mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	(#411). Patch by Erick Tryzelaar. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81113 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3108 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3108 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| //===-- SPUISelLowering.cpp - Cell SPU DAG Lowering Implementation --------===//
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SPUTargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SPURegisterNames.h"
 | |
| #include "SPUISelLowering.h"
 | |
| #include "SPUTargetMachine.h"
 | |
| #include "SPUFrameInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <map>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Used in getTargetNodeName() below
 | |
| namespace {
 | |
|   std::map<unsigned, const char *> node_names;
 | |
| 
 | |
|   //! EVT mapping to useful data for Cell SPU
 | |
|   struct valtype_map_s {
 | |
|     EVT   valtype;
 | |
|     int   prefslot_byte;
 | |
|   };
 | |
| 
 | |
|   const valtype_map_s valtype_map[] = {
 | |
|     { MVT::i1,   3 },
 | |
|     { MVT::i8,   3 },
 | |
|     { MVT::i16,  2 },
 | |
|     { MVT::i32,  0 },
 | |
|     { MVT::f32,  0 },
 | |
|     { MVT::i64,  0 },
 | |
|     { MVT::f64,  0 },
 | |
|     { MVT::i128, 0 }
 | |
|   };
 | |
| 
 | |
|   const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
 | |
| 
 | |
|   const valtype_map_s *getValueTypeMapEntry(EVT VT) {
 | |
|     const valtype_map_s *retval = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < n_valtype_map; ++i) {
 | |
|       if (valtype_map[i].valtype == VT) {
 | |
|         retval = valtype_map + i;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (retval == 0) {
 | |
|       std::string msg;
 | |
|       raw_string_ostream Msg(msg);
 | |
|       Msg << "getValueTypeMapEntry returns NULL for "
 | |
|            << VT.getEVTString();
 | |
|       llvm_report_error(Msg.str());
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return retval;
 | |
|   }
 | |
| 
 | |
|   //! Expand a library call into an actual call DAG node
 | |
|   /*!
 | |
|    \note
 | |
|    This code is taken from SelectionDAGLegalize, since it is not exposed as
 | |
|    part of the LLVM SelectionDAG API.
 | |
|    */
 | |
| 
 | |
|   SDValue
 | |
|   ExpandLibCall(RTLIB::Libcall LC, SDValue Op, SelectionDAG &DAG,
 | |
|                 bool isSigned, SDValue &Hi, SPUTargetLowering &TLI) {
 | |
|     // The input chain to this libcall is the entry node of the function.
 | |
|     // Legalizing the call will automatically add the previous call to the
 | |
|     // dependence.
 | |
|     SDValue InChain = DAG.getEntryNode();
 | |
| 
 | |
|     TargetLowering::ArgListTy Args;
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
 | |
|       EVT ArgVT = Op.getOperand(i).getValueType();
 | |
|       const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | |
|       Entry.Node = Op.getOperand(i);
 | |
|       Entry.Ty = ArgTy;
 | |
|       Entry.isSExt = isSigned;
 | |
|       Entry.isZExt = !isSigned;
 | |
|       Args.push_back(Entry);
 | |
|     }
 | |
|     SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
 | |
|                                            TLI.getPointerTy());
 | |
| 
 | |
|     // Splice the libcall in wherever FindInputOutputChains tells us to.
 | |
|     const Type *RetTy =
 | |
|                 Op.getNode()->getValueType(0).getTypeForEVT(*DAG.getContext());
 | |
|     std::pair<SDValue, SDValue> CallInfo =
 | |
|             TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
 | |
|                             0, TLI.getLibcallCallingConv(LC), false,
 | |
|                             /*isReturnValueUsed=*/true,
 | |
|                             Callee, Args, DAG,
 | |
|                             Op.getDebugLoc());
 | |
| 
 | |
|     return CallInfo.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
 | |
|   : TargetLowering(TM, new TargetLoweringObjectFileELF()),
 | |
|     SPUTM(TM) {
 | |
|   // Fold away setcc operations if possible.
 | |
|   setPow2DivIsCheap();
 | |
| 
 | |
|   // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|   setUseUnderscoreSetJmp(true);
 | |
|   setUseUnderscoreLongJmp(true);
 | |
| 
 | |
|   // Set RTLIB libcall names as used by SPU:
 | |
|   setLibcallName(RTLIB::DIV_F64, "__fast_divdf3");
 | |
| 
 | |
|   // Set up the SPU's register classes:
 | |
|   addRegisterClass(MVT::i8,   SPU::R8CRegisterClass);
 | |
|   addRegisterClass(MVT::i16,  SPU::R16CRegisterClass);
 | |
|   addRegisterClass(MVT::i32,  SPU::R32CRegisterClass);
 | |
|   addRegisterClass(MVT::i64,  SPU::R64CRegisterClass);
 | |
|   addRegisterClass(MVT::f32,  SPU::R32FPRegisterClass);
 | |
|   addRegisterClass(MVT::f64,  SPU::R64FPRegisterClass);
 | |
|   addRegisterClass(MVT::i128, SPU::GPRCRegisterClass);
 | |
| 
 | |
|   // SPU has no sign or zero extended loads for i1, i8, i16:
 | |
|   setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
|   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
 | |
| 
 | |
|   setLoadExtAction(ISD::EXTLOAD,  MVT::f32, Expand);
 | |
|   setLoadExtAction(ISD::EXTLOAD,  MVT::f64, Expand);
 | |
| 
 | |
|   setTruncStoreAction(MVT::i128, MVT::i64, Expand);
 | |
|   setTruncStoreAction(MVT::i128, MVT::i32, Expand);
 | |
|   setTruncStoreAction(MVT::i128, MVT::i16, Expand);
 | |
|   setTruncStoreAction(MVT::i128, MVT::i8, Expand);
 | |
| 
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|   // SPU constant load actions are custom lowered:
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
 | |
| 
 | |
|   // SPU's loads and stores have to be custom lowered:
 | |
|   for (unsigned sctype = (unsigned) MVT::i8; sctype < (unsigned) MVT::i128;
 | |
|        ++sctype) {
 | |
|     MVT::SimpleValueType VT = (MVT::SimpleValueType)sctype;
 | |
| 
 | |
|     setOperationAction(ISD::LOAD,   VT, Custom);
 | |
|     setOperationAction(ISD::STORE,  VT, Custom);
 | |
|     setLoadExtAction(ISD::EXTLOAD,  VT, Custom);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, Custom);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, Custom);
 | |
| 
 | |
|     for (unsigned stype = sctype - 1; stype >= (unsigned) MVT::i8; --stype) {
 | |
|       MVT::SimpleValueType StoreVT = (MVT::SimpleValueType) stype;
 | |
|       setTruncStoreAction(VT, StoreVT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned sctype = (unsigned) MVT::f32; sctype < (unsigned) MVT::f64;
 | |
|        ++sctype) {
 | |
|     MVT::SimpleValueType VT = (MVT::SimpleValueType) sctype;
 | |
| 
 | |
|     setOperationAction(ISD::LOAD,   VT, Custom);
 | |
|     setOperationAction(ISD::STORE,  VT, Custom);
 | |
| 
 | |
|     for (unsigned stype = sctype - 1; stype >= (unsigned) MVT::f32; --stype) {
 | |
|       MVT::SimpleValueType StoreVT = (MVT::SimpleValueType) stype;
 | |
|       setTruncStoreAction(VT, StoreVT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Expand the jumptable branches
 | |
|   setOperationAction(ISD::BR_JT,        MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BR_CC,        MVT::Other, Expand);
 | |
| 
 | |
|   // Custom lower SELECT_CC for most cases, but expand by default
 | |
|   setOperationAction(ISD::SELECT_CC,    MVT::Other, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC,    MVT::i8,    Custom);
 | |
|   setOperationAction(ISD::SELECT_CC,    MVT::i16,   Custom);
 | |
|   setOperationAction(ISD::SELECT_CC,    MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::SELECT_CC,    MVT::i64,   Custom);
 | |
| 
 | |
|   // SPU has no intrinsics for these particular operations:
 | |
|   setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
 | |
| 
 | |
|   // SPU has no division/remainder instructions
 | |
|   setOperationAction(ISD::SREM,    MVT::i8,   Expand);
 | |
|   setOperationAction(ISD::UREM,    MVT::i8,   Expand);
 | |
|   setOperationAction(ISD::SDIV,    MVT::i8,   Expand);
 | |
|   setOperationAction(ISD::UDIV,    MVT::i8,   Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i8,   Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i8,   Expand);
 | |
|   setOperationAction(ISD::SREM,    MVT::i16,  Expand);
 | |
|   setOperationAction(ISD::UREM,    MVT::i16,  Expand);
 | |
|   setOperationAction(ISD::SDIV,    MVT::i16,  Expand);
 | |
|   setOperationAction(ISD::UDIV,    MVT::i16,  Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i16,  Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i16,  Expand);
 | |
|   setOperationAction(ISD::SREM,    MVT::i32,  Expand);
 | |
|   setOperationAction(ISD::UREM,    MVT::i32,  Expand);
 | |
|   setOperationAction(ISD::SDIV,    MVT::i32,  Expand);
 | |
|   setOperationAction(ISD::UDIV,    MVT::i32,  Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32,  Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32,  Expand);
 | |
|   setOperationAction(ISD::SREM,    MVT::i64,  Expand);
 | |
|   setOperationAction(ISD::UREM,    MVT::i64,  Expand);
 | |
|   setOperationAction(ISD::SDIV,    MVT::i64,  Expand);
 | |
|   setOperationAction(ISD::UDIV,    MVT::i64,  Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i64,  Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i64,  Expand);
 | |
|   setOperationAction(ISD::SREM,    MVT::i128, Expand);
 | |
|   setOperationAction(ISD::UREM,    MVT::i128, Expand);
 | |
|   setOperationAction(ISD::SDIV,    MVT::i128, Expand);
 | |
|   setOperationAction(ISD::UDIV,    MVT::i128, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i128, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i128, Expand);
 | |
| 
 | |
|   // We don't support sin/cos/sqrt/fmod
 | |
|   setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f32, Expand);
 | |
| 
 | |
|   // Expand fsqrt to the appropriate libcall (NOTE: should use h/w fsqrt
 | |
|   // for f32!)
 | |
|   setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
| 
 | |
|   // SPU can do rotate right and left, so legalize it... but customize for i8
 | |
|   // because instructions don't exist.
 | |
| 
 | |
|   // FIXME: Change from "expand" to appropriate type once ROTR is supported in
 | |
|   //        .td files.
 | |
|   setOperationAction(ISD::ROTR, MVT::i32,    Expand /*Legal*/);
 | |
|   setOperationAction(ISD::ROTR, MVT::i16,    Expand /*Legal*/);
 | |
|   setOperationAction(ISD::ROTR, MVT::i8,     Expand /*Custom*/);
 | |
| 
 | |
|   setOperationAction(ISD::ROTL, MVT::i32,    Legal);
 | |
|   setOperationAction(ISD::ROTL, MVT::i16,    Legal);
 | |
|   setOperationAction(ISD::ROTL, MVT::i8,     Custom);
 | |
| 
 | |
|   // SPU has no native version of shift left/right for i8
 | |
|   setOperationAction(ISD::SHL,  MVT::i8,     Custom);
 | |
|   setOperationAction(ISD::SRL,  MVT::i8,     Custom);
 | |
|   setOperationAction(ISD::SRA,  MVT::i8,     Custom);
 | |
| 
 | |
|   // Make these operations legal and handle them during instruction selection:
 | |
|   setOperationAction(ISD::SHL,  MVT::i64,    Legal);
 | |
|   setOperationAction(ISD::SRL,  MVT::i64,    Legal);
 | |
|   setOperationAction(ISD::SRA,  MVT::i64,    Legal);
 | |
| 
 | |
|   // Custom lower i8, i32 and i64 multiplications
 | |
|   setOperationAction(ISD::MUL,  MVT::i8,     Custom);
 | |
|   setOperationAction(ISD::MUL,  MVT::i32,    Legal);
 | |
|   setOperationAction(ISD::MUL,  MVT::i64,    Legal);
 | |
| 
 | |
|   // Expand double-width multiplication
 | |
|   // FIXME: It would probably be reasonable to support some of these operations
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::MULHU,     MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::MULHS,     MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::MULHU,     MVT::i16, Expand);
 | |
|   setOperationAction(ISD::MULHS,     MVT::i16, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::MULHU,     MVT::i32, Expand);
 | |
|   setOperationAction(ISD::MULHS,     MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::MULHU,     MVT::i64, Expand);
 | |
|   setOperationAction(ISD::MULHS,     MVT::i64, Expand);
 | |
| 
 | |
|   // Need to custom handle (some) common i8, i64 math ops
 | |
|   setOperationAction(ISD::ADD,  MVT::i8,     Custom);
 | |
|   setOperationAction(ISD::ADD,  MVT::i64,    Legal);
 | |
|   setOperationAction(ISD::SUB,  MVT::i8,     Custom);
 | |
|   setOperationAction(ISD::SUB,  MVT::i64,    Legal);
 | |
| 
 | |
|   // SPU does not have BSWAP. It does have i32 support CTLZ.
 | |
|   // CTPOP has to be custom lowered.
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32,   Expand);
 | |
|   setOperationAction(ISD::BSWAP, MVT::i64,   Expand);
 | |
| 
 | |
|   setOperationAction(ISD::CTPOP, MVT::i8,    Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i16,   Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i64,   Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i128,  Expand);
 | |
| 
 | |
|   setOperationAction(ISD::CTTZ , MVT::i8,    Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i16,   Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i32,   Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i64,   Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i128,  Expand);
 | |
| 
 | |
|   setOperationAction(ISD::CTLZ , MVT::i8,    Promote);
 | |
|   setOperationAction(ISD::CTLZ , MVT::i16,   Promote);
 | |
|   setOperationAction(ISD::CTLZ , MVT::i32,   Legal);
 | |
|   setOperationAction(ISD::CTLZ , MVT::i64,   Expand);
 | |
|   setOperationAction(ISD::CTLZ , MVT::i128,  Expand);
 | |
| 
 | |
|   // SPU has a version of select that implements (a&~c)|(b&c), just like
 | |
|   // select ought to work:
 | |
|   setOperationAction(ISD::SELECT, MVT::i8,   Legal);
 | |
|   setOperationAction(ISD::SELECT, MVT::i16,  Legal);
 | |
|   setOperationAction(ISD::SELECT, MVT::i32,  Legal);
 | |
|   setOperationAction(ISD::SELECT, MVT::i64,  Legal);
 | |
| 
 | |
|   setOperationAction(ISD::SETCC, MVT::i8,    Legal);
 | |
|   setOperationAction(ISD::SETCC, MVT::i16,   Legal);
 | |
|   setOperationAction(ISD::SETCC, MVT::i32,   Legal);
 | |
|   setOperationAction(ISD::SETCC, MVT::i64,   Legal);
 | |
|   setOperationAction(ISD::SETCC, MVT::f64,   Custom);
 | |
| 
 | |
|   // Custom lower i128 -> i64 truncates
 | |
|   setOperationAction(ISD::TRUNCATE, MVT::i64, Custom);
 | |
| 
 | |
|   // Custom lower i32/i64 -> i128 sign extend
 | |
|   setOperationAction(ISD::SIGN_EXTEND, MVT::i128, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
 | |
|   // SPU has a legal FP -> signed INT instruction for f32, but for f64, need
 | |
|   // to expand to a libcall, hence the custom lowering:
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Expand);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Expand);
 | |
| 
 | |
|   // FDIV on SPU requires custom lowering
 | |
|   setOperationAction(ISD::FDIV, MVT::f64, Expand);      // to libcall
 | |
| 
 | |
|   // SPU has [U|S]INT_TO_FP for f32->i32, but not for f64->i32, f64->i64:
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::f32, Legal);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::i64, Legal);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::f64, Legal);
 | |
| 
 | |
|   // We cannot sextinreg(i1).  Expand to shifts.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   // Support label based line numbers.
 | |
|   setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 | |
| 
 | |
|   // We want to legalize GlobalAddress and ConstantPool nodes into the
 | |
|   // appropriate instructions to materialize the address.
 | |
|   for (unsigned sctype = (unsigned) MVT::i8; sctype < (unsigned) MVT::f128;
 | |
|        ++sctype) {
 | |
|     MVT::SimpleValueType VT = (MVT::SimpleValueType)sctype;
 | |
| 
 | |
|     setOperationAction(ISD::GlobalAddress,  VT, Custom);
 | |
|     setOperationAction(ISD::ConstantPool,   VT, Custom);
 | |
|     setOperationAction(ISD::JumpTable,      VT, Custom);
 | |
|   }
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VAARG             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Expand);
 | |
| 
 | |
|   // Cell SPU has instructions for converting between i64 and fp.
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
| 
 | |
|   // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
 | |
| 
 | |
|   // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | |
|   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
| 
 | |
|   // First set operation action for all vector types to expand. Then we
 | |
|   // will selectively turn on ones that can be effectively codegen'd.
 | |
|   addRegisterClass(MVT::v16i8, SPU::VECREGRegisterClass);
 | |
|   addRegisterClass(MVT::v8i16, SPU::VECREGRegisterClass);
 | |
|   addRegisterClass(MVT::v4i32, SPU::VECREGRegisterClass);
 | |
|   addRegisterClass(MVT::v2i64, SPU::VECREGRegisterClass);
 | |
|   addRegisterClass(MVT::v4f32, SPU::VECREGRegisterClass);
 | |
|   addRegisterClass(MVT::v2f64, SPU::VECREGRegisterClass);
 | |
| 
 | |
|   // "Odd size" vector classes that we're willing to support:
 | |
|   addRegisterClass(MVT::v2i32, SPU::VECREGRegisterClass);
 | |
| 
 | |
|   for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|     MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|     // add/sub are legal for all supported vector VT's.
 | |
|     setOperationAction(ISD::ADD,     VT, Legal);
 | |
|     setOperationAction(ISD::SUB,     VT, Legal);
 | |
|     // mul has to be custom lowered.
 | |
|     setOperationAction(ISD::MUL,     VT, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::AND,     VT, Legal);
 | |
|     setOperationAction(ISD::OR,      VT, Legal);
 | |
|     setOperationAction(ISD::XOR,     VT, Legal);
 | |
|     setOperationAction(ISD::LOAD,    VT, Legal);
 | |
|     setOperationAction(ISD::SELECT,  VT, Legal);
 | |
|     setOperationAction(ISD::STORE,   VT, Legal);
 | |
| 
 | |
|     // These operations need to be expanded:
 | |
|     setOperationAction(ISD::SDIV,    VT, Expand);
 | |
|     setOperationAction(ISD::SREM,    VT, Expand);
 | |
|     setOperationAction(ISD::UDIV,    VT, Expand);
 | |
|     setOperationAction(ISD::UREM,    VT, Expand);
 | |
| 
 | |
|     // Custom lower build_vector, constant pool spills, insert and
 | |
|     // extract vector elements:
 | |
|     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
 | |
|     setOperationAction(ISD::ConstantPool, VT, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::AND, MVT::v16i8, Custom);
 | |
|   setOperationAction(ISD::OR,  MVT::v16i8, Custom);
 | |
|   setOperationAction(ISD::XOR, MVT::v16i8, Custom);
 | |
|   setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | |
| 
 | |
|   setShiftAmountType(MVT::i32);
 | |
|   setBooleanContents(ZeroOrNegativeOneBooleanContent);
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(SPU::R1);
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::ADD);
 | |
|   setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|   setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|   setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // Set pre-RA register scheduler default to BURR, which produces slightly
 | |
|   // better code than the default (could also be TDRR, but TargetLowering.h
 | |
|   // needs a mod to support that model):
 | |
|   setSchedulingPreference(SchedulingForRegPressure);
 | |
| }
 | |
| 
 | |
| const char *
 | |
| SPUTargetLowering::getTargetNodeName(unsigned Opcode) const
 | |
| {
 | |
|   if (node_names.empty()) {
 | |
|     node_names[(unsigned) SPUISD::RET_FLAG] = "SPUISD::RET_FLAG";
 | |
|     node_names[(unsigned) SPUISD::Hi] = "SPUISD::Hi";
 | |
|     node_names[(unsigned) SPUISD::Lo] = "SPUISD::Lo";
 | |
|     node_names[(unsigned) SPUISD::PCRelAddr] = "SPUISD::PCRelAddr";
 | |
|     node_names[(unsigned) SPUISD::AFormAddr] = "SPUISD::AFormAddr";
 | |
|     node_names[(unsigned) SPUISD::IndirectAddr] = "SPUISD::IndirectAddr";
 | |
|     node_names[(unsigned) SPUISD::LDRESULT] = "SPUISD::LDRESULT";
 | |
|     node_names[(unsigned) SPUISD::CALL] = "SPUISD::CALL";
 | |
|     node_names[(unsigned) SPUISD::SHUFB] = "SPUISD::SHUFB";
 | |
|     node_names[(unsigned) SPUISD::SHUFFLE_MASK] = "SPUISD::SHUFFLE_MASK";
 | |
|     node_names[(unsigned) SPUISD::CNTB] = "SPUISD::CNTB";
 | |
|     node_names[(unsigned) SPUISD::PREFSLOT2VEC] = "SPUISD::PREFSLOT2VEC";
 | |
|     node_names[(unsigned) SPUISD::VEC2PREFSLOT] = "SPUISD::VEC2PREFSLOT";
 | |
|     node_names[(unsigned) SPUISD::SHLQUAD_L_BITS] = "SPUISD::SHLQUAD_L_BITS";
 | |
|     node_names[(unsigned) SPUISD::SHLQUAD_L_BYTES] = "SPUISD::SHLQUAD_L_BYTES";
 | |
|     node_names[(unsigned) SPUISD::VEC_ROTL] = "SPUISD::VEC_ROTL";
 | |
|     node_names[(unsigned) SPUISD::VEC_ROTR] = "SPUISD::VEC_ROTR";
 | |
|     node_names[(unsigned) SPUISD::ROTBYTES_LEFT] = "SPUISD::ROTBYTES_LEFT";
 | |
|     node_names[(unsigned) SPUISD::ROTBYTES_LEFT_BITS] =
 | |
|             "SPUISD::ROTBYTES_LEFT_BITS";
 | |
|     node_names[(unsigned) SPUISD::SELECT_MASK] = "SPUISD::SELECT_MASK";
 | |
|     node_names[(unsigned) SPUISD::SELB] = "SPUISD::SELB";
 | |
|     node_names[(unsigned) SPUISD::ADD64_MARKER] = "SPUISD::ADD64_MARKER";
 | |
|     node_names[(unsigned) SPUISD::SUB64_MARKER] = "SPUISD::SUB64_MARKER";
 | |
|     node_names[(unsigned) SPUISD::MUL64_MARKER] = "SPUISD::MUL64_MARKER";
 | |
|   }
 | |
| 
 | |
|   std::map<unsigned, const char *>::iterator i = node_names.find(Opcode);
 | |
| 
 | |
|   return ((i != node_names.end()) ? i->second : 0);
 | |
| }
 | |
| 
 | |
| /// getFunctionAlignment - Return the Log2 alignment of this function.
 | |
| unsigned SPUTargetLowering::getFunctionAlignment(const Function *) const {
 | |
|   return 3;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Return the Cell SPU's SETCC result type
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MVT::SimpleValueType SPUTargetLowering::getSetCCResultType(EVT VT) const {
 | |
|   // i16 and i32 are valid SETCC result types
 | |
|   return ((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) ?
 | |
|     VT.getSimpleVT().SimpleTy :
 | |
|     MVT::i32);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calling convention code:
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SPUGenCallingConv.inc"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  LowerOperation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Custom lower loads for CellSPU
 | |
| /*!
 | |
|  All CellSPU loads and stores are aligned to 16-byte boundaries, so for elements
 | |
|  within a 16-byte block, we have to rotate to extract the requested element.
 | |
| 
 | |
|  For extending loads, we also want to ensure that the following sequence is
 | |
|  emitted, e.g. for MVT::f32 extending load to MVT::f64:
 | |
| 
 | |
| \verbatim
 | |
| %1  v16i8,ch = load
 | |
| %2  v16i8,ch = rotate %1
 | |
| %3  v4f8, ch = bitconvert %2
 | |
| %4  f32      = vec2perfslot %3
 | |
| %5  f64      = fp_extend %4
 | |
| \endverbatim
 | |
| */
 | |
| static SDValue
 | |
| LowerLOAD(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
 | |
|   LoadSDNode *LN = cast<LoadSDNode>(Op);
 | |
|   SDValue the_chain = LN->getChain();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   EVT InVT = LN->getMemoryVT();
 | |
|   EVT OutVT = Op.getValueType();
 | |
|   ISD::LoadExtType ExtType = LN->getExtensionType();
 | |
|   unsigned alignment = LN->getAlignment();
 | |
|   const valtype_map_s *vtm = getValueTypeMapEntry(InVT);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   switch (LN->getAddressingMode()) {
 | |
|   case ISD::UNINDEXED: {
 | |
|     SDValue result;
 | |
|     SDValue basePtr = LN->getBasePtr();
 | |
|     SDValue rotate;
 | |
| 
 | |
|     if (alignment == 16) {
 | |
|       ConstantSDNode *CN;
 | |
| 
 | |
|       // Special cases for a known aligned load to simplify the base pointer
 | |
|       // and the rotation amount:
 | |
|       if (basePtr.getOpcode() == ISD::ADD
 | |
|           && (CN = dyn_cast<ConstantSDNode > (basePtr.getOperand(1))) != 0) {
 | |
|         // Known offset into basePtr
 | |
|         int64_t offset = CN->getSExtValue();
 | |
|         int64_t rotamt = int64_t((offset & 0xf) - vtm->prefslot_byte);
 | |
| 
 | |
|         if (rotamt < 0)
 | |
|           rotamt += 16;
 | |
| 
 | |
|         rotate = DAG.getConstant(rotamt, MVT::i16);
 | |
| 
 | |
|         // Simplify the base pointer for this case:
 | |
|         basePtr = basePtr.getOperand(0);
 | |
|         if ((offset & ~0xf) > 0) {
 | |
|           basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                                 basePtr,
 | |
|                                 DAG.getConstant((offset & ~0xf), PtrVT));
 | |
|         }
 | |
|       } else if ((basePtr.getOpcode() == SPUISD::AFormAddr)
 | |
|                  || (basePtr.getOpcode() == SPUISD::IndirectAddr
 | |
|                      && basePtr.getOperand(0).getOpcode() == SPUISD::Hi
 | |
|                      && basePtr.getOperand(1).getOpcode() == SPUISD::Lo)) {
 | |
|         // Plain aligned a-form address: rotate into preferred slot
 | |
|         // Same for (SPUindirect (SPUhi ...), (SPUlo ...))
 | |
|         int64_t rotamt = -vtm->prefslot_byte;
 | |
|         if (rotamt < 0)
 | |
|           rotamt += 16;
 | |
|         rotate = DAG.getConstant(rotamt, MVT::i16);
 | |
|       } else {
 | |
|         // Offset the rotate amount by the basePtr and the preferred slot
 | |
|         // byte offset
 | |
|         int64_t rotamt = -vtm->prefslot_byte;
 | |
|         if (rotamt < 0)
 | |
|           rotamt += 16;
 | |
|         rotate = DAG.getNode(ISD::ADD, dl, PtrVT,
 | |
|                              basePtr,
 | |
|                              DAG.getConstant(rotamt, PtrVT));
 | |
|       }
 | |
|     } else {
 | |
|       // Unaligned load: must be more pessimistic about addressing modes:
 | |
|       if (basePtr.getOpcode() == ISD::ADD) {
 | |
|         MachineFunction &MF = DAG.getMachineFunction();
 | |
|         MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|         unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
 | |
|         SDValue Flag;
 | |
| 
 | |
|         SDValue Op0 = basePtr.getOperand(0);
 | |
|         SDValue Op1 = basePtr.getOperand(1);
 | |
| 
 | |
|         if (isa<ConstantSDNode>(Op1)) {
 | |
|           // Convert the (add <ptr>, <const>) to an indirect address contained
 | |
|           // in a register. Note that this is done because we need to avoid
 | |
|           // creating a 0(reg) d-form address due to the SPU's block loads.
 | |
|           basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Op0, Op1);
 | |
|           the_chain = DAG.getCopyToReg(the_chain, dl, VReg, basePtr, Flag);
 | |
|           basePtr = DAG.getCopyFromReg(the_chain, dl, VReg, PtrVT);
 | |
|         } else {
 | |
|           // Convert the (add <arg1>, <arg2>) to an indirect address, which
 | |
|           // will likely be lowered as a reg(reg) x-form address.
 | |
|           basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Op0, Op1);
 | |
|         }
 | |
|       } else {
 | |
|         basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                               basePtr,
 | |
|                               DAG.getConstant(0, PtrVT));
 | |
|       }
 | |
| 
 | |
|       // Offset the rotate amount by the basePtr and the preferred slot
 | |
|       // byte offset
 | |
|       rotate = DAG.getNode(ISD::ADD, dl, PtrVT,
 | |
|                            basePtr,
 | |
|                            DAG.getConstant(-vtm->prefslot_byte, PtrVT));
 | |
|     }
 | |
| 
 | |
|     // Re-emit as a v16i8 vector load
 | |
|     result = DAG.getLoad(MVT::v16i8, dl, the_chain, basePtr,
 | |
|                          LN->getSrcValue(), LN->getSrcValueOffset(),
 | |
|                          LN->isVolatile(), 16);
 | |
| 
 | |
|     // Update the chain
 | |
|     the_chain = result.getValue(1);
 | |
| 
 | |
|     // Rotate into the preferred slot:
 | |
|     result = DAG.getNode(SPUISD::ROTBYTES_LEFT, dl, MVT::v16i8,
 | |
|                          result.getValue(0), rotate);
 | |
| 
 | |
|     // Convert the loaded v16i8 vector to the appropriate vector type
 | |
|     // specified by the operand:
 | |
|     EVT vecVT = EVT::getVectorVT(*DAG.getContext(), 
 | |
|                                  InVT, (128 / InVT.getSizeInBits()));
 | |
|     result = DAG.getNode(SPUISD::VEC2PREFSLOT, dl, InVT,
 | |
|                          DAG.getNode(ISD::BIT_CONVERT, dl, vecVT, result));
 | |
| 
 | |
|     // Handle extending loads by extending the scalar result:
 | |
|     if (ExtType == ISD::SEXTLOAD) {
 | |
|       result = DAG.getNode(ISD::SIGN_EXTEND, dl, OutVT, result);
 | |
|     } else if (ExtType == ISD::ZEXTLOAD) {
 | |
|       result = DAG.getNode(ISD::ZERO_EXTEND, dl, OutVT, result);
 | |
|     } else if (ExtType == ISD::EXTLOAD) {
 | |
|       unsigned NewOpc = ISD::ANY_EXTEND;
 | |
| 
 | |
|       if (OutVT.isFloatingPoint())
 | |
|         NewOpc = ISD::FP_EXTEND;
 | |
| 
 | |
|       result = DAG.getNode(NewOpc, dl, OutVT, result);
 | |
|     }
 | |
| 
 | |
|     SDVTList retvts = DAG.getVTList(OutVT, MVT::Other);
 | |
|     SDValue retops[2] = {
 | |
|       result,
 | |
|       the_chain
 | |
|     };
 | |
| 
 | |
|     result = DAG.getNode(SPUISD::LDRESULT, dl, retvts,
 | |
|                          retops, sizeof(retops) / sizeof(retops[0]));
 | |
|     return result;
 | |
|   }
 | |
|   case ISD::PRE_INC:
 | |
|   case ISD::PRE_DEC:
 | |
|   case ISD::POST_INC:
 | |
|   case ISD::POST_DEC:
 | |
|   case ISD::LAST_INDEXED_MODE:
 | |
|     {
 | |
|       std::string msg;
 | |
|       raw_string_ostream Msg(msg);
 | |
|       Msg << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
 | |
|             "UNINDEXED\n";
 | |
|       Msg << (unsigned) LN->getAddressingMode();
 | |
|       llvm_report_error(Msg.str());
 | |
|       /*NOTREACHED*/
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Custom lower stores for CellSPU
 | |
| /*!
 | |
|  All CellSPU stores are aligned to 16-byte boundaries, so for elements
 | |
|  within a 16-byte block, we have to generate a shuffle to insert the
 | |
|  requested element into its place, then store the resulting block.
 | |
|  */
 | |
| static SDValue
 | |
| LowerSTORE(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
 | |
|   StoreSDNode *SN = cast<StoreSDNode>(Op);
 | |
|   SDValue Value = SN->getValue();
 | |
|   EVT VT = Value.getValueType();
 | |
|   EVT StVT = (!SN->isTruncatingStore() ? VT : SN->getMemoryVT());
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned alignment = SN->getAlignment();
 | |
| 
 | |
|   switch (SN->getAddressingMode()) {
 | |
|   case ISD::UNINDEXED: {
 | |
|     // The vector type we really want to load from the 16-byte chunk.
 | |
|     EVT vecVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|                                  VT, (128 / VT.getSizeInBits())),
 | |
|         stVecVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|                                    StVT, (128 / StVT.getSizeInBits()));
 | |
| 
 | |
|     SDValue alignLoadVec;
 | |
|     SDValue basePtr = SN->getBasePtr();
 | |
|     SDValue the_chain = SN->getChain();
 | |
|     SDValue insertEltOffs;
 | |
| 
 | |
|     if (alignment == 16) {
 | |
|       ConstantSDNode *CN;
 | |
| 
 | |
|       // Special cases for a known aligned load to simplify the base pointer
 | |
|       // and insertion byte:
 | |
|       if (basePtr.getOpcode() == ISD::ADD
 | |
|           && (CN = dyn_cast<ConstantSDNode>(basePtr.getOperand(1))) != 0) {
 | |
|         // Known offset into basePtr
 | |
|         int64_t offset = CN->getSExtValue();
 | |
| 
 | |
|         // Simplify the base pointer for this case:
 | |
|         basePtr = basePtr.getOperand(0);
 | |
|         insertEltOffs = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                                     basePtr,
 | |
|                                     DAG.getConstant((offset & 0xf), PtrVT));
 | |
| 
 | |
|         if ((offset & ~0xf) > 0) {
 | |
|           basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                                 basePtr,
 | |
|                                 DAG.getConstant((offset & ~0xf), PtrVT));
 | |
|         }
 | |
|       } else {
 | |
|         // Otherwise, assume it's at byte 0 of basePtr
 | |
|         insertEltOffs = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                                     basePtr,
 | |
|                                     DAG.getConstant(0, PtrVT));
 | |
|       }
 | |
|     } else {
 | |
|       // Unaligned load: must be more pessimistic about addressing modes:
 | |
|       if (basePtr.getOpcode() == ISD::ADD) {
 | |
|         MachineFunction &MF = DAG.getMachineFunction();
 | |
|         MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|         unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
 | |
|         SDValue Flag;
 | |
| 
 | |
|         SDValue Op0 = basePtr.getOperand(0);
 | |
|         SDValue Op1 = basePtr.getOperand(1);
 | |
| 
 | |
|         if (isa<ConstantSDNode>(Op1)) {
 | |
|           // Convert the (add <ptr>, <const>) to an indirect address contained
 | |
|           // in a register. Note that this is done because we need to avoid
 | |
|           // creating a 0(reg) d-form address due to the SPU's block loads.
 | |
|           basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Op0, Op1);
 | |
|           the_chain = DAG.getCopyToReg(the_chain, dl, VReg, basePtr, Flag);
 | |
|           basePtr = DAG.getCopyFromReg(the_chain, dl, VReg, PtrVT);
 | |
|         } else {
 | |
|           // Convert the (add <arg1>, <arg2>) to an indirect address, which
 | |
|           // will likely be lowered as a reg(reg) x-form address.
 | |
|           basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Op0, Op1);
 | |
|         }
 | |
|       } else {
 | |
|         basePtr = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                               basePtr,
 | |
|                               DAG.getConstant(0, PtrVT));
 | |
|       }
 | |
| 
 | |
|       // Insertion point is solely determined by basePtr's contents
 | |
|       insertEltOffs = DAG.getNode(ISD::ADD, dl, PtrVT,
 | |
|                                   basePtr,
 | |
|                                   DAG.getConstant(0, PtrVT));
 | |
|     }
 | |
| 
 | |
|     // Re-emit as a v16i8 vector load
 | |
|     alignLoadVec = DAG.getLoad(MVT::v16i8, dl, the_chain, basePtr,
 | |
|                                SN->getSrcValue(), SN->getSrcValueOffset(),
 | |
|                                SN->isVolatile(), 16);
 | |
| 
 | |
|     // Update the chain
 | |
|     the_chain = alignLoadVec.getValue(1);
 | |
| 
 | |
|     LoadSDNode *LN = cast<LoadSDNode>(alignLoadVec);
 | |
|     SDValue theValue = SN->getValue();
 | |
|     SDValue result;
 | |
| 
 | |
|     if (StVT != VT
 | |
|         && (theValue.getOpcode() == ISD::AssertZext
 | |
|             || theValue.getOpcode() == ISD::AssertSext)) {
 | |
|       // Drill down and get the value for zero- and sign-extended
 | |
|       // quantities
 | |
|       theValue = theValue.getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // If the base pointer is already a D-form address, then just create
 | |
|     // a new D-form address with a slot offset and the orignal base pointer.
 | |
|     // Otherwise generate a D-form address with the slot offset relative
 | |
|     // to the stack pointer, which is always aligned.
 | |
| #if !defined(NDEBUG)
 | |
|       if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
 | |
|         errs() << "CellSPU LowerSTORE: basePtr = ";
 | |
|         basePtr.getNode()->dump(&DAG);
 | |
|         errs() << "\n";
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|     SDValue insertEltOp =
 | |
|             DAG.getNode(SPUISD::SHUFFLE_MASK, dl, vecVT, insertEltOffs);
 | |
|     SDValue vectorizeOp =
 | |
|             DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, vecVT, theValue);
 | |
| 
 | |
|     result = DAG.getNode(SPUISD::SHUFB, dl, vecVT,
 | |
|                          vectorizeOp, alignLoadVec,
 | |
|                          DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                      MVT::v4i32, insertEltOp));
 | |
| 
 | |
|     result = DAG.getStore(the_chain, dl, result, basePtr,
 | |
|                           LN->getSrcValue(), LN->getSrcValueOffset(),
 | |
|                           LN->isVolatile(), LN->getAlignment());
 | |
| 
 | |
| #if 0 && !defined(NDEBUG)
 | |
|     if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
 | |
|       const SDValue ¤tRoot = DAG.getRoot();
 | |
| 
 | |
|       DAG.setRoot(result);
 | |
|       errs() << "------- CellSPU:LowerStore result:\n";
 | |
|       DAG.dump();
 | |
|       errs() << "-------\n";
 | |
|       DAG.setRoot(currentRoot);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return result;
 | |
|     /*UNREACHED*/
 | |
|   }
 | |
|   case ISD::PRE_INC:
 | |
|   case ISD::PRE_DEC:
 | |
|   case ISD::POST_INC:
 | |
|   case ISD::POST_DEC:
 | |
|   case ISD::LAST_INDEXED_MODE:
 | |
|     {
 | |
|       std::string msg;
 | |
|       raw_string_ostream Msg(msg);
 | |
|       Msg << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
 | |
|             "UNINDEXED\n";
 | |
|       Msg << (unsigned) SN->getAddressingMode();
 | |
|       llvm_report_error(Msg.str());
 | |
|       /*NOTREACHED*/
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //! Generate the address of a constant pool entry.
 | |
| static SDValue
 | |
| LowerConstantPool(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   Constant *C = CP->getConstVal();
 | |
|   SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
|   // FIXME there is no actual debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::Static) {
 | |
|     if (!ST->usingLargeMem()) {
 | |
|       // Just return the SDValue with the constant pool address in it.
 | |
|       return DAG.getNode(SPUISD::AFormAddr, dl, PtrVT, CPI, Zero);
 | |
|     } else {
 | |
|       SDValue Hi = DAG.getNode(SPUISD::Hi, dl, PtrVT, CPI, Zero);
 | |
|       SDValue Lo = DAG.getNode(SPUISD::Lo, dl, PtrVT, CPI, Zero);
 | |
|       return DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Hi, Lo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("LowerConstantPool: Relocation model other than static"
 | |
|                    " not supported.");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //! Alternate entry point for generating the address of a constant pool entry
 | |
| SDValue
 | |
| SPU::LowerConstantPool(SDValue Op, SelectionDAG &DAG, const SPUTargetMachine &TM) {
 | |
|   return ::LowerConstantPool(Op, DAG, TM.getSubtargetImpl());
 | |
| }
 | |
| 
 | |
| static SDValue
 | |
| LowerJumpTable(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
|   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
|   // FIXME there is no actual debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::Static) {
 | |
|     if (!ST->usingLargeMem()) {
 | |
|       return DAG.getNode(SPUISD::AFormAddr, dl, PtrVT, JTI, Zero);
 | |
|     } else {
 | |
|       SDValue Hi = DAG.getNode(SPUISD::Hi, dl, PtrVT, JTI, Zero);
 | |
|       SDValue Lo = DAG.getNode(SPUISD::Lo, dl, PtrVT, JTI, Zero);
 | |
|       return DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Hi, Lo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("LowerJumpTable: Relocation model other than static"
 | |
|                    " not supported.");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue
 | |
| LowerGlobalAddress(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | |
|   GlobalValue *GV = GSDN->getGlobal();
 | |
|   SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   // FIXME there is no actual debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::Static) {
 | |
|     if (!ST->usingLargeMem()) {
 | |
|       return DAG.getNode(SPUISD::AFormAddr, dl, PtrVT, GA, Zero);
 | |
|     } else {
 | |
|       SDValue Hi = DAG.getNode(SPUISD::Hi, dl, PtrVT, GA, Zero);
 | |
|       SDValue Lo = DAG.getNode(SPUISD::Lo, dl, PtrVT, GA, Zero);
 | |
|       return DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Hi, Lo);
 | |
|     }
 | |
|   } else {
 | |
|     llvm_report_error("LowerGlobalAddress: Relocation model other than static"
 | |
|                       "not supported.");
 | |
|     /*NOTREACHED*/
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //! Custom lower double precision floating point constants
 | |
| static SDValue
 | |
| LowerConstantFP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   // FIXME there is no actual debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (VT == MVT::f64) {
 | |
|     ConstantFPSDNode *FP = cast<ConstantFPSDNode>(Op.getNode());
 | |
| 
 | |
|     assert((FP != 0) &&
 | |
|            "LowerConstantFP: Node is not ConstantFPSDNode");
 | |
| 
 | |
|     uint64_t dbits = DoubleToBits(FP->getValueAPF().convertToDouble());
 | |
|     SDValue T = DAG.getConstant(dbits, MVT::i64);
 | |
|     SDValue Tvec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, T, T);
 | |
|     return DAG.getNode(SPUISD::VEC2PREFSLOT, dl, VT,
 | |
|                        DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Tvec));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SPUTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         CallingConv::ID CallConv, bool isVarArg,
 | |
|                                         const SmallVectorImpl<ISD::InputArg>
 | |
|                                           &Ins,
 | |
|                                         DebugLoc dl, SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
| 
 | |
|   const unsigned *ArgRegs = SPURegisterInfo::getArgRegs();
 | |
|   const unsigned NumArgRegs = SPURegisterInfo::getNumArgRegs();
 | |
| 
 | |
|   unsigned ArgOffset = SPUFrameInfo::minStackSize();
 | |
|   unsigned ArgRegIdx = 0;
 | |
|   unsigned StackSlotSize = SPUFrameInfo::stackSlotSize();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Add DAG nodes to load the arguments or copy them out of registers.
 | |
|   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | |
|     EVT ObjectVT = Ins[ArgNo].VT;
 | |
|     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | |
|     SDValue ArgVal;
 | |
| 
 | |
|     if (ArgRegIdx < NumArgRegs) {
 | |
|       const TargetRegisterClass *ArgRegClass;
 | |
| 
 | |
|       switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|       default: {
 | |
|         std::string msg;
 | |
|         raw_string_ostream Msg(msg);
 | |
|         Msg << "LowerFormalArguments Unhandled argument type: "
 | |
|              << ObjectVT.getEVTString();
 | |
|         llvm_report_error(Msg.str());
 | |
|       }
 | |
|       case MVT::i8:
 | |
|         ArgRegClass = &SPU::R8CRegClass;
 | |
|         break;
 | |
|       case MVT::i16:
 | |
|         ArgRegClass = &SPU::R16CRegClass;
 | |
|         break;
 | |
|       case MVT::i32:
 | |
|         ArgRegClass = &SPU::R32CRegClass;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         ArgRegClass = &SPU::R64CRegClass;
 | |
|         break;
 | |
|       case MVT::i128:
 | |
|         ArgRegClass = &SPU::GPRCRegClass;
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|         ArgRegClass = &SPU::R32FPRegClass;
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|         ArgRegClass = &SPU::R64FPRegClass;
 | |
|         break;
 | |
|       case MVT::v2f64:
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v2i64:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v16i8:
 | |
|         ArgRegClass = &SPU::VECREGRegClass;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       unsigned VReg = RegInfo.createVirtualRegister(ArgRegClass);
 | |
|       RegInfo.addLiveIn(ArgRegs[ArgRegIdx], VReg);
 | |
|       ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|       ++ArgRegIdx;
 | |
|     } else {
 | |
|       // We need to load the argument to a virtual register if we determined
 | |
|       // above that we ran out of physical registers of the appropriate type
 | |
|       // or we're forced to do vararg
 | |
|       int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
 | |
|       ArgOffset += StackSlotSize;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(ArgVal);
 | |
|     // Update the chain
 | |
|     Chain = ArgVal.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // vararg handling:
 | |
|   if (isVarArg) {
 | |
|     // unsigned int ptr_size = PtrVT.getSizeInBits() / 8;
 | |
|     // We will spill (79-3)+1 registers to the stack
 | |
|     SmallVector<SDValue, 79-3+1> MemOps;
 | |
| 
 | |
|     // Create the frame slot
 | |
| 
 | |
|     for (; ArgRegIdx != NumArgRegs; ++ArgRegIdx) {
 | |
|       VarArgsFrameIndex = MFI->CreateFixedObject(StackSlotSize, ArgOffset);
 | |
|       SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | |
|       SDValue ArgVal = DAG.getRegister(ArgRegs[ArgRegIdx], MVT::v16i8);
 | |
|       SDValue Store = DAG.getStore(Chain, dl, ArgVal, FIN, NULL, 0);
 | |
|       Chain = Store.getOperand(0);
 | |
|       MemOps.push_back(Store);
 | |
| 
 | |
|       // Increment address by stack slot size for the next stored argument
 | |
|       ArgOffset += StackSlotSize;
 | |
|     }
 | |
|     if (!MemOps.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                           &MemOps[0], MemOps.size());
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// isLSAAddress - Return the immediate to use if the specified
 | |
| /// value is representable as a LSA address.
 | |
| static SDNode *isLSAAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|   if (!C) return 0;
 | |
| 
 | |
|   int Addr = C->getZExtValue();
 | |
|   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | |
|       (Addr << 14 >> 14) != Addr)
 | |
|     return 0;  // Top 14 bits have to be sext of immediate.
 | |
| 
 | |
|   return DAG.getConstant((int)C->getZExtValue() >> 2, MVT::i32).getNode();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SPUTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
 | |
|                              CallingConv::ID CallConv, bool isVarArg,
 | |
|                              bool isTailCall,
 | |
|                              const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                              const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                              DebugLoc dl, SelectionDAG &DAG,
 | |
|                              SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   const SPUSubtarget *ST = SPUTM.getSubtargetImpl();
 | |
|   unsigned NumOps     = Outs.size();
 | |
|   unsigned StackSlotSize = SPUFrameInfo::stackSlotSize();
 | |
|   const unsigned *ArgRegs = SPURegisterInfo::getArgRegs();
 | |
|   const unsigned NumArgRegs = SPURegisterInfo::getNumArgRegs();
 | |
| 
 | |
|   // Handy pointer type
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Accumulate how many bytes are to be pushed on the stack, including the
 | |
|   // linkage area, and parameter passing area.  According to the SPU ABI,
 | |
|   // we minimally need space for [LR] and [SP]
 | |
|   unsigned NumStackBytes = SPUFrameInfo::minStackSize();
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr = DAG.getRegister(SPU::R1, MVT::i32);
 | |
| 
 | |
|   // Figure out which arguments are going to go in registers, and which in
 | |
|   // memory.
 | |
|   unsigned ArgOffset = SPUFrameInfo::minStackSize(); // Just below [LR]
 | |
|   unsigned ArgRegIdx = 0;
 | |
| 
 | |
|   // Keep track of registers passing arguments
 | |
|   std::vector<std::pair<unsigned, SDValue> > RegsToPass;
 | |
|   // And the arguments passed on the stack
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = Outs[i].Val;
 | |
| 
 | |
|     // PtrOff will be used to store the current argument to the stack if a
 | |
|     // register cannot be found for it.
 | |
|     SDValue PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
 | |
|     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
| 
 | |
|     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|     case MVT::i128:
 | |
|       if (ArgRegIdx != NumArgRegs) {
 | |
|         RegsToPass.push_back(std::make_pair(ArgRegs[ArgRegIdx++], Arg));
 | |
|       } else {
 | |
|         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
 | |
|         ArgOffset += StackSlotSize;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       if (ArgRegIdx != NumArgRegs) {
 | |
|         RegsToPass.push_back(std::make_pair(ArgRegs[ArgRegIdx++], Arg));
 | |
|       } else {
 | |
|         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
 | |
|         ArgOffset += StackSlotSize;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::v2i64:
 | |
|     case MVT::v2f64:
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       if (ArgRegIdx != NumArgRegs) {
 | |
|         RegsToPass.push_back(std::make_pair(ArgRegs[ArgRegIdx++], Arg));
 | |
|       } else {
 | |
|         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
 | |
|         ArgOffset += StackSlotSize;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update number of stack bytes actually used, insert a call sequence start
 | |
|   NumStackBytes = (ArgOffset - SPUFrameInfo::minStackSize());
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumStackBytes,
 | |
|                                                             true));
 | |
| 
 | |
|   if (!MemOpChains.empty()) {
 | |
|     // Adjust the stack pointer for the stack arguments.
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   unsigned CallOpc = SPUISD::CALL;
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     GlobalValue *GV = G->getGlobal();
 | |
|     EVT CalleeVT = Callee.getValueType();
 | |
|     SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|     SDValue GA = DAG.getTargetGlobalAddress(GV, CalleeVT);
 | |
| 
 | |
|     if (!ST->usingLargeMem()) {
 | |
|       // Turn calls to targets that are defined (i.e., have bodies) into BRSL
 | |
|       // style calls, otherwise, external symbols are BRASL calls. This assumes
 | |
|       // that declared/defined symbols are in the same compilation unit and can
 | |
|       // be reached through PC-relative jumps.
 | |
|       //
 | |
|       // NOTE:
 | |
|       // This may be an unsafe assumption for JIT and really large compilation
 | |
|       // units.
 | |
|       if (GV->isDeclaration()) {
 | |
|         Callee = DAG.getNode(SPUISD::AFormAddr, dl, CalleeVT, GA, Zero);
 | |
|       } else {
 | |
|         Callee = DAG.getNode(SPUISD::PCRelAddr, dl, CalleeVT, GA, Zero);
 | |
|       }
 | |
|     } else {
 | |
|       // "Large memory" mode: Turn all calls into indirect calls with a X-form
 | |
|       // address pairs:
 | |
|       Callee = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, GA, Zero);
 | |
|     }
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     EVT CalleeVT = Callee.getValueType();
 | |
|     SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|     SDValue ExtSym = DAG.getTargetExternalSymbol(S->getSymbol(),
 | |
|         Callee.getValueType());
 | |
| 
 | |
|     if (!ST->usingLargeMem()) {
 | |
|       Callee = DAG.getNode(SPUISD::AFormAddr, dl, CalleeVT, ExtSym, Zero);
 | |
|     } else {
 | |
|       Callee = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, ExtSym, Zero);
 | |
|     }
 | |
|   } else if (SDNode *Dest = isLSAAddress(Callee, DAG)) {
 | |
|     // If this is an absolute destination address that appears to be a legal
 | |
|     // local store address, use the munged value.
 | |
|     Callee = SDValue(Dest, 0);
 | |
|   }
 | |
| 
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
|   // Returns a chain and a flag for retval copy to use.
 | |
|   Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
 | |
|                       &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumStackBytes, true),
 | |
|                              DAG.getIntPtrConstant(0, true), InFlag);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // If the function returns void, just return the chain.
 | |
|   if (Ins.empty())
 | |
|     return Chain;
 | |
| 
 | |
|   // If the call has results, copy the values out of the ret val registers.
 | |
|   switch (Ins[0].VT.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("Unexpected ret value!");
 | |
|   case MVT::Other: break;
 | |
|   case MVT::i32:
 | |
|     if (Ins.size() > 1 && Ins[1].VT == MVT::i32) {
 | |
|       Chain = DAG.getCopyFromReg(Chain, dl, SPU::R4,
 | |
|                                  MVT::i32, InFlag).getValue(1);
 | |
|       InVals.push_back(Chain.getValue(0));
 | |
|       Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i32,
 | |
|                                  Chain.getValue(2)).getValue(1);
 | |
|       InVals.push_back(Chain.getValue(0));
 | |
|     } else {
 | |
|       Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i32,
 | |
|                                  InFlag).getValue(1);
 | |
|       InVals.push_back(Chain.getValue(0));
 | |
|     }
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i64,
 | |
|                                InFlag).getValue(1);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|     break;
 | |
|   case MVT::i128:
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i128,
 | |
|                                InFlag).getValue(1);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, Ins[0].VT,
 | |
|                                InFlag).getValue(1);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|     break;
 | |
|   case MVT::v2f64:
 | |
|   case MVT::v2i64:
 | |
|   case MVT::v4f32:
 | |
|   case MVT::v4i32:
 | |
|   case MVT::v8i16:
 | |
|   case MVT::v16i8:
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, Ins[0].VT,
 | |
|                                    InFlag).getValue(1);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SPUTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                CallingConv::ID CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                DebugLoc dl, SelectionDAG &DAG) {
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_SPU);
 | |
| 
 | |
|   // If this is the first return lowered for this function, add the regs to the
 | |
|   // liveout set for the function.
 | |
|   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|   }
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                              Outs[i].Val, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (Flag.getNode())
 | |
|     return DAG.getNode(SPUISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
 | |
|   else
 | |
|     return DAG.getNode(SPUISD::RET_FLAG, dl, MVT::Other, Chain);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Vector related lowering:
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static ConstantSDNode *
 | |
| getVecImm(SDNode *N) {
 | |
|   SDValue OpVal(0, 0);
 | |
| 
 | |
|   // Check to see if this buildvec has a single non-undef value in its elements.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|     if (OpVal.getNode() == 0)
 | |
|       OpVal = N->getOperand(i);
 | |
|     else if (OpVal != N->getOperand(i))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   if (OpVal.getNode() != 0) {
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|       return CN;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// get_vec_i18imm - Test if this vector is a vector filled with the same value
 | |
| /// and the value fits into an unsigned 18-bit constant, and if so, return the
 | |
| /// constant
 | |
| SDValue SPU::get_vec_u18imm(SDNode *N, SelectionDAG &DAG,
 | |
|                               EVT ValueType) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     uint64_t Value = CN->getZExtValue();
 | |
|     if (ValueType == MVT::i64) {
 | |
|       uint64_t UValue = CN->getZExtValue();
 | |
|       uint32_t upper = uint32_t(UValue >> 32);
 | |
|       uint32_t lower = uint32_t(UValue);
 | |
|       if (upper != lower)
 | |
|         return SDValue();
 | |
|       Value = Value >> 32;
 | |
|     }
 | |
|     if (Value <= 0x3ffff)
 | |
|       return DAG.getTargetConstant(Value, ValueType);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// get_vec_i16imm - Test if this vector is a vector filled with the same value
 | |
| /// and the value fits into a signed 16-bit constant, and if so, return the
 | |
| /// constant
 | |
| SDValue SPU::get_vec_i16imm(SDNode *N, SelectionDAG &DAG,
 | |
|                               EVT ValueType) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     int64_t Value = CN->getSExtValue();
 | |
|     if (ValueType == MVT::i64) {
 | |
|       uint64_t UValue = CN->getZExtValue();
 | |
|       uint32_t upper = uint32_t(UValue >> 32);
 | |
|       uint32_t lower = uint32_t(UValue);
 | |
|       if (upper != lower)
 | |
|         return SDValue();
 | |
|       Value = Value >> 32;
 | |
|     }
 | |
|     if (Value >= -(1 << 15) && Value <= ((1 << 15) - 1)) {
 | |
|       return DAG.getTargetConstant(Value, ValueType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// get_vec_i10imm - Test if this vector is a vector filled with the same value
 | |
| /// and the value fits into a signed 10-bit constant, and if so, return the
 | |
| /// constant
 | |
| SDValue SPU::get_vec_i10imm(SDNode *N, SelectionDAG &DAG,
 | |
|                               EVT ValueType) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     int64_t Value = CN->getSExtValue();
 | |
|     if (ValueType == MVT::i64) {
 | |
|       uint64_t UValue = CN->getZExtValue();
 | |
|       uint32_t upper = uint32_t(UValue >> 32);
 | |
|       uint32_t lower = uint32_t(UValue);
 | |
|       if (upper != lower)
 | |
|         return SDValue();
 | |
|       Value = Value >> 32;
 | |
|     }
 | |
|     if (isS10Constant(Value))
 | |
|       return DAG.getTargetConstant(Value, ValueType);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// get_vec_i8imm - Test if this vector is a vector filled with the same value
 | |
| /// and the value fits into a signed 8-bit constant, and if so, return the
 | |
| /// constant.
 | |
| ///
 | |
| /// @note: The incoming vector is v16i8 because that's the only way we can load
 | |
| /// constant vectors. Thus, we test to see if the upper and lower bytes are the
 | |
| /// same value.
 | |
| SDValue SPU::get_vec_i8imm(SDNode *N, SelectionDAG &DAG,
 | |
|                              EVT ValueType) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     int Value = (int) CN->getZExtValue();
 | |
|     if (ValueType == MVT::i16
 | |
|         && Value <= 0xffff                 /* truncated from uint64_t */
 | |
|         && ((short) Value >> 8) == ((short) Value & 0xff))
 | |
|       return DAG.getTargetConstant(Value & 0xff, ValueType);
 | |
|     else if (ValueType == MVT::i8
 | |
|              && (Value & 0xff) == Value)
 | |
|       return DAG.getTargetConstant(Value, ValueType);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// get_ILHUvec_imm - Test if this vector is a vector filled with the same value
 | |
| /// and the value fits into a signed 16-bit constant, and if so, return the
 | |
| /// constant
 | |
| SDValue SPU::get_ILHUvec_imm(SDNode *N, SelectionDAG &DAG,
 | |
|                                EVT ValueType) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     uint64_t Value = CN->getZExtValue();
 | |
|     if ((ValueType == MVT::i32
 | |
|           && ((unsigned) Value & 0xffff0000) == (unsigned) Value)
 | |
|         || (ValueType == MVT::i64 && (Value & 0xffff0000) == Value))
 | |
|       return DAG.getTargetConstant(Value >> 16, ValueType);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// get_v4i32_imm - Catch-all for general 32-bit constant vectors
 | |
| SDValue SPU::get_v4i32_imm(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     return DAG.getTargetConstant((unsigned) CN->getZExtValue(), MVT::i32);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// get_v4i32_imm - Catch-all for general 64-bit constant vectors
 | |
| SDValue SPU::get_v2i64_imm(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (ConstantSDNode *CN = getVecImm(N)) {
 | |
|     return DAG.getTargetConstant((unsigned) CN->getZExtValue(), MVT::i64);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //! Lower a BUILD_VECTOR instruction creatively:
 | |
| static SDValue
 | |
| LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   BuildVectorSDNode *BCN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   assert(BCN != 0 && "Expected BuildVectorSDNode in SPU LowerBUILD_VECTOR");
 | |
|   unsigned minSplatBits = EltVT.getSizeInBits();
 | |
| 
 | |
|   if (minSplatBits < 16)
 | |
|     minSplatBits = 16;
 | |
| 
 | |
|   APInt APSplatBits, APSplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
| 
 | |
|   if (!BCN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | |
|                             HasAnyUndefs, minSplatBits)
 | |
|       || minSplatBits < SplatBitSize)
 | |
|     return SDValue();   // Wasn't a constant vector or splat exceeded min
 | |
| 
 | |
|   uint64_t SplatBits = APSplatBits.getZExtValue();
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: {
 | |
|     std::string msg;
 | |
|     raw_string_ostream Msg(msg);
 | |
|     Msg << "CellSPU: Unhandled VT in LowerBUILD_VECTOR, VT = "
 | |
|          << VT.getEVTString();
 | |
|     llvm_report_error(Msg.str());
 | |
|     /*NOTREACHED*/
 | |
|   }
 | |
|   case MVT::v4f32: {
 | |
|     uint32_t Value32 = uint32_t(SplatBits);
 | |
|     assert(SplatBitSize == 32
 | |
|            && "LowerBUILD_VECTOR: Unexpected floating point vector element.");
 | |
|     // NOTE: pretend the constant is an integer. LLVM won't load FP constants
 | |
|     SDValue T = DAG.getConstant(Value32, MVT::i32);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, T,T,T,T));
 | |
|     break;
 | |
|   }
 | |
|   case MVT::v2f64: {
 | |
|     uint64_t f64val = uint64_t(SplatBits);
 | |
|     assert(SplatBitSize == 64
 | |
|            && "LowerBUILD_VECTOR: 64-bit float vector size > 8 bytes.");
 | |
|     // NOTE: pretend the constant is an integer. LLVM won't load FP constants
 | |
|     SDValue T = DAG.getConstant(f64val, MVT::i64);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, T, T));
 | |
|     break;
 | |
|   }
 | |
|   case MVT::v16i8: {
 | |
|    // 8-bit constants have to be expanded to 16-bits
 | |
|    unsigned short Value16 = SplatBits /* | (SplatBits << 8) */;
 | |
|    SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|    Ops.assign(8, DAG.getConstant(Value16, MVT::i16));
 | |
|    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                       DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i16, &Ops[0], Ops.size()));
 | |
|   }
 | |
|   case MVT::v8i16: {
 | |
|     unsigned short Value16 = SplatBits;
 | |
|     SDValue T = DAG.getConstant(Value16, EltVT);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|     Ops.assign(8, T);
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   case MVT::v4i32: {
 | |
|     SDValue T = DAG.getConstant(unsigned(SplatBits), VT.getVectorElementType());
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, T, T, T, T);
 | |
|   }
 | |
|   case MVT::v2i32: {
 | |
|     SDValue T = DAG.getConstant(unsigned(SplatBits), VT.getVectorElementType());
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, T, T);
 | |
|   }
 | |
|   case MVT::v2i64: {
 | |
|     return SPU::LowerV2I64Splat(VT, DAG, SplatBits, dl);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  */
 | |
| SDValue
 | |
| SPU::LowerV2I64Splat(EVT OpVT, SelectionDAG& DAG, uint64_t SplatVal,
 | |
|                      DebugLoc dl) {
 | |
|   uint32_t upper = uint32_t(SplatVal >> 32);
 | |
|   uint32_t lower = uint32_t(SplatVal);
 | |
| 
 | |
|   if (upper == lower) {
 | |
|     // Magic constant that can be matched by IL, ILA, et. al.
 | |
|     SDValue Val = DAG.getTargetConstant(upper, MVT::i32);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, OpVT,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                                    Val, Val, Val, Val));
 | |
|   } else {
 | |
|     bool upper_special, lower_special;
 | |
| 
 | |
|     // NOTE: This code creates common-case shuffle masks that can be easily
 | |
|     // detected as common expressions. It is not attempting to create highly
 | |
|     // specialized masks to replace any and all 0's, 0xff's and 0x80's.
 | |
| 
 | |
|     // Detect if the upper or lower half is a special shuffle mask pattern:
 | |
|     upper_special = (upper == 0 || upper == 0xffffffff || upper == 0x80000000);
 | |
|     lower_special = (lower == 0 || lower == 0xffffffff || lower == 0x80000000);
 | |
| 
 | |
|     // Both upper and lower are special, lower to a constant pool load:
 | |
|     if (lower_special && upper_special) {
 | |
|       SDValue SplatValCN = DAG.getConstant(SplatVal, MVT::i64);
 | |
|       return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
 | |
|                          SplatValCN, SplatValCN);
 | |
|     }
 | |
| 
 | |
|     SDValue LO32;
 | |
|     SDValue HI32;
 | |
|     SmallVector<SDValue, 16> ShufBytes;
 | |
|     SDValue Result;
 | |
| 
 | |
|     // Create lower vector if not a special pattern
 | |
|     if (!lower_special) {
 | |
|       SDValue LO32C = DAG.getConstant(lower, MVT::i32);
 | |
|       LO32 = DAG.getNode(ISD::BIT_CONVERT, dl, OpVT,
 | |
|                          DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                                      LO32C, LO32C, LO32C, LO32C));
 | |
|     }
 | |
| 
 | |
|     // Create upper vector if not a special pattern
 | |
|     if (!upper_special) {
 | |
|       SDValue HI32C = DAG.getConstant(upper, MVT::i32);
 | |
|       HI32 = DAG.getNode(ISD::BIT_CONVERT, dl, OpVT,
 | |
|                          DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                                      HI32C, HI32C, HI32C, HI32C));
 | |
|     }
 | |
| 
 | |
|     // If either upper or lower are special, then the two input operands are
 | |
|     // the same (basically, one of them is a "don't care")
 | |
|     if (lower_special)
 | |
|       LO32 = HI32;
 | |
|     if (upper_special)
 | |
|       HI32 = LO32;
 | |
| 
 | |
|     for (int i = 0; i < 4; ++i) {
 | |
|       uint64_t val = 0;
 | |
|       for (int j = 0; j < 4; ++j) {
 | |
|         SDValue V;
 | |
|         bool process_upper, process_lower;
 | |
|         val <<= 8;
 | |
|         process_upper = (upper_special && (i & 1) == 0);
 | |
|         process_lower = (lower_special && (i & 1) == 1);
 | |
| 
 | |
|         if (process_upper || process_lower) {
 | |
|           if ((process_upper && upper == 0)
 | |
|                   || (process_lower && lower == 0))
 | |
|             val |= 0x80;
 | |
|           else if ((process_upper && upper == 0xffffffff)
 | |
|                   || (process_lower && lower == 0xffffffff))
 | |
|             val |= 0xc0;
 | |
|           else if ((process_upper && upper == 0x80000000)
 | |
|                   || (process_lower && lower == 0x80000000))
 | |
|             val |= (j == 0 ? 0xe0 : 0x80);
 | |
|         } else
 | |
|           val |= i * 4 + j + ((i & 1) * 16);
 | |
|       }
 | |
| 
 | |
|       ShufBytes.push_back(DAG.getConstant(val, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(SPUISD::SHUFB, dl, OpVT, HI32, LO32,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                                    &ShufBytes[0], ShufBytes.size()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3) to something on
 | |
| /// which the Cell can operate. The code inspects V3 to ascertain whether the
 | |
| /// permutation vector, V3, is monotonically increasing with one "exception"
 | |
| /// element, e.g., (0, 1, _, 3). If this is the case, then generate a
 | |
| /// SHUFFLE_MASK synthetic instruction. Otherwise, spill V3 to the constant pool.
 | |
| /// In either case, the net result is going to eventually invoke SHUFB to
 | |
| /// permute/shuffle the bytes from V1 and V2.
 | |
| /// \note
 | |
| /// SHUFFLE_MASK is eventually selected as one of the C*D instructions, generate
 | |
| /// control word for byte/halfword/word insertion. This takes care of a single
 | |
| /// element move from V2 into V1.
 | |
| /// \note
 | |
| /// SPUISD::SHUFB is eventually selected as Cell's <i>shufb</i> instructions.
 | |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | |
|   const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
 | |
| 
 | |
|   // If we have a single element being moved from V1 to V2, this can be handled
 | |
|   // using the C*[DX] compute mask instructions, but the vector elements have
 | |
|   // to be monotonically increasing with one exception element.
 | |
|   EVT VecVT = V1.getValueType();
 | |
|   EVT EltVT = VecVT.getVectorElementType();
 | |
|   unsigned EltsFromV2 = 0;
 | |
|   unsigned V2Elt = 0;
 | |
|   unsigned V2EltIdx0 = 0;
 | |
|   unsigned CurrElt = 0;
 | |
|   unsigned MaxElts = VecVT.getVectorNumElements();
 | |
|   unsigned PrevElt = 0;
 | |
|   unsigned V0Elt = 0;
 | |
|   bool monotonic = true;
 | |
|   bool rotate = true;
 | |
| 
 | |
|   if (EltVT == MVT::i8) {
 | |
|     V2EltIdx0 = 16;
 | |
|   } else if (EltVT == MVT::i16) {
 | |
|     V2EltIdx0 = 8;
 | |
|   } else if (EltVT == MVT::i32 || EltVT == MVT::f32) {
 | |
|     V2EltIdx0 = 4;
 | |
|   } else if (EltVT == MVT::i64 || EltVT == MVT::f64) {
 | |
|     V2EltIdx0 = 2;
 | |
|   } else
 | |
|     llvm_unreachable("Unhandled vector type in LowerVECTOR_SHUFFLE");
 | |
| 
 | |
|   for (unsigned i = 0; i != MaxElts; ++i) {
 | |
|     if (SVN->getMaskElt(i) < 0)
 | |
|       continue;
 | |
|     
 | |
|     unsigned SrcElt = SVN->getMaskElt(i);
 | |
| 
 | |
|     if (monotonic) {
 | |
|       if (SrcElt >= V2EltIdx0) {
 | |
|         if (1 >= (++EltsFromV2)) {
 | |
|           V2Elt = (V2EltIdx0 - SrcElt) << 2;
 | |
|         }
 | |
|       } else if (CurrElt != SrcElt) {
 | |
|         monotonic = false;
 | |
|       }
 | |
| 
 | |
|       ++CurrElt;
 | |
|     }
 | |
| 
 | |
|     if (rotate) {
 | |
|       if (PrevElt > 0 && SrcElt < MaxElts) {
 | |
|         if ((PrevElt == SrcElt - 1)
 | |
|             || (PrevElt == MaxElts - 1 && SrcElt == 0)) {
 | |
|           PrevElt = SrcElt;
 | |
|           if (SrcElt == 0)
 | |
|             V0Elt = i;
 | |
|         } else {
 | |
|           rotate = false;
 | |
|         }
 | |
|       } else if (PrevElt == 0) {
 | |
|         // First time through, need to keep track of previous element
 | |
|         PrevElt = SrcElt;
 | |
|       } else {
 | |
|         // This isn't a rotation, takes elements from vector 2
 | |
|         rotate = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (EltsFromV2 == 1 && monotonic) {
 | |
|     // Compute mask and shuffle
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|     unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
 | |
|     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|     // Initialize temporary register to 0
 | |
|     SDValue InitTempReg =
 | |
|       DAG.getCopyToReg(DAG.getEntryNode(), dl, VReg, DAG.getConstant(0, PtrVT));
 | |
|     // Copy register's contents as index in SHUFFLE_MASK:
 | |
|     SDValue ShufMaskOp =
 | |
|       DAG.getNode(SPUISD::SHUFFLE_MASK, dl, MVT::v4i32,
 | |
|                   DAG.getTargetConstant(V2Elt, MVT::i32),
 | |
|                   DAG.getCopyFromReg(InitTempReg, dl, VReg, PtrVT));
 | |
|     // Use shuffle mask in SHUFB synthetic instruction:
 | |
|     return DAG.getNode(SPUISD::SHUFB, dl, V1.getValueType(), V2, V1,
 | |
|                        ShufMaskOp);
 | |
|   } else if (rotate) {
 | |
|     int rotamt = (MaxElts - V0Elt) * EltVT.getSizeInBits()/8;
 | |
| 
 | |
|     return DAG.getNode(SPUISD::ROTBYTES_LEFT, dl, V1.getValueType(),
 | |
|                        V1, DAG.getConstant(rotamt, MVT::i16));
 | |
|   } else {
 | |
|    // Convert the SHUFFLE_VECTOR mask's input element units to the
 | |
|    // actual bytes.
 | |
|     unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | |
| 
 | |
|     SmallVector<SDValue, 16> ResultMask;
 | |
|     for (unsigned i = 0, e = MaxElts; i != e; ++i) {
 | |
|       unsigned SrcElt = SVN->getMaskElt(i) < 0 ? 0 : SVN->getMaskElt(i);
 | |
| 
 | |
|       for (unsigned j = 0; j < BytesPerElement; ++j)
 | |
|         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,MVT::i8));
 | |
|     }
 | |
| 
 | |
|     SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
 | |
|                                     &ResultMask[0], ResultMask.size());
 | |
|     return DAG.getNode(SPUISD::SHUFB, dl, V1.getValueType(), V1, V2, VPermMask);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue Op0 = Op.getOperand(0);                     // Op0 = the scalar
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Op0.getNode()->getOpcode() == ISD::Constant) {
 | |
|     // For a constant, build the appropriate constant vector, which will
 | |
|     // eventually simplify to a vector register load.
 | |
| 
 | |
|     ConstantSDNode *CN = cast<ConstantSDNode>(Op0.getNode());
 | |
|     SmallVector<SDValue, 16> ConstVecValues;
 | |
|     EVT VT;
 | |
|     size_t n_copies;
 | |
| 
 | |
|     // Create a constant vector:
 | |
|     switch (Op.getValueType().getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected constant value type in "
 | |
|                               "LowerSCALAR_TO_VECTOR");
 | |
|     case MVT::v16i8: n_copies = 16; VT = MVT::i8; break;
 | |
|     case MVT::v8i16: n_copies = 8; VT = MVT::i16; break;
 | |
|     case MVT::v4i32: n_copies = 4; VT = MVT::i32; break;
 | |
|     case MVT::v4f32: n_copies = 4; VT = MVT::f32; break;
 | |
|     case MVT::v2i64: n_copies = 2; VT = MVT::i64; break;
 | |
|     case MVT::v2f64: n_copies = 2; VT = MVT::f64; break;
 | |
|     }
 | |
| 
 | |
|     SDValue CValue = DAG.getConstant(CN->getZExtValue(), VT);
 | |
|     for (size_t j = 0; j < n_copies; ++j)
 | |
|       ConstVecValues.push_back(CValue);
 | |
| 
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, dl, Op.getValueType(),
 | |
|                        &ConstVecValues[0], ConstVecValues.size());
 | |
|   } else {
 | |
|     // Otherwise, copy the value from one register to another:
 | |
|     switch (Op0.getValueType().getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected value type in LowerSCALAR_TO_VECTOR");
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       return DAG.getNode(SPUISD::PREFSLOT2VEC, dl, Op.getValueType(), Op0, Op0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue N = Op.getOperand(0);
 | |
|   SDValue Elt = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue retval;
 | |
| 
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
 | |
|     // Constant argument:
 | |
|     int EltNo = (int) C->getZExtValue();
 | |
| 
 | |
|     // sanity checks:
 | |
|     if (VT == MVT::i8 && EltNo >= 16)
 | |
|       llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i8 extraction slot > 15");
 | |
|     else if (VT == MVT::i16 && EltNo >= 8)
 | |
|       llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i16 extraction slot > 7");
 | |
|     else if (VT == MVT::i32 && EltNo >= 4)
 | |
|       llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i32 extraction slot > 4");
 | |
|     else if (VT == MVT::i64 && EltNo >= 2)
 | |
|       llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i64 extraction slot > 2");
 | |
| 
 | |
|     if (EltNo == 0 && (VT == MVT::i32 || VT == MVT::i64)) {
 | |
|       // i32 and i64: Element 0 is the preferred slot
 | |
|       return DAG.getNode(SPUISD::VEC2PREFSLOT, dl, VT, N);
 | |
|     }
 | |
| 
 | |
|     // Need to generate shuffle mask and extract:
 | |
|     int prefslot_begin = -1, prefslot_end = -1;
 | |
|     int elt_byte = EltNo * VT.getSizeInBits() / 8;
 | |
| 
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default:
 | |
|       assert(false && "Invalid value type!");
 | |
|     case MVT::i8: {
 | |
|       prefslot_begin = prefslot_end = 3;
 | |
|       break;
 | |
|     }
 | |
|     case MVT::i16: {
 | |
|       prefslot_begin = 2; prefslot_end = 3;
 | |
|       break;
 | |
|     }
 | |
|     case MVT::i32:
 | |
|     case MVT::f32: {
 | |
|       prefslot_begin = 0; prefslot_end = 3;
 | |
|       break;
 | |
|     }
 | |
|     case MVT::i64:
 | |
|     case MVT::f64: {
 | |
|       prefslot_begin = 0; prefslot_end = 7;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     assert(prefslot_begin != -1 && prefslot_end != -1 &&
 | |
|            "LowerEXTRACT_VECTOR_ELT: preferred slots uninitialized");
 | |
| 
 | |
|     unsigned int ShufBytes[16] = {
 | |
|       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 | |
|     };
 | |
|     for (int i = 0; i < 16; ++i) {
 | |
|       // zero fill uppper part of preferred slot, don't care about the
 | |
|       // other slots:
 | |
|       unsigned int mask_val;
 | |
|       if (i <= prefslot_end) {
 | |
|         mask_val =
 | |
|           ((i < prefslot_begin)
 | |
|            ? 0x80
 | |
|            : elt_byte + (i - prefslot_begin));
 | |
| 
 | |
|         ShufBytes[i] = mask_val;
 | |
|       } else
 | |
|         ShufBytes[i] = ShufBytes[i % (prefslot_end + 1)];
 | |
|     }
 | |
| 
 | |
|     SDValue ShufMask[4];
 | |
|     for (unsigned i = 0; i < sizeof(ShufMask)/sizeof(ShufMask[0]); ++i) {
 | |
|       unsigned bidx = i * 4;
 | |
|       unsigned int bits = ((ShufBytes[bidx] << 24) |
 | |
|                            (ShufBytes[bidx+1] << 16) |
 | |
|                            (ShufBytes[bidx+2] << 8) |
 | |
|                            ShufBytes[bidx+3]);
 | |
|       ShufMask[i] = DAG.getConstant(bits, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     SDValue ShufMaskVec =
 | |
|       DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                   &ShufMask[0], sizeof(ShufMask)/sizeof(ShufMask[0]));
 | |
| 
 | |
|     retval = DAG.getNode(SPUISD::VEC2PREFSLOT, dl, VT,
 | |
|                          DAG.getNode(SPUISD::SHUFB, dl, N.getValueType(),
 | |
|                                      N, N, ShufMaskVec));
 | |
|   } else {
 | |
|     // Variable index: Rotate the requested element into slot 0, then replicate
 | |
|     // slot 0 across the vector
 | |
|     EVT VecVT = N.getValueType();
 | |
|     if (!VecVT.isSimple() || !VecVT.isVector() || !VecVT.is128BitVector()) {
 | |
|       llvm_report_error("LowerEXTRACT_VECTOR_ELT: Must have a simple, 128-bit"
 | |
|                         "vector type!");
 | |
|     }
 | |
| 
 | |
|     // Make life easier by making sure the index is zero-extended to i32
 | |
|     if (Elt.getValueType() != MVT::i32)
 | |
|       Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Elt);
 | |
| 
 | |
|     // Scale the index to a bit/byte shift quantity
 | |
|     APInt scaleFactor =
 | |
|             APInt(32, uint64_t(16 / N.getValueType().getVectorNumElements()), false);
 | |
|     unsigned scaleShift = scaleFactor.logBase2();
 | |
|     SDValue vecShift;
 | |
| 
 | |
|     if (scaleShift > 0) {
 | |
|       // Scale the shift factor:
 | |
|       Elt = DAG.getNode(ISD::SHL, dl, MVT::i32, Elt,
 | |
|                         DAG.getConstant(scaleShift, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     vecShift = DAG.getNode(SPUISD::SHLQUAD_L_BYTES, dl, VecVT, N, Elt);
 | |
| 
 | |
|     // Replicate the bytes starting at byte 0 across the entire vector (for
 | |
|     // consistency with the notion of a unified register set)
 | |
|     SDValue replicate;
 | |
| 
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default:
 | |
|       llvm_report_error("LowerEXTRACT_VECTOR_ELT(varable): Unhandled vector"
 | |
|                         "type");
 | |
|       /*NOTREACHED*/
 | |
|     case MVT::i8: {
 | |
|       SDValue factor = DAG.getConstant(0x00000000, MVT::i32);
 | |
|       replicate = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                               factor, factor, factor, factor);
 | |
|       break;
 | |
|     }
 | |
|     case MVT::i16: {
 | |
|       SDValue factor = DAG.getConstant(0x00010001, MVT::i32);
 | |
|       replicate = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                               factor, factor, factor, factor);
 | |
|       break;
 | |
|     }
 | |
|     case MVT::i32:
 | |
|     case MVT::f32: {
 | |
|       SDValue factor = DAG.getConstant(0x00010203, MVT::i32);
 | |
|       replicate = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                               factor, factor, factor, factor);
 | |
|       break;
 | |
|     }
 | |
|     case MVT::i64:
 | |
|     case MVT::f64: {
 | |
|       SDValue loFactor = DAG.getConstant(0x00010203, MVT::i32);
 | |
|       SDValue hiFactor = DAG.getConstant(0x04050607, MVT::i32);
 | |
|       replicate = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                               loFactor, hiFactor, loFactor, hiFactor);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     retval = DAG.getNode(SPUISD::VEC2PREFSLOT, dl, VT,
 | |
|                          DAG.getNode(SPUISD::SHUFB, dl, VecVT,
 | |
|                                      vecShift, vecShift, replicate));
 | |
|   }
 | |
| 
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue VecOp = Op.getOperand(0);
 | |
|   SDValue ValOp = Op.getOperand(1);
 | |
|   SDValue IdxOp = Op.getOperand(2);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   ConstantSDNode *CN = cast<ConstantSDNode>(IdxOp);
 | |
|   assert(CN != 0 && "LowerINSERT_VECTOR_ELT: Index is not constant!");
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   // Use $sp ($1) because it's always 16-byte aligned and it's available:
 | |
|   SDValue Pointer = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
 | |
|                                 DAG.getRegister(SPU::R1, PtrVT),
 | |
|                                 DAG.getConstant(CN->getSExtValue(), PtrVT));
 | |
|   SDValue ShufMask = DAG.getNode(SPUISD::SHUFFLE_MASK, dl, VT, Pointer);
 | |
| 
 | |
|   SDValue result =
 | |
|     DAG.getNode(SPUISD::SHUFB, dl, VT,
 | |
|                 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, ValOp),
 | |
|                 VecOp,
 | |
|                 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, ShufMask));
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| static SDValue LowerI8Math(SDValue Op, SelectionDAG &DAG, unsigned Opc,
 | |
|                            const TargetLowering &TLI)
 | |
| {
 | |
|   SDValue N0 = Op.getOperand(0);      // Everything has at least one operand
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT ShiftVT = TLI.getShiftAmountTy();
 | |
| 
 | |
|   assert(Op.getValueType() == MVT::i8);
 | |
|   switch (Opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled i8 math operator");
 | |
|     /*NOTREACHED*/
 | |
|     break;
 | |
|   case ISD::ADD: {
 | |
|     // 8-bit addition: Promote the arguments up to 16-bits and truncate
 | |
|     // the result:
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
|     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N0);
 | |
|     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N1);
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8,
 | |
|                        DAG.getNode(Opc, dl, MVT::i16, N0, N1));
 | |
| 
 | |
|   }
 | |
| 
 | |
|   case ISD::SUB: {
 | |
|     // 8-bit subtraction: Promote the arguments up to 16-bits and truncate
 | |
|     // the result:
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
|     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N0);
 | |
|     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N1);
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8,
 | |
|                        DAG.getNode(Opc, dl, MVT::i16, N0, N1));
 | |
|   }
 | |
|   case ISD::ROTR:
 | |
|   case ISD::ROTL: {
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
|     EVT N1VT = N1.getValueType();
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, N0);
 | |
|     if (!N1VT.bitsEq(ShiftVT)) {
 | |
|       unsigned N1Opc = N1.getValueType().bitsLT(ShiftVT)
 | |
|                        ? ISD::ZERO_EXTEND
 | |
|                        : ISD::TRUNCATE;
 | |
|       N1 = DAG.getNode(N1Opc, dl, ShiftVT, N1);
 | |
|     }
 | |
| 
 | |
|     // Replicate lower 8-bits into upper 8:
 | |
|     SDValue ExpandArg =
 | |
|       DAG.getNode(ISD::OR, dl, MVT::i16, N0,
 | |
|                   DAG.getNode(ISD::SHL, dl, MVT::i16,
 | |
|                               N0, DAG.getConstant(8, MVT::i32)));
 | |
| 
 | |
|     // Truncate back down to i8
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8,
 | |
|                        DAG.getNode(Opc, dl, MVT::i16, ExpandArg, N1));
 | |
|   }
 | |
|   case ISD::SRL:
 | |
|   case ISD::SHL: {
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
|     EVT N1VT = N1.getValueType();
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, N0);
 | |
|     if (!N1VT.bitsEq(ShiftVT)) {
 | |
|       unsigned N1Opc = ISD::ZERO_EXTEND;
 | |
| 
 | |
|       if (N1.getValueType().bitsGT(ShiftVT))
 | |
|         N1Opc = ISD::TRUNCATE;
 | |
| 
 | |
|       N1 = DAG.getNode(N1Opc, dl, ShiftVT, N1);
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8,
 | |
|                        DAG.getNode(Opc, dl, MVT::i16, N0, N1));
 | |
|   }
 | |
|   case ISD::SRA: {
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
|     EVT N1VT = N1.getValueType();
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N0);
 | |
|     if (!N1VT.bitsEq(ShiftVT)) {
 | |
|       unsigned N1Opc = ISD::SIGN_EXTEND;
 | |
| 
 | |
|       if (N1VT.bitsGT(ShiftVT))
 | |
|         N1Opc = ISD::TRUNCATE;
 | |
|       N1 = DAG.getNode(N1Opc, dl, ShiftVT, N1);
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8,
 | |
|                        DAG.getNode(Opc, dl, MVT::i16, N0, N1));
 | |
|   }
 | |
|   case ISD::MUL: {
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N0);
 | |
|     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N1);
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8,
 | |
|                        DAG.getNode(Opc, dl, MVT::i16, N0, N1));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //! Lower byte immediate operations for v16i8 vectors:
 | |
| static SDValue
 | |
| LowerByteImmed(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue ConstVec;
 | |
|   SDValue Arg;
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   ConstVec = Op.getOperand(0);
 | |
|   Arg = Op.getOperand(1);
 | |
|   if (ConstVec.getNode()->getOpcode() != ISD::BUILD_VECTOR) {
 | |
|     if (ConstVec.getNode()->getOpcode() == ISD::BIT_CONVERT) {
 | |
|       ConstVec = ConstVec.getOperand(0);
 | |
|     } else {
 | |
|       ConstVec = Op.getOperand(1);
 | |
|       Arg = Op.getOperand(0);
 | |
|       if (ConstVec.getNode()->getOpcode() == ISD::BIT_CONVERT) {
 | |
|         ConstVec = ConstVec.getOperand(0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstVec.getNode()->getOpcode() == ISD::BUILD_VECTOR) {
 | |
|     BuildVectorSDNode *BCN = dyn_cast<BuildVectorSDNode>(ConstVec.getNode());
 | |
|     assert(BCN != 0 && "Expected BuildVectorSDNode in SPU LowerByteImmed");
 | |
| 
 | |
|     APInt APSplatBits, APSplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
|     unsigned minSplatBits = VT.getVectorElementType().getSizeInBits();
 | |
| 
 | |
|     if (BCN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | |
|                               HasAnyUndefs, minSplatBits)
 | |
|         && minSplatBits <= SplatBitSize) {
 | |
|       uint64_t SplatBits = APSplatBits.getZExtValue();
 | |
|       SDValue tc = DAG.getTargetConstant(SplatBits & 0xff, MVT::i8);
 | |
| 
 | |
|       SmallVector<SDValue, 16> tcVec;
 | |
|       tcVec.assign(16, tc);
 | |
|       return DAG.getNode(Op.getNode()->getOpcode(), dl, VT, Arg,
 | |
|                          DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &tcVec[0], tcVec.size()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // These operations (AND, OR, XOR) are legal, they just couldn't be custom
 | |
|   // lowered.  Return the operation, rather than a null SDValue.
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| //! Custom lowering for CTPOP (count population)
 | |
| /*!
 | |
|   Custom lowering code that counts the number ones in the input
 | |
|   operand. SPU has such an instruction, but it counts the number of
 | |
|   ones per byte, which then have to be accumulated.
 | |
| */
 | |
| static SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT vecVT = EVT::getVectorVT(*DAG.getContext(), 
 | |
|                                VT, (128 / VT.getSizeInBits()));
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     assert(false && "Invalid value type!");
 | |
|   case MVT::i8: {
 | |
|     SDValue N = Op.getOperand(0);
 | |
|     SDValue Elt0 = DAG.getConstant(0, MVT::i32);
 | |
| 
 | |
|     SDValue Promote = DAG.getNode(SPUISD::PREFSLOT2VEC, dl, vecVT, N, N);
 | |
|     SDValue CNTB = DAG.getNode(SPUISD::CNTB, dl, vecVT, Promote);
 | |
| 
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, CNTB, Elt0);
 | |
|   }
 | |
| 
 | |
|   case MVT::i16: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
| 
 | |
|     unsigned CNTB_reg = RegInfo.createVirtualRegister(&SPU::R16CRegClass);
 | |
| 
 | |
|     SDValue N = Op.getOperand(0);
 | |
|     SDValue Elt0 = DAG.getConstant(0, MVT::i16);
 | |
|     SDValue Mask0 = DAG.getConstant(0x0f, MVT::i16);
 | |
|     SDValue Shift1 = DAG.getConstant(8, MVT::i32);
 | |
| 
 | |
|     SDValue Promote = DAG.getNode(SPUISD::PREFSLOT2VEC, dl, vecVT, N, N);
 | |
|     SDValue CNTB = DAG.getNode(SPUISD::CNTB, dl, vecVT, Promote);
 | |
| 
 | |
|     // CNTB_result becomes the chain to which all of the virtual registers
 | |
|     // CNTB_reg, SUM1_reg become associated:
 | |
|     SDValue CNTB_result =
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, CNTB, Elt0);
 | |
| 
 | |
|     SDValue CNTB_rescopy =
 | |
|       DAG.getCopyToReg(CNTB_result, dl, CNTB_reg, CNTB_result);
 | |
| 
 | |
|     SDValue Tmp1 = DAG.getCopyFromReg(CNTB_rescopy, dl, CNTB_reg, MVT::i16);
 | |
| 
 | |
|     return DAG.getNode(ISD::AND, dl, MVT::i16,
 | |
|                        DAG.getNode(ISD::ADD, dl, MVT::i16,
 | |
|                                    DAG.getNode(ISD::SRL, dl, MVT::i16,
 | |
|                                                Tmp1, Shift1),
 | |
|                                    Tmp1),
 | |
|                        Mask0);
 | |
|   }
 | |
| 
 | |
|   case MVT::i32: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
| 
 | |
|     unsigned CNTB_reg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
 | |
|     unsigned SUM1_reg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
 | |
| 
 | |
|     SDValue N = Op.getOperand(0);
 | |
|     SDValue Elt0 = DAG.getConstant(0, MVT::i32);
 | |
|     SDValue Mask0 = DAG.getConstant(0xff, MVT::i32);
 | |
|     SDValue Shift1 = DAG.getConstant(16, MVT::i32);
 | |
|     SDValue Shift2 = DAG.getConstant(8, MVT::i32);
 | |
| 
 | |
|     SDValue Promote = DAG.getNode(SPUISD::PREFSLOT2VEC, dl, vecVT, N, N);
 | |
|     SDValue CNTB = DAG.getNode(SPUISD::CNTB, dl, vecVT, Promote);
 | |
| 
 | |
|     // CNTB_result becomes the chain to which all of the virtual registers
 | |
|     // CNTB_reg, SUM1_reg become associated:
 | |
|     SDValue CNTB_result =
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, CNTB, Elt0);
 | |
| 
 | |
|     SDValue CNTB_rescopy =
 | |
|       DAG.getCopyToReg(CNTB_result, dl, CNTB_reg, CNTB_result);
 | |
| 
 | |
|     SDValue Comp1 =
 | |
|       DAG.getNode(ISD::SRL, dl, MVT::i32,
 | |
|                   DAG.getCopyFromReg(CNTB_rescopy, dl, CNTB_reg, MVT::i32),
 | |
|                   Shift1);
 | |
| 
 | |
|     SDValue Sum1 =
 | |
|       DAG.getNode(ISD::ADD, dl, MVT::i32, Comp1,
 | |
|                   DAG.getCopyFromReg(CNTB_rescopy, dl, CNTB_reg, MVT::i32));
 | |
| 
 | |
|     SDValue Sum1_rescopy =
 | |
|       DAG.getCopyToReg(CNTB_result, dl, SUM1_reg, Sum1);
 | |
| 
 | |
|     SDValue Comp2 =
 | |
|       DAG.getNode(ISD::SRL, dl, MVT::i32,
 | |
|                   DAG.getCopyFromReg(Sum1_rescopy, dl, SUM1_reg, MVT::i32),
 | |
|                   Shift2);
 | |
|     SDValue Sum2 =
 | |
|       DAG.getNode(ISD::ADD, dl, MVT::i32, Comp2,
 | |
|                   DAG.getCopyFromReg(Sum1_rescopy, dl, SUM1_reg, MVT::i32));
 | |
| 
 | |
|     return DAG.getNode(ISD::AND, dl, MVT::i32, Sum2, Mask0);
 | |
|   }
 | |
| 
 | |
|   case MVT::i64:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //! Lower ISD::FP_TO_SINT, ISD::FP_TO_UINT for i32
 | |
| /*!
 | |
|  f32->i32 passes through unchanged, whereas f64->i32 expands to a libcall.
 | |
|  All conversions to i64 are expanded to a libcall.
 | |
|  */
 | |
| static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
 | |
|                               SPUTargetLowering &TLI) {
 | |
|   EVT OpVT = Op.getValueType();
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   EVT Op0VT = Op0.getValueType();
 | |
| 
 | |
|   if ((OpVT == MVT::i32 && Op0VT == MVT::f64)
 | |
|       || OpVT == MVT::i64) {
 | |
|     // Convert f32 / f64 to i32 / i64 via libcall.
 | |
|     RTLIB::Libcall LC =
 | |
|             (Op.getOpcode() == ISD::FP_TO_SINT)
 | |
|              ? RTLIB::getFPTOSINT(Op0VT, OpVT)
 | |
|              : RTLIB::getFPTOUINT(Op0VT, OpVT);
 | |
|     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!");
 | |
|     SDValue Dummy;
 | |
|     return ExpandLibCall(LC, Op, DAG, false, Dummy, TLI);
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| //! Lower ISD::SINT_TO_FP, ISD::UINT_TO_FP for i32
 | |
| /*!
 | |
|  i32->f32 passes through unchanged, whereas i32->f64 is expanded to a libcall.
 | |
|  All conversions from i64 are expanded to a libcall.
 | |
|  */
 | |
| static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
 | |
|                               SPUTargetLowering &TLI) {
 | |
|   EVT OpVT = Op.getValueType();
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   EVT Op0VT = Op0.getValueType();
 | |
| 
 | |
|   if ((OpVT == MVT::f64 && Op0VT == MVT::i32)
 | |
|       || Op0VT == MVT::i64) {
 | |
|     // Convert i32, i64 to f64 via libcall:
 | |
|     RTLIB::Libcall LC =
 | |
|             (Op.getOpcode() == ISD::SINT_TO_FP)
 | |
|              ? RTLIB::getSINTTOFP(Op0VT, OpVT)
 | |
|              : RTLIB::getUINTTOFP(Op0VT, OpVT);
 | |
|     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd int-to-fp conversion!");
 | |
|     SDValue Dummy;
 | |
|     return ExpandLibCall(LC, Op, DAG, false, Dummy, TLI);
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| //! Lower ISD::SETCC
 | |
| /*!
 | |
|  This handles MVT::f64 (double floating point) condition lowering
 | |
|  */
 | |
| static SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG,
 | |
|                           const TargetLowering &TLI) {
 | |
|   CondCodeSDNode *CC = dyn_cast<CondCodeSDNode>(Op.getOperand(2));
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   assert(CC != 0 && "LowerSETCC: CondCodeSDNode should not be null here!\n");
 | |
| 
 | |
|   SDValue lhs = Op.getOperand(0);
 | |
|   SDValue rhs = Op.getOperand(1);
 | |
|   EVT lhsVT = lhs.getValueType();
 | |
|   assert(lhsVT == MVT::f64 && "LowerSETCC: type other than MVT::64\n");
 | |
| 
 | |
|   EVT ccResultVT = TLI.getSetCCResultType(lhs.getValueType());
 | |
|   APInt ccResultOnes = APInt::getAllOnesValue(ccResultVT.getSizeInBits());
 | |
|   EVT IntVT(MVT::i64);
 | |
| 
 | |
|   // Take advantage of the fact that (truncate (sra arg, 32)) is efficiently
 | |
|   // selected to a NOP:
 | |
|   SDValue i64lhs = DAG.getNode(ISD::BIT_CONVERT, dl, IntVT, lhs);
 | |
|   SDValue lhsHi32 =
 | |
|           DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
 | |
|                       DAG.getNode(ISD::SRL, dl, IntVT,
 | |
|                                   i64lhs, DAG.getConstant(32, MVT::i32)));
 | |
|   SDValue lhsHi32abs =
 | |
|           DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                       lhsHi32, DAG.getConstant(0x7fffffff, MVT::i32));
 | |
|   SDValue lhsLo32 =
 | |
|           DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, i64lhs);
 | |
| 
 | |
|   // SETO and SETUO only use the lhs operand:
 | |
|   if (CC->get() == ISD::SETO) {
 | |
|     // Evaluates to true if Op0 is not [SQ]NaN - lowers to the inverse of
 | |
|     // SETUO
 | |
|     APInt ccResultAllOnes = APInt::getAllOnesValue(ccResultVT.getSizeInBits());
 | |
|     return DAG.getNode(ISD::XOR, dl, ccResultVT,
 | |
|                        DAG.getSetCC(dl, ccResultVT,
 | |
|                                     lhs, DAG.getConstantFP(0.0, lhsVT),
 | |
|                                     ISD::SETUO),
 | |
|                        DAG.getConstant(ccResultAllOnes, ccResultVT));
 | |
|   } else if (CC->get() == ISD::SETUO) {
 | |
|     // Evaluates to true if Op0 is [SQ]NaN
 | |
|     return DAG.getNode(ISD::AND, dl, ccResultVT,
 | |
|                        DAG.getSetCC(dl, ccResultVT,
 | |
|                                     lhsHi32abs,
 | |
|                                     DAG.getConstant(0x7ff00000, MVT::i32),
 | |
|                                     ISD::SETGE),
 | |
|                        DAG.getSetCC(dl, ccResultVT,
 | |
|                                     lhsLo32,
 | |
|                                     DAG.getConstant(0, MVT::i32),
 | |
|                                     ISD::SETGT));
 | |
|   }
 | |
| 
 | |
|   SDValue i64rhs = DAG.getNode(ISD::BIT_CONVERT, dl, IntVT, rhs);
 | |
|   SDValue rhsHi32 =
 | |
|           DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
 | |
|                       DAG.getNode(ISD::SRL, dl, IntVT,
 | |
|                                   i64rhs, DAG.getConstant(32, MVT::i32)));
 | |
| 
 | |
|   // If a value is negative, subtract from the sign magnitude constant:
 | |
|   SDValue signMag2TC = DAG.getConstant(0x8000000000000000ULL, IntVT);
 | |
| 
 | |
|   // Convert the sign-magnitude representation into 2's complement:
 | |
|   SDValue lhsSelectMask = DAG.getNode(ISD::SRA, dl, ccResultVT,
 | |
|                                       lhsHi32, DAG.getConstant(31, MVT::i32));
 | |
|   SDValue lhsSignMag2TC = DAG.getNode(ISD::SUB, dl, IntVT, signMag2TC, i64lhs);
 | |
|   SDValue lhsSelect =
 | |
|           DAG.getNode(ISD::SELECT, dl, IntVT,
 | |
|                       lhsSelectMask, lhsSignMag2TC, i64lhs);
 | |
| 
 | |
|   SDValue rhsSelectMask = DAG.getNode(ISD::SRA, dl, ccResultVT,
 | |
|                                       rhsHi32, DAG.getConstant(31, MVT::i32));
 | |
|   SDValue rhsSignMag2TC = DAG.getNode(ISD::SUB, dl, IntVT, signMag2TC, i64rhs);
 | |
|   SDValue rhsSelect =
 | |
|           DAG.getNode(ISD::SELECT, dl, IntVT,
 | |
|                       rhsSelectMask, rhsSignMag2TC, i64rhs);
 | |
| 
 | |
|   unsigned compareOp;
 | |
| 
 | |
|   switch (CC->get()) {
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETUEQ:
 | |
|     compareOp = ISD::SETEQ; break;
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETUGT:
 | |
|     compareOp = ISD::SETGT; break;
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETUGE:
 | |
|     compareOp = ISD::SETGE; break;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETULT:
 | |
|     compareOp = ISD::SETLT; break;
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETULE:
 | |
|     compareOp = ISD::SETLE; break;
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETONE:
 | |
|     compareOp = ISD::SETNE; break;
 | |
|   default:
 | |
|     llvm_report_error("CellSPU ISel Select: unimplemented f64 condition");
 | |
|   }
 | |
| 
 | |
|   SDValue result =
 | |
|           DAG.getSetCC(dl, ccResultVT, lhsSelect, rhsSelect,
 | |
|                        (ISD::CondCode) compareOp);
 | |
| 
 | |
|   if ((CC->get() & 0x8) == 0) {
 | |
|     // Ordered comparison:
 | |
|     SDValue lhsNaN = DAG.getSetCC(dl, ccResultVT,
 | |
|                                   lhs, DAG.getConstantFP(0.0, MVT::f64),
 | |
|                                   ISD::SETO);
 | |
|     SDValue rhsNaN = DAG.getSetCC(dl, ccResultVT,
 | |
|                                   rhs, DAG.getConstantFP(0.0, MVT::f64),
 | |
|                                   ISD::SETO);
 | |
|     SDValue ordered = DAG.getNode(ISD::AND, dl, ccResultVT, lhsNaN, rhsNaN);
 | |
| 
 | |
|     result = DAG.getNode(ISD::AND, dl, ccResultVT, ordered, result);
 | |
|   }
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| //! Lower ISD::SELECT_CC
 | |
| /*!
 | |
|   ISD::SELECT_CC can (generally) be implemented directly on the SPU using the
 | |
|   SELB instruction.
 | |
| 
 | |
|   \note Need to revisit this in the future: if the code path through the true
 | |
|   and false value computations is longer than the latency of a branch (6
 | |
|   cycles), then it would be more advantageous to branch and insert a new basic
 | |
|   block and branch on the condition. However, this code does not make that
 | |
|   assumption, given the simplisitc uses so far.
 | |
|  */
 | |
| 
 | |
| static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
 | |
|                               const TargetLowering &TLI) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue lhs = Op.getOperand(0);
 | |
|   SDValue rhs = Op.getOperand(1);
 | |
|   SDValue trueval = Op.getOperand(2);
 | |
|   SDValue falseval = Op.getOperand(3);
 | |
|   SDValue condition = Op.getOperand(4);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // NOTE: SELB's arguments: $rA, $rB, $mask
 | |
|   //
 | |
|   // SELB selects bits from $rA where bits in $mask are 0, bits from $rB
 | |
|   // where bits in $mask are 1. CCond will be inverted, having 1s where the
 | |
|   // condition was true and 0s where the condition was false. Hence, the
 | |
|   // arguments to SELB get reversed.
 | |
| 
 | |
|   // Note: Really should be ISD::SELECT instead of SPUISD::SELB, but LLVM's
 | |
|   // legalizer insists on combining SETCC/SELECT into SELECT_CC, so we end up
 | |
|   // with another "cannot select select_cc" assert:
 | |
| 
 | |
|   SDValue compare = DAG.getNode(ISD::SETCC, dl,
 | |
|                                 TLI.getSetCCResultType(Op.getValueType()),
 | |
|                                 lhs, rhs, condition);
 | |
|   return DAG.getNode(SPUISD::SELB, dl, VT, falseval, trueval, compare);
 | |
| }
 | |
| 
 | |
| //! Custom lower ISD::TRUNCATE
 | |
| static SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG)
 | |
| {
 | |
|   // Type to truncate to
 | |
|   EVT VT = Op.getValueType();
 | |
|   MVT simpleVT = VT.getSimpleVT();
 | |
|   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), 
 | |
|                                VT, (128 / VT.getSizeInBits()));
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Type to truncate from
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   EVT Op0VT = Op0.getValueType();
 | |
| 
 | |
|   if (Op0VT.getSimpleVT() == MVT::i128 && simpleVT == MVT::i64) {
 | |
|     // Create shuffle mask, least significant doubleword of quadword
 | |
|     unsigned maskHigh = 0x08090a0b;
 | |
|     unsigned maskLow = 0x0c0d0e0f;
 | |
|     // Use a shuffle to perform the truncation
 | |
|     SDValue shufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                                    DAG.getConstant(maskHigh, MVT::i32),
 | |
|                                    DAG.getConstant(maskLow, MVT::i32),
 | |
|                                    DAG.getConstant(maskHigh, MVT::i32),
 | |
|                                    DAG.getConstant(maskLow, MVT::i32));
 | |
| 
 | |
|     SDValue truncShuffle = DAG.getNode(SPUISD::SHUFB, dl, VecVT,
 | |
|                                        Op0, Op0, shufMask);
 | |
| 
 | |
|     return DAG.getNode(SPUISD::VEC2PREFSLOT, dl, VT, truncShuffle);
 | |
|   }
 | |
| 
 | |
|   return SDValue();             // Leave the truncate unmolested
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Emit the instruction sequence for i64/i32 -> i128 sign extend. The basic
 | |
|  * algorithm is to duplicate the sign bit using rotmai to generate at
 | |
|  * least one byte full of sign bits. Then propagate the "sign-byte" into
 | |
|  * the leftmost words and the i64/i32 into the rightmost words using shufb.
 | |
|  *
 | |
|  * @param Op The sext operand
 | |
|  * @param DAG The current DAG
 | |
|  * @return The SDValue with the entire instruction sequence
 | |
|  */
 | |
| static SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG)
 | |
| {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Type to extend to
 | |
|   MVT OpVT = Op.getValueType().getSimpleVT();
 | |
|   EVT VecVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|                                OpVT, (128 / OpVT.getSizeInBits()));
 | |
| 
 | |
|   // Type to extend from
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   MVT Op0VT = Op0.getValueType().getSimpleVT();
 | |
| 
 | |
|   // The type to extend to needs to be a i128 and
 | |
|   // the type to extend from needs to be i64 or i32.
 | |
|   assert((OpVT == MVT::i128 && (Op0VT == MVT::i64 || Op0VT == MVT::i32)) &&
 | |
|           "LowerSIGN_EXTEND: input and/or output operand have wrong size");
 | |
| 
 | |
|   // Create shuffle mask
 | |
|   unsigned mask1 = 0x10101010; // byte 0 - 3 and 4 - 7
 | |
|   unsigned mask2 = Op0VT == MVT::i64 ? 0x00010203 : 0x10101010; // byte  8 - 11
 | |
|   unsigned mask3 = Op0VT == MVT::i64 ? 0x04050607 : 0x00010203; // byte 12 - 15
 | |
|   SDValue shufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
 | |
|                                  DAG.getConstant(mask1, MVT::i32),
 | |
|                                  DAG.getConstant(mask1, MVT::i32),
 | |
|                                  DAG.getConstant(mask2, MVT::i32),
 | |
|                                  DAG.getConstant(mask3, MVT::i32));
 | |
| 
 | |
|   // Word wise arithmetic right shift to generate at least one byte
 | |
|   // that contains sign bits.
 | |
|   MVT mvt = Op0VT == MVT::i64 ? MVT::v2i64 : MVT::v4i32;
 | |
|   SDValue sraVal = DAG.getNode(ISD::SRA,
 | |
|                  dl,
 | |
|                  mvt,
 | |
|                  DAG.getNode(SPUISD::PREFSLOT2VEC, dl, mvt, Op0, Op0),
 | |
|                  DAG.getConstant(31, MVT::i32));
 | |
| 
 | |
|   // Shuffle bytes - Copy the sign bits into the upper 64 bits
 | |
|   // and the input value into the lower 64 bits.
 | |
|   SDValue extShuffle = DAG.getNode(SPUISD::SHUFB, dl, mvt,
 | |
|       DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i128, Op0), sraVal, shufMask);
 | |
| 
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i128, extShuffle);
 | |
| }
 | |
| 
 | |
| //! Custom (target-specific) lowering entry point
 | |
| /*!
 | |
|   This is where LLVM's DAG selection process calls to do target-specific
 | |
|   lowering of nodes.
 | |
|  */
 | |
| SDValue
 | |
| SPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
 | |
| {
 | |
|   unsigned Opc = (unsigned) Op.getOpcode();
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default: {
 | |
| #ifndef NDEBUG
 | |
|     errs() << "SPUTargetLowering::LowerOperation(): need to lower this!\n";
 | |
|     errs() << "Op.getOpcode() = " << Opc << "\n";
 | |
|     errs() << "*Op.getNode():\n";
 | |
|     Op.getNode()->dump();
 | |
| #endif
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   case ISD::LOAD:
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::SEXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|     return LowerLOAD(Op, DAG, SPUTM.getSubtargetImpl());
 | |
|   case ISD::STORE:
 | |
|     return LowerSTORE(Op, DAG, SPUTM.getSubtargetImpl());
 | |
|   case ISD::ConstantPool:
 | |
|     return LowerConstantPool(Op, DAG, SPUTM.getSubtargetImpl());
 | |
|   case ISD::GlobalAddress:
 | |
|     return LowerGlobalAddress(Op, DAG, SPUTM.getSubtargetImpl());
 | |
|   case ISD::JumpTable:
 | |
|     return LowerJumpTable(Op, DAG, SPUTM.getSubtargetImpl());
 | |
|   case ISD::ConstantFP:
 | |
|     return LowerConstantFP(Op, DAG);
 | |
| 
 | |
|   // i8, i64 math ops:
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|   case ISD::ROTR:
 | |
|   case ISD::ROTL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA: {
 | |
|     if (VT == MVT::i8)
 | |
|       return LowerI8Math(Op, DAG, Opc, *this);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:
 | |
|     return LowerFP_TO_INT(Op, DAG, *this);
 | |
| 
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:
 | |
|     return LowerINT_TO_FP(Op, DAG, *this);
 | |
| 
 | |
|   // Vector-related lowering.
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:
 | |
|     return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
| 
 | |
|   // Look for ANDBI, ORBI and XORBI opportunities and lower appropriately:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     return LowerByteImmed(Op, DAG);
 | |
| 
 | |
|   // Vector and i8 multiply:
 | |
|   case ISD::MUL:
 | |
|     if (VT == MVT::i8)
 | |
|       return LowerI8Math(Op, DAG, Opc, *this);
 | |
| 
 | |
|   case ISD::CTPOP:
 | |
|     return LowerCTPOP(Op, DAG);
 | |
| 
 | |
|   case ISD::SELECT_CC:
 | |
|     return LowerSELECT_CC(Op, DAG, *this);
 | |
| 
 | |
|   case ISD::SETCC:
 | |
|     return LowerSETCC(Op, DAG, *this);
 | |
| 
 | |
|   case ISD::TRUNCATE:
 | |
|     return LowerTRUNCATE(Op, DAG);
 | |
| 
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     return LowerSIGN_EXTEND(Op, DAG);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| void SPUTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG)
 | |
| {
 | |
| #if 0
 | |
|   unsigned Opc = (unsigned) N->getOpcode();
 | |
|   EVT OpVT = N->getValueType(0);
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default: {
 | |
|     errs() << "SPUTargetLowering::ReplaceNodeResults(): need to fix this!\n";
 | |
|     errs() << "Op.getOpcode() = " << Opc << "\n";
 | |
|     errs() << "*Op.getNode():\n";
 | |
|     N->dump();
 | |
|     abort();
 | |
|     /*NOTREACHED*/
 | |
|   }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Otherwise, return unchanged */
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Target Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue
 | |
| SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
 | |
| {
 | |
| #if 0
 | |
|   TargetMachine &TM = getTargetMachine();
 | |
| #endif
 | |
|   const SPUSubtarget *ST = SPUTM.getSubtargetImpl();
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Op0 = N->getOperand(0);       // everything has at least one operand
 | |
|   EVT NodeVT = N->getValueType(0);      // The node's value type
 | |
|   EVT Op0VT = Op0.getValueType();       // The first operand's result
 | |
|   SDValue Result;                       // Initially, empty result
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::ADD: {
 | |
|     SDValue Op1 = N->getOperand(1);
 | |
| 
 | |
|     if (Op0.getOpcode() == SPUISD::IndirectAddr
 | |
|         || Op1.getOpcode() == SPUISD::IndirectAddr) {
 | |
|       // Normalize the operands to reduce repeated code
 | |
|       SDValue IndirectArg = Op0, AddArg = Op1;
 | |
| 
 | |
|       if (Op1.getOpcode() == SPUISD::IndirectAddr) {
 | |
|         IndirectArg = Op1;
 | |
|         AddArg = Op0;
 | |
|       }
 | |
| 
 | |
|       if (isa<ConstantSDNode>(AddArg)) {
 | |
|         ConstantSDNode *CN0 = cast<ConstantSDNode > (AddArg);
 | |
|         SDValue IndOp1 = IndirectArg.getOperand(1);
 | |
| 
 | |
|         if (CN0->isNullValue()) {
 | |
|           // (add (SPUindirect <arg>, <arg>), 0) ->
 | |
|           // (SPUindirect <arg>, <arg>)
 | |
| 
 | |
| #if !defined(NDEBUG)
 | |
|           if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
 | |
|             errs() << "\n"
 | |
|                  << "Replace: (add (SPUindirect <arg>, <arg>), 0)\n"
 | |
|                  << "With:    (SPUindirect <arg>, <arg>)\n";
 | |
|           }
 | |
| #endif
 | |
| 
 | |
|           return IndirectArg;
 | |
|         } else if (isa<ConstantSDNode>(IndOp1)) {
 | |
|           // (add (SPUindirect <arg>, <const>), <const>) ->
 | |
|           // (SPUindirect <arg>, <const + const>)
 | |
|           ConstantSDNode *CN1 = cast<ConstantSDNode > (IndOp1);
 | |
|           int64_t combinedConst = CN0->getSExtValue() + CN1->getSExtValue();
 | |
|           SDValue combinedValue = DAG.getConstant(combinedConst, Op0VT);
 | |
| 
 | |
| #if !defined(NDEBUG)
 | |
|           if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
 | |
|             errs() << "\n"
 | |
|                  << "Replace: (add (SPUindirect <arg>, " << CN1->getSExtValue()
 | |
|                  << "), " << CN0->getSExtValue() << ")\n"
 | |
|                  << "With:    (SPUindirect <arg>, "
 | |
|                  << combinedConst << ")\n";
 | |
|           }
 | |
| #endif
 | |
| 
 | |
|           return DAG.getNode(SPUISD::IndirectAddr, dl, Op0VT,
 | |
|                              IndirectArg, combinedValue);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     if (Op0.getOpcode() == SPUISD::VEC2PREFSLOT && NodeVT == Op0VT) {
 | |
|       // (any_extend (SPUextract_elt0 <arg>)) ->
 | |
|       // (SPUextract_elt0 <arg>)
 | |
|       // Types must match, however...
 | |
| #if !defined(NDEBUG)
 | |
|       if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
 | |
|         errs() << "\nReplace: ";
 | |
|         N->dump(&DAG);
 | |
|         errs() << "\nWith:    ";
 | |
|         Op0.getNode()->dump(&DAG);
 | |
|         errs() << "\n";
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       return Op0;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case SPUISD::IndirectAddr: {
 | |
|     if (!ST->usingLargeMem() && Op0.getOpcode() == SPUISD::AFormAddr) {
 | |
|       ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|       if (CN != 0 && CN->getZExtValue() == 0) {
 | |
|         // (SPUindirect (SPUaform <addr>, 0), 0) ->
 | |
|         // (SPUaform <addr>, 0)
 | |
| 
 | |
|         DEBUG(errs() << "Replace: ");
 | |
|         DEBUG(N->dump(&DAG));
 | |
|         DEBUG(errs() << "\nWith:    ");
 | |
|         DEBUG(Op0.getNode()->dump(&DAG));
 | |
|         DEBUG(errs() << "\n");
 | |
| 
 | |
|         return Op0;
 | |
|       }
 | |
|     } else if (Op0.getOpcode() == ISD::ADD) {
 | |
|       SDValue Op1 = N->getOperand(1);
 | |
|       if (ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(Op1)) {
 | |
|         // (SPUindirect (add <arg>, <arg>), 0) ->
 | |
|         // (SPUindirect <arg>, <arg>)
 | |
|         if (CN1->isNullValue()) {
 | |
| 
 | |
| #if !defined(NDEBUG)
 | |
|           if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
 | |
|             errs() << "\n"
 | |
|                  << "Replace: (SPUindirect (add <arg>, <arg>), 0)\n"
 | |
|                  << "With:    (SPUindirect <arg>, <arg>)\n";
 | |
|           }
 | |
| #endif
 | |
| 
 | |
|           return DAG.getNode(SPUISD::IndirectAddr, dl, Op0VT,
 | |
|                              Op0.getOperand(0), Op0.getOperand(1));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case SPUISD::SHLQUAD_L_BITS:
 | |
|   case SPUISD::SHLQUAD_L_BYTES:
 | |
|   case SPUISD::ROTBYTES_LEFT: {
 | |
|     SDValue Op1 = N->getOperand(1);
 | |
| 
 | |
|     // Kill degenerate vector shifts:
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
 | |
|       if (CN->isNullValue()) {
 | |
|         Result = Op0;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case SPUISD::PREFSLOT2VEC: {
 | |
|     switch (Op0.getOpcode()) {
 | |
|     default:
 | |
|       break;
 | |
|     case ISD::ANY_EXTEND:
 | |
|     case ISD::ZERO_EXTEND:
 | |
|     case ISD::SIGN_EXTEND: {
 | |
|       // (SPUprefslot2vec (any|zero|sign_extend (SPUvec2prefslot <arg>))) ->
 | |
|       // <arg>
 | |
|       // but only if the SPUprefslot2vec and <arg> types match.
 | |
|       SDValue Op00 = Op0.getOperand(0);
 | |
|       if (Op00.getOpcode() == SPUISD::VEC2PREFSLOT) {
 | |
|         SDValue Op000 = Op00.getOperand(0);
 | |
|         if (Op000.getValueType() == NodeVT) {
 | |
|           Result = Op000;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SPUISD::VEC2PREFSLOT: {
 | |
|       // (SPUprefslot2vec (SPUvec2prefslot <arg>)) ->
 | |
|       // <arg>
 | |
|       Result = Op0.getOperand(0);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, return unchanged.
 | |
| #ifndef NDEBUG
 | |
|   if (Result.getNode()) {
 | |
|     DEBUG(errs() << "\nReplace.SPU: ");
 | |
|     DEBUG(N->dump(&DAG));
 | |
|     DEBUG(errs() << "\nWith:        ");
 | |
|     DEBUG(Result.getNode()->dump(&DAG));
 | |
|     DEBUG(errs() << "\n");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| SPUTargetLowering::ConstraintType
 | |
| SPUTargetLowering::getConstraintType(const std::string &ConstraintLetter) const {
 | |
|   if (ConstraintLetter.size() == 1) {
 | |
|     switch (ConstraintLetter[0]) {
 | |
|     default: break;
 | |
|     case 'b':
 | |
|     case 'r':
 | |
|     case 'f':
 | |
|     case 'v':
 | |
|     case 'y':
 | |
|       return C_RegisterClass;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(ConstraintLetter);
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| SPUTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 EVT VT) const
 | |
| {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC RS6000 Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'b':   // R1-R31
 | |
|     case 'r':   // R0-R31
 | |
|       if (VT == MVT::i64)
 | |
|         return std::make_pair(0U, SPU::R64CRegisterClass);
 | |
|       return std::make_pair(0U, SPU::R32CRegisterClass);
 | |
|     case 'f':
 | |
|       if (VT == MVT::f32)
 | |
|         return std::make_pair(0U, SPU::R32FPRegisterClass);
 | |
|       else if (VT == MVT::f64)
 | |
|         return std::make_pair(0U, SPU::R64FPRegisterClass);
 | |
|       break;
 | |
|     case 'v':
 | |
|       return std::make_pair(0U, SPU::GPRCRegisterClass);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| }
 | |
| 
 | |
| //! Compute used/known bits for a SPU operand
 | |
| void
 | |
| SPUTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                   const APInt &Mask,
 | |
|                                                   APInt &KnownZero,
 | |
|                                                   APInt &KnownOne,
 | |
|                                                   const SelectionDAG &DAG,
 | |
|                                                   unsigned Depth ) const {
 | |
| #if 0
 | |
|   const uint64_t uint64_sizebits = sizeof(uint64_t) * CHAR_BIT;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     // KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
 | |
|     break;
 | |
|   case CALL:
 | |
|   case SHUFB:
 | |
|   case SHUFFLE_MASK:
 | |
|   case CNTB:
 | |
|   case SPUISD::PREFSLOT2VEC:
 | |
|   case SPUISD::LDRESULT:
 | |
|   case SPUISD::VEC2PREFSLOT:
 | |
|   case SPUISD::SHLQUAD_L_BITS:
 | |
|   case SPUISD::SHLQUAD_L_BYTES:
 | |
|   case SPUISD::VEC_ROTL:
 | |
|   case SPUISD::VEC_ROTR:
 | |
|   case SPUISD::ROTBYTES_LEFT:
 | |
|   case SPUISD::SELECT_MASK:
 | |
|   case SPUISD::SELB:
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| SPUTargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                    unsigned Depth) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     return 1;
 | |
| 
 | |
|   case ISD::SETCC: {
 | |
|     EVT VT = Op.getValueType();
 | |
| 
 | |
|     if (VT != MVT::i8 && VT != MVT::i16 && VT != MVT::i32) {
 | |
|       VT = MVT::i32;
 | |
|     }
 | |
|     return VT.getSizeInBits();
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // LowerAsmOperandForConstraint
 | |
| void
 | |
| SPUTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                 char ConstraintLetter,
 | |
|                                                 bool hasMemory,
 | |
|                                                 std::vector<SDValue> &Ops,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   // Default, for the time being, to the base class handler
 | |
|   TargetLowering::LowerAsmOperandForConstraint(Op, ConstraintLetter, hasMemory,
 | |
|                                                Ops, DAG);
 | |
| }
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value can be used
 | |
| /// as the offset of the target addressing mode.
 | |
| bool SPUTargetLowering::isLegalAddressImmediate(int64_t V,
 | |
|                                                 const Type *Ty) const {
 | |
|   // SPU's addresses are 256K:
 | |
|   return (V > -(1 << 18) && V < (1 << 18) - 1);
 | |
| }
 | |
| 
 | |
| bool SPUTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| SPUTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The SPU target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 |