc->getOpcode() == Instruction::Add &&
 | |
|                 Inc->getOperand(0) == PN)
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | |
|               if (CI->equalsInt(1))
 | |
|                 return PN;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
 | |
| /// the canonical induction variable value for the "next" iteration of the
 | |
| /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
 | |
| ///
 | |
| Instruction *Loop::getCanonicalInductionVariableIncrement() const {
 | |
|   if (PHINode *PN = getCanonicalInductionVariable()) {
 | |
|     bool P1InLoop = contains(PN->getIncomingBlock(1));
 | |
|     return cast<Instruction>(PN->getIncomingValue(P1InLoop));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of
 | |
| /// times the loop will be executed.  Note that this means that the backedge
 | |
| /// of the loop executes N-1 times.  If the trip-count cannot be determined,
 | |
| /// this returns null.
 | |
| ///
 | |
| /// The IndVarSimplify pass transforms loops to have a form that this
 | |
| /// function easily understands.
 | |
| ///
 | |
| Value *Loop::getTripCount() const {
 | |
|   // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
 | |
|   // canonical induction variable and V is the trip count of the loop.
 | |
|   Instruction *Inc = getCanonicalInductionVariableIncrement();
 | |
|   if (Inc == 0) return 0;
 | |
|   PHINode *IV = cast<PHINode>(Inc->getOperand(0));
 | |
| 
 | |
|   BasicBlock *BackedgeBlock =
 | |
|     IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
 | |
|     if (BI->isConditional()) {
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
 | |
|         if (ICI->getOperand(0) == Inc) {
 | |
|           if (BI->getSuccessor(0) == getHeader()) {
 | |
|             if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | |
|               return ICI->getOperand(1);
 | |
|           } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
 | |
|             return ICI->getOperand(1);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getSmallConstantTripCount - Returns the trip count of this loop as a
 | |
| /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
 | |
| /// of not constant. Will also return 0 if the trip count is very large
 | |
| /// (>= 2^32)
 | |
| unsigned Loop::getSmallConstantTripCount() const {
 | |
|   Value* TripCount = this->getTripCount();
 | |
|   if (TripCount) {
 | |
|     if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
 | |
|       // Guard against huge trip counts.
 | |
|       if (TripCountC->getValue().getActiveBits() <= 32) {
 | |
|         return (unsigned)TripCountC->getZExtValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
 | |
| /// trip count of this loop as a normal unsigned value, if possible. This
 | |
| /// means that the actual trip count is always a multiple of the returned
 | |
| /// value (don't forget the trip count could very well be zero as well!).
 | |
| ///
 | |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the
 | |
| /// multiple of a constant (which is also the case if the trip count is simply
 | |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1
 | |
| /// if the trip count is very large (>= 2^32).
 | |
| unsigned Loop::getSmallConstantTripMultiple() const {
 | |
|   Value* TripCount = this->getTripCount();
 | |
|   // This will hold the ConstantInt result, if any
 | |
|   ConstantInt *Result = NULL;
 | |
|   if (TripCount) {
 | |
|     // See if the trip count is constant itself
 | |
|     Result = dyn_cast<ConstantInt>(TripCount);
 | |
|     // if not, see if it is a multiplication
 | |
|     if (!Result)
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
 | |
|         switch (BO->getOpcode()) {
 | |
|         case BinaryOperator::Mul:
 | |
|           Result = dyn_cast<ConstantInt>(BO->getOperand(1));
 | |
|           break;
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   // Guard against huge trip counts.
 | |
|   if (Result && Result->getValue().getActiveBits() <= 32) {
 | |
|     return (unsigned)Result->getZExtValue();
 | |
|   } else {
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form
 | |
| bool Loop::isLCSSAForm() const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
 | |
| 
 | |
|   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
 | |
|     BasicBlock  *BB = *BI;
 | |
|     for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
 | |
|       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|            ++UI) {
 | |
|         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | |
|         if (PHINode *P = dyn_cast<PHINode>(*UI)) {
 | |
|           UserBB = P->getIncomingBlock(UI);
 | |
|         }
 | |
| 
 | |
|         // Check the current block, as a fast-path.  Most values are used in
 | |
|         // the same block they are defined in.
 | |
|         if (UserBB != BB && !LoopBBs.count(UserBB))
 | |
|           return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLoopSimplifyForm - Return true if the Loop is in the form that
 | |
| /// the LoopSimplify form transforms loops to, which is sometimes called
 | |
| /// normal form.
 | |
| bool Loop::isLoopSimplifyForm() const {
 | |
|   // Normal-form loops have a preheader.
 | |
|   if (!getLoopPreheader())
 | |
|     return false;
 | |
|   // Normal-form loops have a single backedge.
 | |
|   if (!getLoopLatch())
 | |
|     return false;
 | |
|   // Each predecessor of each exit block of a normal loop is contained
 | |
|   // within the loop.
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   getExitBlocks(ExitBlocks);
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
 | |
|          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
 | |
|       if (!contains(*PI))
 | |
|         return false;
 | |
|   // All the requirements are met.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
 | |
| /// These are the blocks _outside of the current loop_ which are branched to.
 | |
| /// This assumes that loop is in canonical form.
 | |
| ///
 | |
| void
 | |
| Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
 | |
|   assert(isLoopSimplifyForm() &&
 | |
|          "getUniqueExitBlocks assumes the loop is in canonical form!");
 | |
| 
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   SmallVector<BasicBlock *, 32> switchExitBlocks;
 | |
| 
 | |
|   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
 | |
| 
 | |
|     BasicBlock *current = *BI;
 | |
|     switchExitBlocks.clear();
 | |
| 
 | |
|     typedef GraphTraits<BasicBlock *> BlockTraits;
 | |
|     typedef GraphTraits<Inverse<BasicBlock *> > InvBlockTraits;
 | |
|     for (BlockTraits::ChildIteratorType I =
 | |
|          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | |
|          I != E; ++I) {
 | |
|       // If block is inside the loop then it is not a exit block.
 | |
|       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | |
|         continue;
 | |
| 
 | |
|       InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I);
 | |
|       BasicBlock *firstPred = *PI;
 | |
| 
 | |
|       // If current basic block is this exit block's first predecessor
 | |
|       // then only insert exit block in to the output ExitBlocks vector.
 | |
|       // This ensures that same exit block is not inserted twice into
 | |
|       // ExitBlocks vector.
 | |
|       if (current != firstPred)
 | |
|         continue;
 | |
| 
 | |
|       // If a terminator has more then two successors, for example SwitchInst,
 | |
|       // then it is possible that there are multiple edges from current block
 | |
|       // to one exit block.
 | |
|       if (std::distance(BlockTraits::child_begin(current),
 | |
|                         BlockTraits::child_end(current)) <= 2) {
 | |
|         ExitBlocks.push_back(*I);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // In case of multiple edges from current block to exit block, collect
 | |
|       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | |
|       // duplicate edges.
 | |
|       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
 | |
|           == switchExitBlocks.end()) {
 | |
|         switchExitBlocks.push_back(*I);
 | |
|         ExitBlocks.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
 | |
| /// block, return that block. Otherwise return null.
 | |
| BasicBlock *Loop::getUniqueExitBlock() const {
 | |
|   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
 | |
|   getUniqueExitBlocks(UniqueExitBlocks);
 | |
|   if (UniqueExitBlocks.size() == 1)
 | |
|     return UniqueExitBlocks[0];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopInfo implementation
 | |
| //
 | |
| bool LoopInfo::runOnFunction(Function &) {
 | |
|   releaseMemory();
 | |
|   LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopInfo::verifyAnalysis() const {
 | |
|   // LoopInfo is a FunctionPass, but verifying every loop in the function
 | |
|   // each time verifyAnalysis is called is very expensive. The
 | |
|   // -verify-loop-info option can enable this. In order to perform some
 | |
|   // checking by default, LoopPass has been taught to call verifyLoop
 | |
|   // manually during loop pass sequences.
 | |
| 
 | |
|   if (!VerifyLoopInfo) return;
 | |
| 
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
 | |
|     (*I)->verifyLoopNest();
 | |
|   }
 | |
| 
 | |
|   // TODO: check BBMap consistency.
 | |
| }
 | |
| 
 | |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<DominatorTree>();
 | |
| }
 | |
| 
 | |
| void LoopInfo::print(raw_ostream &OS, const Module*) const {
 | |
|   LI.print(OS);
 | |
| }
 | |
| 
 |