mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82034 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			351 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Local.cpp - Functions to perform local transformations ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform various local transformations to the
 | |
| // program.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Analysis/ProfileInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local analysis.
 | |
| //
 | |
| 
 | |
| /// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | |
| /// from this value cannot trap.  If it is not obviously safe to load from the
 | |
| /// specified pointer, we do a quick local scan of the basic block containing
 | |
| /// ScanFrom, to determine if the address is already accessed.
 | |
| bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
 | |
|   // If it is an alloca it is always safe to load from.
 | |
|   if (isa<AllocaInst>(V)) return true;
 | |
| 
 | |
|   // If it is a global variable it is mostly safe to load from.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
 | |
|     // Don't try to evaluate aliases.  External weak GV can be null.
 | |
|     return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
 | |
| 
 | |
|   // Otherwise, be a little bit agressive by scanning the local block where we
 | |
|   // want to check to see if the pointer is already being loaded or stored
 | |
|   // from/to.  If so, the previous load or store would have already trapped,
 | |
|   // so there is no harm doing an extra load (also, CSE will later eliminate
 | |
|   // the load entirely).
 | |
|   BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | |
| 
 | |
|   while (BBI != E) {
 | |
|     --BBI;
 | |
| 
 | |
|     // If we see a free or a call which may write to memory (i.e. which might do
 | |
|     // a free) the pointer could be marked invalid.
 | |
|     if (isa<FreeInst>(BBI) || 
 | |
|         (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
 | |
|          !isa<DbgInfoIntrinsic>(BBI)))
 | |
|       return false;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI->getOperand(0) == V) return true;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|       if (SI->getOperand(1) == V) return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local constant propagation.
 | |
| //
 | |
| 
 | |
| // ConstantFoldTerminator - If a terminator instruction is predicated on a
 | |
| // constant value, convert it into an unconditional branch to the constant
 | |
| // destination.
 | |
| //
 | |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
 | |
|   TerminatorInst *T = BB->getTerminator();
 | |
| 
 | |
|   // Branch - See if we are conditional jumping on constant
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | |
|     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | |
|     BasicBlock *Dest1 = BI->getSuccessor(0);
 | |
|     BasicBlock *Dest2 = BI->getSuccessor(1);
 | |
| 
 | |
|     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|       // Are we branching on constant?
 | |
|       // YES.  Change to unconditional branch...
 | |
|       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | |
|       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 | |
| 
 | |
|       //cerr << "Function: " << T->getParent()->getParent()
 | |
|       //     << "\nRemoving branch from " << T->getParent()
 | |
|       //     << "\n\nTo: " << OldDest << endl;
 | |
| 
 | |
|       // Let the basic block know that we are letting go of it.  Based on this,
 | |
|       // it will adjust it's PHI nodes.
 | |
|       assert(BI->getParent() && "Terminator not inserted in block!");
 | |
|       OldDest->removePredecessor(BI->getParent());
 | |
| 
 | |
|       // Set the unconditional destination, and change the insn to be an
 | |
|       // unconditional branch.
 | |
|       BI->setUnconditionalDest(Destination);
 | |
|       return true;
 | |
|     } else if (Dest2 == Dest1) {       // Conditional branch to same location?
 | |
|       // This branch matches something like this:
 | |
|       //     br bool %cond, label %Dest, label %Dest
 | |
|       // and changes it into:  br label %Dest
 | |
| 
 | |
|       // Let the basic block know that we are letting go of one copy of it.
 | |
|       assert(BI->getParent() && "Terminator not inserted in block!");
 | |
|       Dest1->removePredecessor(BI->getParent());
 | |
| 
 | |
|       // Change a conditional branch to unconditional.
 | |
|       BI->setUnconditionalDest(Dest1);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
 | |
|     // If we are switching on a constant, we can convert the switch into a
 | |
|     // single branch instruction!
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
 | |
|     BasicBlock *DefaultDest = TheOnlyDest;
 | |
|     assert(TheOnlyDest == SI->getDefaultDest() &&
 | |
|            "Default destination is not successor #0?");
 | |
| 
 | |
|     // Figure out which case it goes to...
 | |
|     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|       // Found case matching a constant operand?
 | |
|       if (SI->getSuccessorValue(i) == CI) {
 | |
|         TheOnlyDest = SI->getSuccessor(i);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Check to see if this branch is going to the same place as the default
 | |
|       // dest.  If so, eliminate it as an explicit compare.
 | |
|       if (SI->getSuccessor(i) == DefaultDest) {
 | |
|         // Remove this entry...
 | |
|         DefaultDest->removePredecessor(SI->getParent());
 | |
|         SI->removeCase(i);
 | |
|         --i; --e;  // Don't skip an entry...
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, check to see if the switch only branches to one destination.
 | |
|       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | |
|       // destinations.
 | |
|       if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
 | |
|     }
 | |
| 
 | |
|     if (CI && !TheOnlyDest) {
 | |
|       // Branching on a constant, but not any of the cases, go to the default
 | |
|       // successor.
 | |
|       TheOnlyDest = SI->getDefaultDest();
 | |
|     }
 | |
| 
 | |
|     // If we found a single destination that we can fold the switch into, do so
 | |
|     // now.
 | |
|     if (TheOnlyDest) {
 | |
|       // Insert the new branch..
 | |
|       BranchInst::Create(TheOnlyDest, SI);
 | |
|       BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|       // Remove entries from PHI nodes which we no longer branch to...
 | |
|       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|         // Found case matching a constant operand?
 | |
|         BasicBlock *Succ = SI->getSuccessor(i);
 | |
|         if (Succ == TheOnlyDest)
 | |
|           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
 | |
|         else
 | |
|           Succ->removePredecessor(BB);
 | |
|       }
 | |
| 
 | |
|       // Delete the old switch...
 | |
|       BB->getInstList().erase(SI);
 | |
|       return true;
 | |
|     } else if (SI->getNumSuccessors() == 2) {
 | |
|       // Otherwise, we can fold this switch into a conditional branch
 | |
|       // instruction if it has only one non-default destination.
 | |
|       Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
 | |
|                                  SI->getSuccessorValue(1), "cond");
 | |
|       // Insert the new branch...
 | |
|       BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
 | |
| 
 | |
|       // Delete the old switch...
 | |
|       SI->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local dead code elimination...
 | |
| //
 | |
| 
 | |
| /// isInstructionTriviallyDead - Return true if the result produced by the
 | |
| /// instruction is not used, and the instruction has no side effects.
 | |
| ///
 | |
| bool llvm::isInstructionTriviallyDead(Instruction *I) {
 | |
|   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
 | |
| 
 | |
|   // We don't want debug info removed by anything this general.
 | |
|   if (isa<DbgInfoIntrinsic>(I)) return false;
 | |
| 
 | |
|   if (!I->mayHaveSideEffects()) return true;
 | |
| 
 | |
|   // Special case intrinsics that "may have side effects" but can be deleted
 | |
|   // when dead.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|     // Safe to delete llvm.stacksave if dead.
 | |
|     if (II->getIntrinsicID() == Intrinsic::stacksave)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | |
| /// trivially dead instruction, delete it.  If that makes any of its operands
 | |
| /// trivially dead, delete them too, recursively.
 | |
| void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
 | |
|     return;
 | |
|   
 | |
|   SmallVector<Instruction*, 16> DeadInsts;
 | |
|   DeadInsts.push_back(I);
 | |
|   
 | |
|   while (!DeadInsts.empty()) {
 | |
|     I = DeadInsts.pop_back_val();
 | |
| 
 | |
|     // Null out all of the instruction's operands to see if any operand becomes
 | |
|     // dead as we go.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       Value *OpV = I->getOperand(i);
 | |
|       I->setOperand(i, 0);
 | |
|       
 | |
|       if (!OpV->use_empty()) continue;
 | |
|     
 | |
|       // If the operand is an instruction that became dead as we nulled out the
 | |
|       // operand, and if it is 'trivially' dead, delete it in a future loop
 | |
|       // iteration.
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | |
|         if (isInstructionTriviallyDead(OpI))
 | |
|           DeadInsts.push_back(OpI);
 | |
|     }
 | |
|     
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | |
| /// dead PHI node, due to being a def-use chain of single-use nodes that
 | |
| /// either forms a cycle or is terminated by a trivially dead instruction,
 | |
| /// delete it.  If that makes any of its operands trivially dead, delete them
 | |
| /// too, recursively.
 | |
| void
 | |
| llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
 | |
|   // We can remove a PHI if it is on a cycle in the def-use graph
 | |
|   // where each node in the cycle has degree one, i.e. only one use,
 | |
|   // and is an instruction with no side effects.
 | |
|   if (!PN->hasOneUse())
 | |
|     return;
 | |
| 
 | |
|   SmallPtrSet<PHINode *, 4> PHIs;
 | |
|   PHIs.insert(PN);
 | |
|   for (Instruction *J = cast<Instruction>(*PN->use_begin());
 | |
|        J->hasOneUse() && !J->mayHaveSideEffects();
 | |
|        J = cast<Instruction>(*J->use_begin()))
 | |
|     // If we find a PHI more than once, we're on a cycle that
 | |
|     // won't prove fruitful.
 | |
|     if (PHINode *JP = dyn_cast<PHINode>(J))
 | |
|       if (!PHIs.insert(cast<PHINode>(JP))) {
 | |
|         // Break the cycle and delete the PHI and its operands.
 | |
|         JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(JP);
 | |
|         break;
 | |
|       }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Control Flow Graph Restructuring...
 | |
| //
 | |
| 
 | |
| /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
 | |
| /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
 | |
| /// between them, moving the instructions in the predecessor into DestBB and
 | |
| /// deleting the predecessor block.
 | |
| ///
 | |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
 | |
|   // If BB has single-entry PHI nodes, fold them.
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | |
|     Value *NewVal = PN->getIncomingValue(0);
 | |
|     // Replace self referencing PHI with undef, it must be dead.
 | |
|     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
 | |
|     PN->replaceAllUsesWith(NewVal);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | |
|   assert(PredBB && "Block doesn't have a single predecessor!");
 | |
|   
 | |
|   // Splice all the instructions from PredBB to DestBB.
 | |
|   PredBB->getTerminator()->eraseFromParent();
 | |
|   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | |
|   
 | |
|   // Anything that branched to PredBB now branches to DestBB.
 | |
|   PredBB->replaceAllUsesWith(DestBB);
 | |
|   
 | |
|   if (P) {
 | |
|     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
 | |
|     if (PI) {
 | |
|       PI->replaceAllUses(PredBB, DestBB);
 | |
|       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
 | |
|     }
 | |
|   }
 | |
|   // Nuke BB.
 | |
|   PredBB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
 | |
| /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled 
 | |
| /// with the DbgInfoIntrinsic that use the instruction I.
 | |
| bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I, 
 | |
|                                SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
 | |
|   if (DbgInUses)
 | |
|     DbgInUses->clear();
 | |
| 
 | |
|   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 
 | |
|        ++UI) {
 | |
|     if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
 | |
|       if (DbgInUses)
 | |
|         DbgInUses->push_back(DI);
 | |
|     } else {
 | |
|       if (DbgInUses)
 | |
|         DbgInUses->clear();
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 |