mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80871 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			944 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			944 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass deletes dead arguments from internal functions.  Dead argument
 | |
| // elimination removes arguments which are directly dead, as well as arguments
 | |
| // only passed into function calls as dead arguments of other functions.  This
 | |
| // pass also deletes dead return values in a similar way.
 | |
| //
 | |
| // This pass is often useful as a cleanup pass to run after aggressive
 | |
| // interprocedural passes, which add possibly-dead arguments or return values.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "deadargelim"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
 | |
| STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
 | |
| 
 | |
| namespace {
 | |
|   /// DAE - The dead argument elimination pass.
 | |
|   ///
 | |
|   class VISIBILITY_HIDDEN DAE : public ModulePass {
 | |
|   public:
 | |
| 
 | |
|     /// Struct that represents (part of) either a return value or a function
 | |
|     /// argument.  Used so that arguments and return values can be used
 | |
|     /// interchangably.
 | |
|     struct RetOrArg {
 | |
|       RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
 | |
|                IsArg(IsArg) {}
 | |
|       const Function *F;
 | |
|       unsigned Idx;
 | |
|       bool IsArg;
 | |
| 
 | |
|       /// Make RetOrArg comparable, so we can put it into a map.
 | |
|       bool operator<(const RetOrArg &O) const {
 | |
|         if (F != O.F)
 | |
|           return F < O.F;
 | |
|         else if (Idx != O.Idx)
 | |
|           return Idx < O.Idx;
 | |
|         else
 | |
|           return IsArg < O.IsArg;
 | |
|       }
 | |
| 
 | |
|       /// Make RetOrArg comparable, so we can easily iterate the multimap.
 | |
|       bool operator==(const RetOrArg &O) const {
 | |
|         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
 | |
|       }
 | |
| 
 | |
|       std::string getDescription() const {
 | |
|         return std::string((IsArg ? "Argument #" : "Return value #")) 
 | |
|                + utostr(Idx) + " of function " + F->getNameStr();
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// Liveness enum - During our initial pass over the program, we determine
 | |
|     /// that things are either alive or maybe alive. We don't mark anything
 | |
|     /// explicitly dead (even if we know they are), since anything not alive
 | |
|     /// with no registered uses (in Uses) will never be marked alive and will
 | |
|     /// thus become dead in the end.
 | |
|     enum Liveness { Live, MaybeLive };
 | |
| 
 | |
|     /// Convenience wrapper
 | |
|     RetOrArg CreateRet(const Function *F, unsigned Idx) {
 | |
|       return RetOrArg(F, Idx, false);
 | |
|     }
 | |
|     /// Convenience wrapper
 | |
|     RetOrArg CreateArg(const Function *F, unsigned Idx) {
 | |
|       return RetOrArg(F, Idx, true);
 | |
|     }
 | |
| 
 | |
|     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
 | |
|     /// This maps a return value or argument to any MaybeLive return values or
 | |
|     /// arguments it uses. This allows the MaybeLive values to be marked live
 | |
|     /// when any of its users is marked live.
 | |
|     /// For example (indices are left out for clarity):
 | |
|     ///  - Uses[ret F] = ret G
 | |
|     ///    This means that F calls G, and F returns the value returned by G.
 | |
|     ///  - Uses[arg F] = ret G
 | |
|     ///    This means that some function calls G and passes its result as an
 | |
|     ///    argument to F.
 | |
|     ///  - Uses[ret F] = arg F
 | |
|     ///    This means that F returns one of its own arguments.
 | |
|     ///  - Uses[arg F] = arg G
 | |
|     ///    This means that G calls F and passes one of its own (G's) arguments
 | |
|     ///    directly to F.
 | |
|     UseMap Uses;
 | |
| 
 | |
|     typedef std::set<RetOrArg> LiveSet;
 | |
|     typedef std::set<const Function*> LiveFuncSet;
 | |
| 
 | |
|     /// This set contains all values that have been determined to be live.
 | |
|     LiveSet LiveValues;
 | |
|     /// This set contains all values that are cannot be changed in any way.
 | |
|     LiveFuncSet LiveFunctions;
 | |
| 
 | |
|     typedef SmallVector<RetOrArg, 5> UseVector;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     DAE() : ModulePass(&ID) {}
 | |
|     bool runOnModule(Module &M);
 | |
| 
 | |
|     virtual bool ShouldHackArguments() const { return false; }
 | |
| 
 | |
|   private:
 | |
|     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
 | |
|     Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
 | |
|                        unsigned RetValNum = 0);
 | |
|     Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
 | |
| 
 | |
|     void SurveyFunction(Function &F);
 | |
|     void MarkValue(const RetOrArg &RA, Liveness L,
 | |
|                    const UseVector &MaybeLiveUses);
 | |
|     void MarkLive(const RetOrArg &RA);
 | |
|     void MarkLive(const Function &F);
 | |
|     void PropagateLiveness(const RetOrArg &RA);
 | |
|     bool RemoveDeadStuffFromFunction(Function *F);
 | |
|     bool DeleteDeadVarargs(Function &Fn);
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| char DAE::ID = 0;
 | |
| static RegisterPass<DAE>
 | |
| X("deadargelim", "Dead Argument Elimination");
 | |
| 
 | |
| namespace {
 | |
|   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
 | |
|   /// deletes arguments to functions which are external.  This is only for use
 | |
|   /// by bugpoint.
 | |
|   struct DAH : public DAE {
 | |
|     static char ID;
 | |
|     virtual bool ShouldHackArguments() const { return true; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char DAH::ID = 0;
 | |
| static RegisterPass<DAH>
 | |
| Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
 | |
| 
 | |
| /// createDeadArgEliminationPass - This pass removes arguments from functions
 | |
| /// which are not used by the body of the function.
 | |
| ///
 | |
| ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
 | |
| ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
 | |
| 
 | |
| /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
 | |
| /// llvm.vastart is never called, the varargs list is dead for the function.
 | |
| bool DAE::DeleteDeadVarargs(Function &Fn) {
 | |
|   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
 | |
|   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
 | |
| 
 | |
|   // Ensure that the function is only directly called.
 | |
|   if (Fn.hasAddressTaken())
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we know we can transform this function if safe.  Scan its body
 | |
|   // looking for calls to llvm.vastart.
 | |
|   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::vastart)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we get here, there are no calls to llvm.vastart in the function body,
 | |
|   // remove the "..." and adjust all the calls.
 | |
| 
 | |
|   // Start by computing a new prototype for the function, which is the same as
 | |
|   // the old function, but doesn't have isVarArg set.
 | |
|   const FunctionType *FTy = Fn.getFunctionType();
 | |
|   
 | |
|   std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
 | |
|   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
 | |
|                                                 Params, false);
 | |
|   unsigned NumArgs = Params.size();
 | |
| 
 | |
|   // Create the new function body and insert it into the module...
 | |
|   Function *NF = Function::Create(NFTy, Fn.getLinkage());
 | |
|   NF->copyAttributesFrom(&Fn);
 | |
|   Fn.getParent()->getFunctionList().insert(&Fn, NF);
 | |
|   NF->takeName(&Fn);
 | |
| 
 | |
|   // Loop over all of the callers of the function, transforming the call sites
 | |
|   // to pass in a smaller number of arguments into the new function.
 | |
|   //
 | |
|   std::vector<Value*> Args;
 | |
|   while (!Fn.use_empty()) {
 | |
|     CallSite CS = CallSite::get(Fn.use_back());
 | |
|     Instruction *Call = CS.getInstruction();
 | |
| 
 | |
|     // Pass all the same arguments.
 | |
|     Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
 | |
| 
 | |
|     // Drop any attributes that were on the vararg arguments.
 | |
|     AttrListPtr PAL = CS.getAttributes();
 | |
|     if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
 | |
|       SmallVector<AttributeWithIndex, 8> AttributesVec;
 | |
|       for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
 | |
|         AttributesVec.push_back(PAL.getSlot(i));
 | |
|       if (Attributes FnAttrs = PAL.getFnAttributes()) 
 | |
|         AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | |
|       PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
 | |
|     }
 | |
| 
 | |
|     Instruction *New;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args.begin(), Args.end(), "", Call);
 | |
|       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<InvokeInst>(New)->setAttributes(PAL);
 | |
|     } else {
 | |
|       New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
 | |
|       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<CallInst>(New)->setAttributes(PAL);
 | |
|       if (cast<CallInst>(Call)->isTailCall())
 | |
|         cast<CallInst>(New)->setTailCall();
 | |
|     }
 | |
|     Args.clear();
 | |
| 
 | |
|     if (!Call->use_empty())
 | |
|       Call->replaceAllUsesWith(New);
 | |
| 
 | |
|     New->takeName(Call);
 | |
| 
 | |
|     // Finally, remove the old call from the program, reducing the use-count of
 | |
|     // F.
 | |
|     Call->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Since we have now created the new function, splice the body of the old
 | |
|   // function right into the new function, leaving the old rotting hulk of the
 | |
|   // function empty.
 | |
|   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
 | |
| 
 | |
|   // Loop over the argument list, transfering uses of the old arguments over to
 | |
|   // the new arguments, also transfering over the names as well.  While we're at
 | |
|   // it, remove the dead arguments from the DeadArguments list.
 | |
|   //
 | |
|   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
 | |
|        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
 | |
|     // Move the name and users over to the new version.
 | |
|     I->replaceAllUsesWith(I2);
 | |
|     I2->takeName(I);
 | |
|   }
 | |
| 
 | |
|   // Finally, nuke the old function.
 | |
|   Fn.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Convenience function that returns the number of return values. It returns 0
 | |
| /// for void functions and 1 for functions not returning a struct. It returns
 | |
| /// the number of struct elements for functions returning a struct.
 | |
| static unsigned NumRetVals(const Function *F) {
 | |
|   if (F->getReturnType() == Type::getVoidTy(F->getContext()))
 | |
|     return 0;
 | |
|   else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
 | |
|     return STy->getNumElements();
 | |
|   else
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
 | |
| /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
 | |
| /// liveness of Use.
 | |
| DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
 | |
|   // We're live if our use or its Function is already marked as live.
 | |
|   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
 | |
|     return Live;
 | |
| 
 | |
|   // We're maybe live otherwise, but remember that we must become live if
 | |
|   // Use becomes live.
 | |
|   MaybeLiveUses.push_back(Use);
 | |
|   return MaybeLive;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SurveyUse - This looks at a single use of an argument or return value
 | |
| /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
 | |
| /// if it causes the used value to become MaybeAlive.
 | |
| ///
 | |
| /// RetValNum is the return value number to use when this use is used in a
 | |
| /// return instruction. This is used in the recursion, you should always leave
 | |
| /// it at 0.
 | |
| DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
 | |
|                              unsigned RetValNum) {
 | |
|     Value *V = *U;
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
 | |
|       // The value is returned from a function. It's only live when the
 | |
|       // function's return value is live. We use RetValNum here, for the case
 | |
|       // that U is really a use of an insertvalue instruction that uses the
 | |
|       // orginal Use.
 | |
|       RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
 | |
|       // We might be live, depending on the liveness of Use.
 | |
|       return MarkIfNotLive(Use, MaybeLiveUses);
 | |
|     }
 | |
|     if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
 | |
|       if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
 | |
|           && IV->hasIndices())
 | |
|         // The use we are examining is inserted into an aggregate. Our liveness
 | |
|         // depends on all uses of that aggregate, but if it is used as a return
 | |
|         // value, only index at which we were inserted counts.
 | |
|         RetValNum = *IV->idx_begin();
 | |
| 
 | |
|       // Note that if we are used as the aggregate operand to the insertvalue,
 | |
|       // we don't change RetValNum, but do survey all our uses.
 | |
| 
 | |
|       Liveness Result = MaybeLive;
 | |
|       for (Value::use_iterator I = IV->use_begin(),
 | |
|            E = V->use_end(); I != E; ++I) {
 | |
|         Result = SurveyUse(I, MaybeLiveUses, RetValNum);
 | |
|         if (Result == Live)
 | |
|           break;
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
|     CallSite CS = CallSite::get(V);
 | |
|     if (CS.getInstruction()) {
 | |
|       Function *F = CS.getCalledFunction();
 | |
|       if (F) {
 | |
|         // Used in a direct call.
 | |
|   
 | |
|         // Find the argument number. We know for sure that this use is an
 | |
|         // argument, since if it was the function argument this would be an
 | |
|         // indirect call and the we know can't be looking at a value of the
 | |
|         // label type (for the invoke instruction).
 | |
|         unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
 | |
| 
 | |
|         if (ArgNo >= F->getFunctionType()->getNumParams())
 | |
|           // The value is passed in through a vararg! Must be live.
 | |
|           return Live;
 | |
| 
 | |
|         assert(CS.getArgument(ArgNo) 
 | |
|                == CS.getInstruction()->getOperand(U.getOperandNo()) 
 | |
|                && "Argument is not where we expected it");
 | |
| 
 | |
|         // Value passed to a normal call. It's only live when the corresponding
 | |
|         // argument to the called function turns out live.
 | |
|         RetOrArg Use = CreateArg(F, ArgNo);
 | |
|         return MarkIfNotLive(Use, MaybeLiveUses);
 | |
|       }
 | |
|     }
 | |
|     // Used in any other way? Value must be live.
 | |
|     return Live;
 | |
| }
 | |
| 
 | |
| /// SurveyUses - This looks at all the uses of the given value
 | |
| /// Returns the Liveness deduced from the uses of this value.
 | |
| ///
 | |
| /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
 | |
| /// the result is Live, MaybeLiveUses might be modified but its content should
 | |
| /// be ignored (since it might not be complete).
 | |
| DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
 | |
|   // Assume it's dead (which will only hold if there are no uses at all..).
 | |
|   Liveness Result = MaybeLive;
 | |
|   // Check each use.
 | |
|   for (Value::use_iterator I = V->use_begin(),
 | |
|        E = V->use_end(); I != E; ++I) {
 | |
|     Result = SurveyUse(I, MaybeLiveUses);
 | |
|     if (Result == Live)
 | |
|       break;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // SurveyFunction - This performs the initial survey of the specified function,
 | |
| // checking out whether or not it uses any of its incoming arguments or whether
 | |
| // any callers use the return value.  This fills in the LiveValues set and Uses
 | |
| // map.
 | |
| //
 | |
| // We consider arguments of non-internal functions to be intrinsically alive as
 | |
| // well as arguments to functions which have their "address taken".
 | |
| //
 | |
| void DAE::SurveyFunction(Function &F) {
 | |
|   unsigned RetCount = NumRetVals(&F);
 | |
|   // Assume all return values are dead
 | |
|   typedef SmallVector<Liveness, 5> RetVals;
 | |
|   RetVals RetValLiveness(RetCount, MaybeLive);
 | |
| 
 | |
|   typedef SmallVector<UseVector, 5> RetUses;
 | |
|   // These vectors map each return value to the uses that make it MaybeLive, so
 | |
|   // we can add those to the Uses map if the return value really turns out to be
 | |
|   // MaybeLive. Initialized to a list of RetCount empty lists.
 | |
|   RetUses MaybeLiveRetUses(RetCount);
 | |
| 
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
 | |
|       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
 | |
|           != F.getFunctionType()->getReturnType()) {
 | |
|         // We don't support old style multiple return values.
 | |
|         MarkLive(F);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
 | |
|     MarkLive(F);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DEBUG(errs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
 | |
|   // Keep track of the number of live retvals, so we can skip checks once all
 | |
|   // of them turn out to be live.
 | |
|   unsigned NumLiveRetVals = 0;
 | |
|   const Type *STy = dyn_cast<StructType>(F.getReturnType());
 | |
|   // Loop all uses of the function.
 | |
|   for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
 | |
|     // If the function is PASSED IN as an argument, its address has been
 | |
|     // taken.
 | |
|     CallSite CS = CallSite::get(*I);
 | |
|     if (!CS.getInstruction() || !CS.isCallee(I)) {
 | |
|       MarkLive(F);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If this use is anything other than a call site, the function is alive.
 | |
|     Instruction *TheCall = CS.getInstruction();
 | |
|     if (!TheCall) {   // Not a direct call site?
 | |
|       MarkLive(F);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If we end up here, we are looking at a direct call to our function.
 | |
| 
 | |
|     // Now, check how our return value(s) is/are used in this caller. Don't
 | |
|     // bother checking return values if all of them are live already.
 | |
|     if (NumLiveRetVals != RetCount) {
 | |
|       if (STy) {
 | |
|         // Check all uses of the return value.
 | |
|         for (Value::use_iterator I = TheCall->use_begin(),
 | |
|              E = TheCall->use_end(); I != E; ++I) {
 | |
|           ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
 | |
|           if (Ext && Ext->hasIndices()) {
 | |
|             // This use uses a part of our return value, survey the uses of
 | |
|             // that part and store the results for this index only.
 | |
|             unsigned Idx = *Ext->idx_begin();
 | |
|             if (RetValLiveness[Idx] != Live) {
 | |
|               RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
 | |
|               if (RetValLiveness[Idx] == Live)
 | |
|                 NumLiveRetVals++;
 | |
|             }
 | |
|           } else {
 | |
|             // Used by something else than extractvalue. Mark all return
 | |
|             // values as live.
 | |
|             for (unsigned i = 0; i != RetCount; ++i )
 | |
|               RetValLiveness[i] = Live;
 | |
|             NumLiveRetVals = RetCount;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         // Single return value
 | |
|         RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
 | |
|         if (RetValLiveness[0] == Live)
 | |
|           NumLiveRetVals = RetCount;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we've inspected all callers, record the liveness of our return values.
 | |
|   for (unsigned i = 0; i != RetCount; ++i)
 | |
|     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
 | |
| 
 | |
|   DEBUG(errs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
 | |
| 
 | |
|   // Now, check all of our arguments.
 | |
|   unsigned i = 0;
 | |
|   UseVector MaybeLiveArgUses;
 | |
|   for (Function::arg_iterator AI = F.arg_begin(),
 | |
|        E = F.arg_end(); AI != E; ++AI, ++i) {
 | |
|     // See what the effect of this use is (recording any uses that cause
 | |
|     // MaybeLive in MaybeLiveArgUses).
 | |
|     Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
 | |
|     // Mark the result.
 | |
|     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
 | |
|     // Clear the vector again for the next iteration.
 | |
|     MaybeLiveArgUses.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MarkValue - This function marks the liveness of RA depending on L. If L is
 | |
| /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
 | |
| /// such that RA will be marked live if any use in MaybeLiveUses gets marked
 | |
| /// live later on.
 | |
| void DAE::MarkValue(const RetOrArg &RA, Liveness L,
 | |
|                     const UseVector &MaybeLiveUses) {
 | |
|   switch (L) {
 | |
|     case Live: MarkLive(RA); break;
 | |
|     case MaybeLive:
 | |
|     {
 | |
|       // Note any uses of this value, so this return value can be
 | |
|       // marked live whenever one of the uses becomes live.
 | |
|       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
 | |
|            UE = MaybeLiveUses.end(); UI != UE; ++UI)
 | |
|         Uses.insert(std::make_pair(*UI, RA));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MarkLive - Mark the given Function as alive, meaning that it cannot be
 | |
| /// changed in any way. Additionally,
 | |
| /// mark any values that are used as this function's parameters or by its return
 | |
| /// values (according to Uses) live as well.
 | |
| void DAE::MarkLive(const Function &F) {
 | |
|   DEBUG(errs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
 | |
|     // Mark the function as live.
 | |
|     LiveFunctions.insert(&F);
 | |
|     // Mark all arguments as live.
 | |
|     for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
 | |
|       PropagateLiveness(CreateArg(&F, i));
 | |
|     // Mark all return values as live.
 | |
|     for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
 | |
|       PropagateLiveness(CreateRet(&F, i));
 | |
| }
 | |
| 
 | |
| /// MarkLive - Mark the given return value or argument as live. Additionally,
 | |
| /// mark any values that are used by this value (according to Uses) live as
 | |
| /// well.
 | |
| void DAE::MarkLive(const RetOrArg &RA) {
 | |
|   if (LiveFunctions.count(RA.F))
 | |
|     return; // Function was already marked Live.
 | |
| 
 | |
|   if (!LiveValues.insert(RA).second)
 | |
|     return; // We were already marked Live.
 | |
| 
 | |
|   DEBUG(errs() << "DAE - Marking " << RA.getDescription() << " live\n");
 | |
|   PropagateLiveness(RA);
 | |
| }
 | |
| 
 | |
| /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
 | |
| /// to any other values it uses (according to Uses).
 | |
| void DAE::PropagateLiveness(const RetOrArg &RA) {
 | |
|   // We don't use upper_bound (or equal_range) here, because our recursive call
 | |
|   // to ourselves is likely to cause the upper_bound (which is the first value
 | |
|   // not belonging to RA) to become erased and the iterator invalidated.
 | |
|   UseMap::iterator Begin = Uses.lower_bound(RA);
 | |
|   UseMap::iterator E = Uses.end();
 | |
|   UseMap::iterator I;
 | |
|   for (I = Begin; I != E && I->first == RA; ++I)
 | |
|     MarkLive(I->second);
 | |
| 
 | |
|   // Erase RA from the Uses map (from the lower bound to wherever we ended up
 | |
|   // after the loop).
 | |
|   Uses.erase(Begin, I);
 | |
| }
 | |
| 
 | |
| // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
 | |
| // that are not in LiveValues. Transform the function and all of the callees of
 | |
| // the function to not have these arguments and return values.
 | |
| //
 | |
| bool DAE::RemoveDeadStuffFromFunction(Function *F) {
 | |
|   // Don't modify fully live functions
 | |
|   if (LiveFunctions.count(F))
 | |
|     return false;
 | |
| 
 | |
|   // Start by computing a new prototype for the function, which is the same as
 | |
|   // the old function, but has fewer arguments and a different return type.
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   std::vector<const Type*> Params;
 | |
| 
 | |
|   // Set up to build a new list of parameter attributes.
 | |
|   SmallVector<AttributeWithIndex, 8> AttributesVec;
 | |
|   const AttrListPtr &PAL = F->getAttributes();
 | |
| 
 | |
|   // The existing function return attributes.
 | |
|   Attributes RAttrs = PAL.getRetAttributes();
 | |
|   Attributes FnAttrs = PAL.getFnAttributes();
 | |
| 
 | |
|   // Find out the new return value.
 | |
| 
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
|   const Type *NRetTy = NULL;
 | |
|   unsigned RetCount = NumRetVals(F);
 | |
|   
 | |
|   // -1 means unused, other numbers are the new index
 | |
|   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
 | |
|   std::vector<const Type*> RetTypes;
 | |
|   if (RetTy == Type::getVoidTy(F->getContext())) {
 | |
|     NRetTy = Type::getVoidTy(F->getContext());
 | |
|   } else {
 | |
|     const StructType *STy = dyn_cast<StructType>(RetTy);
 | |
|     if (STy)
 | |
|       // Look at each of the original return values individually.
 | |
|       for (unsigned i = 0; i != RetCount; ++i) {
 | |
|         RetOrArg Ret = CreateRet(F, i);
 | |
|         if (LiveValues.erase(Ret)) {
 | |
|           RetTypes.push_back(STy->getElementType(i));
 | |
|           NewRetIdxs[i] = RetTypes.size() - 1;
 | |
|         } else {
 | |
|           ++NumRetValsEliminated;
 | |
|           DEBUG(errs() << "DAE - Removing return value " << i << " from "
 | |
|                 << F->getName() << "\n");
 | |
|         }
 | |
|       }
 | |
|     else
 | |
|       // We used to return a single value.
 | |
|       if (LiveValues.erase(CreateRet(F, 0))) {
 | |
|         RetTypes.push_back(RetTy);
 | |
|         NewRetIdxs[0] = 0;
 | |
|       } else {
 | |
|         DEBUG(errs() << "DAE - Removing return value from " << F->getName()
 | |
|               << "\n");
 | |
|         ++NumRetValsEliminated;
 | |
|       }
 | |
|     if (RetTypes.size() > 1)
 | |
|       // More than one return type? Return a struct with them. Also, if we used
 | |
|       // to return a struct and didn't change the number of return values,
 | |
|       // return a struct again. This prevents changing {something} into
 | |
|       // something and {} into void.
 | |
|       // Make the new struct packed if we used to return a packed struct
 | |
|       // already.
 | |
|       NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
 | |
|     else if (RetTypes.size() == 1)
 | |
|       // One return type? Just a simple value then, but only if we didn't use to
 | |
|       // return a struct with that simple value before.
 | |
|       NRetTy = RetTypes.front();
 | |
|     else if (RetTypes.size() == 0)
 | |
|       // No return types? Make it void, but only if we didn't use to return {}.
 | |
|       NRetTy = Type::getVoidTy(F->getContext());
 | |
|   }
 | |
| 
 | |
|   assert(NRetTy && "No new return type found?");
 | |
| 
 | |
|   // Remove any incompatible attributes, but only if we removed all return
 | |
|   // values. Otherwise, ensure that we don't have any conflicting attributes
 | |
|   // here. Currently, this should not be possible, but special handling might be
 | |
|   // required when new return value attributes are added.
 | |
|   if (NRetTy == Type::getVoidTy(F->getContext()))
 | |
|     RAttrs &= ~Attribute::typeIncompatible(NRetTy);
 | |
|   else
 | |
|     assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0 
 | |
|            && "Return attributes no longer compatible?");
 | |
| 
 | |
|   if (RAttrs)
 | |
|     AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
 | |
| 
 | |
|   // Remember which arguments are still alive.
 | |
|   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
 | |
|   // Construct the new parameter list from non-dead arguments. Also construct
 | |
|   // a new set of parameter attributes to correspond. Skip the first parameter
 | |
|   // attribute, since that belongs to the return value.
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++i) {
 | |
|     RetOrArg Arg = CreateArg(F, i);
 | |
|     if (LiveValues.erase(Arg)) {
 | |
|       Params.push_back(I->getType());
 | |
|       ArgAlive[i] = true;
 | |
| 
 | |
|       // Get the original parameter attributes (skipping the first one, that is
 | |
|       // for the return value.
 | |
|       if (Attributes Attrs = PAL.getParamAttributes(i + 1))
 | |
|         AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
 | |
|     } else {
 | |
|       ++NumArgumentsEliminated;
 | |
|       DEBUG(errs() << "DAE - Removing argument " << i << " (" << I->getName()
 | |
|             << ") from " << F->getName() << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FnAttrs != Attribute::None) 
 | |
|     AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | |
| 
 | |
|   // Reconstruct the AttributesList based on the vector we constructed.
 | |
|   AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
 | |
| 
 | |
|   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
 | |
|   // have zero fixed arguments.
 | |
|   //
 | |
|   // Note that we apply this hack for a vararg fuction that does not have any
 | |
|   // arguments anymore, but did have them before (so don't bother fixing
 | |
|   // functions that were already broken wrt CWriter).
 | |
|   bool ExtraArgHack = false;
 | |
|   if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
 | |
|     ExtraArgHack = true;
 | |
|     Params.push_back(Type::getInt32Ty(F->getContext()));
 | |
|   }
 | |
| 
 | |
|   // Create the new function type based on the recomputed parameters.
 | |
|   FunctionType *NFTy = FunctionType::get(NRetTy, Params,
 | |
|                                                 FTy->isVarArg());
 | |
| 
 | |
|   // No change?
 | |
|   if (NFTy == FTy)
 | |
|     return false;
 | |
| 
 | |
|   // Create the new function body and insert it into the module...
 | |
|   Function *NF = Function::Create(NFTy, F->getLinkage());
 | |
|   NF->copyAttributesFrom(F);
 | |
|   NF->setAttributes(NewPAL);
 | |
|   // Insert the new function before the old function, so we won't be processing
 | |
|   // it again.
 | |
|   F->getParent()->getFunctionList().insert(F, NF);
 | |
|   NF->takeName(F);
 | |
| 
 | |
|   // Loop over all of the callers of the function, transforming the call sites
 | |
|   // to pass in a smaller number of arguments into the new function.
 | |
|   //
 | |
|   std::vector<Value*> Args;
 | |
|   while (!F->use_empty()) {
 | |
|     CallSite CS = CallSite::get(F->use_back());
 | |
|     Instruction *Call = CS.getInstruction();
 | |
| 
 | |
|     AttributesVec.clear();
 | |
|     const AttrListPtr &CallPAL = CS.getAttributes();
 | |
| 
 | |
|     // The call return attributes.
 | |
|     Attributes RAttrs = CallPAL.getRetAttributes();
 | |
|     Attributes FnAttrs = CallPAL.getFnAttributes();
 | |
|     // Adjust in case the function was changed to return void.
 | |
|     RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
 | |
|     if (RAttrs)
 | |
|       AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
 | |
| 
 | |
|     // Declare these outside of the loops, so we can reuse them for the second
 | |
|     // loop, which loops the varargs.
 | |
|     CallSite::arg_iterator I = CS.arg_begin();
 | |
|     unsigned i = 0;
 | |
|     // Loop over those operands, corresponding to the normal arguments to the
 | |
|     // original function, and add those that are still alive.
 | |
|     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
 | |
|       if (ArgAlive[i]) {
 | |
|         Args.push_back(*I);
 | |
|         // Get original parameter attributes, but skip return attributes.
 | |
|         if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
 | |
|           AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
 | |
|       }
 | |
| 
 | |
|     if (ExtraArgHack)
 | |
|       Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
 | |
| 
 | |
|     // Push any varargs arguments on the list. Don't forget their attributes.
 | |
|     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
 | |
|       Args.push_back(*I);
 | |
|       if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
 | |
|         AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
 | |
|     }
 | |
| 
 | |
|     if (FnAttrs != Attribute::None)
 | |
|       AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | |
| 
 | |
|     // Reconstruct the AttributesList based on the vector we constructed.
 | |
|     AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
 | |
|                                               AttributesVec.end());
 | |
| 
 | |
|     Instruction *New;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args.begin(), Args.end(), "", Call);
 | |
|       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
 | |
|     } else {
 | |
|       New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
 | |
|       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<CallInst>(New)->setAttributes(NewCallPAL);
 | |
|       if (cast<CallInst>(Call)->isTailCall())
 | |
|         cast<CallInst>(New)->setTailCall();
 | |
|     }
 | |
|     Args.clear();
 | |
| 
 | |
|     if (!Call->use_empty()) {
 | |
|       if (New->getType() == Call->getType()) {
 | |
|         // Return type not changed? Just replace users then.
 | |
|         Call->replaceAllUsesWith(New);
 | |
|         New->takeName(Call);
 | |
|       } else if (New->getType() == Type::getVoidTy(F->getContext())) {
 | |
|         // Our return value has uses, but they will get removed later on.
 | |
|         // Replace by null for now.
 | |
|         Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
 | |
|       } else {
 | |
|         assert(isa<StructType>(RetTy) &&
 | |
|                "Return type changed, but not into a void. The old return type"
 | |
|                " must have been a struct!");
 | |
|         Instruction *InsertPt = Call;
 | |
|         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|           BasicBlock::iterator IP = II->getNormalDest()->begin();
 | |
|           while (isa<PHINode>(IP)) ++IP;
 | |
|           InsertPt = IP;
 | |
|         }
 | |
|           
 | |
|         // We used to return a struct. Instead of doing smart stuff with all the
 | |
|         // uses of this struct, we will just rebuild it using
 | |
|         // extract/insertvalue chaining and let instcombine clean that up.
 | |
|         //
 | |
|         // Start out building up our return value from undef
 | |
|         Value *RetVal = UndefValue::get(RetTy);
 | |
|         for (unsigned i = 0; i != RetCount; ++i)
 | |
|           if (NewRetIdxs[i] != -1) {
 | |
|             Value *V;
 | |
|             if (RetTypes.size() > 1)
 | |
|               // We are still returning a struct, so extract the value from our
 | |
|               // return value
 | |
|               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
 | |
|                                            InsertPt);
 | |
|             else
 | |
|               // We are now returning a single element, so just insert that
 | |
|               V = New;
 | |
|             // Insert the value at the old position
 | |
|             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
 | |
|           }
 | |
|         // Now, replace all uses of the old call instruction with the return
 | |
|         // struct we built
 | |
|         Call->replaceAllUsesWith(RetVal);
 | |
|         New->takeName(Call);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, remove the old call from the program, reducing the use-count of
 | |
|     // F.
 | |
|     Call->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Since we have now created the new function, splice the body of the old
 | |
|   // function right into the new function, leaving the old rotting hulk of the
 | |
|   // function empty.
 | |
|   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | |
| 
 | |
|   // Loop over the argument list, transfering uses of the old arguments over to
 | |
|   // the new arguments, also transfering over the names as well.
 | |
|   i = 0;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
 | |
|        I2 = NF->arg_begin(); I != E; ++I, ++i)
 | |
|     if (ArgAlive[i]) {
 | |
|       // If this is a live argument, move the name and users over to the new
 | |
|       // version.
 | |
|       I->replaceAllUsesWith(I2);
 | |
|       I2->takeName(I);
 | |
|       ++I2;
 | |
|     } else {
 | |
|       // If this argument is dead, replace any uses of it with null constants
 | |
|       // (these are guaranteed to become unused later on).
 | |
|       I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
 | |
|     }
 | |
| 
 | |
|   // If we change the return value of the function we must rewrite any return
 | |
|   // instructions.  Check this now.
 | |
|   if (F->getReturnType() != NF->getReturnType())
 | |
|     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
 | |
|       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|         Value *RetVal;
 | |
| 
 | |
|         if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
 | |
|           RetVal = 0;
 | |
|         } else {
 | |
|           assert (isa<StructType>(RetTy));
 | |
|           // The original return value was a struct, insert
 | |
|           // extractvalue/insertvalue chains to extract only the values we need
 | |
|           // to return and insert them into our new result.
 | |
|           // This does generate messy code, but we'll let it to instcombine to
 | |
|           // clean that up.
 | |
|           Value *OldRet = RI->getOperand(0);
 | |
|           // Start out building up our return value from undef
 | |
|           RetVal = UndefValue::get(NRetTy);
 | |
|           for (unsigned i = 0; i != RetCount; ++i)
 | |
|             if (NewRetIdxs[i] != -1) {
 | |
|               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
 | |
|                                                               "oldret", RI);
 | |
|               if (RetTypes.size() > 1) {
 | |
|                 // We're still returning a struct, so reinsert the value into
 | |
|                 // our new return value at the new index
 | |
| 
 | |
|                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
 | |
|                                                  "newret", RI);
 | |
|               } else {
 | |
|                 // We are now only returning a simple value, so just return the
 | |
|                 // extracted value.
 | |
|                 RetVal = EV;
 | |
|               }
 | |
|             }
 | |
|         }
 | |
|         // Replace the return instruction with one returning the new return
 | |
|         // value (possibly 0 if we became void).
 | |
|         ReturnInst::Create(F->getContext(), RetVal, RI);
 | |
|         BB->getInstList().erase(RI);
 | |
|       }
 | |
| 
 | |
|   // Now that the old function is dead, delete it.
 | |
|   F->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DAE::runOnModule(Module &M) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // First pass: Do a simple check to see if any functions can have their "..."
 | |
|   // removed.  We can do this if they never call va_start.  This loop cannot be
 | |
|   // fused with the next loop, because deleting a function invalidates
 | |
|   // information computed while surveying other functions.
 | |
|   DEBUG(errs() << "DAE - Deleting dead varargs\n");
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | |
|     Function &F = *I++;
 | |
|     if (F.getFunctionType()->isVarArg())
 | |
|       Changed |= DeleteDeadVarargs(F);
 | |
|   }
 | |
| 
 | |
|   // Second phase:loop through the module, determining which arguments are live.
 | |
|   // We assume all arguments are dead unless proven otherwise (allowing us to
 | |
|   // determine that dead arguments passed into recursive functions are dead).
 | |
|   //
 | |
|   DEBUG(errs() << "DAE - Determining liveness\n");
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | |
|     SurveyFunction(*I);
 | |
|   
 | |
|   // Now, remove all dead arguments and return values from each function in
 | |
|   // turn
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | |
|     // Increment now, because the function will probably get removed (ie
 | |
|     // replaced by a new one).
 | |
|     Function *F = I++;
 | |
|     Changed |= RemoveDeadStuffFromFunction(F);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 |