mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35140 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			229 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the TwoAddress instruction pass which is used
 | 
						|
// by most register allocators. Two-Address instructions are rewritten
 | 
						|
// from:
 | 
						|
//
 | 
						|
//     A = B op C
 | 
						|
//
 | 
						|
// to:
 | 
						|
//
 | 
						|
//     A = B
 | 
						|
//     A op= C
 | 
						|
//
 | 
						|
// Note that if a register allocator chooses to use this pass, that it
 | 
						|
// has to be capable of handling the non-SSA nature of these rewritten
 | 
						|
// virtual registers.
 | 
						|
//
 | 
						|
// It is also worth noting that the duplicate operand of the two
 | 
						|
// address instruction is removed.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "twoaddrinstr"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
 | 
						|
STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
 | 
						|
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN TwoAddressInstructionPass
 | 
						|
   : public MachineFunctionPass {
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
 | 
						|
    /// runOnMachineFunction - pass entry point
 | 
						|
    bool runOnMachineFunction(MachineFunction&);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterPass<TwoAddressInstructionPass>
 | 
						|
  X("twoaddressinstruction", "Two-Address instruction pass");
 | 
						|
}
 | 
						|
 | 
						|
const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
 | 
						|
 | 
						|
void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<LiveVariables>();
 | 
						|
  AU.addPreserved<LiveVariables>();
 | 
						|
  AU.addPreservedID(PHIEliminationID);
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - Reduce two-address instructions to two
 | 
						|
/// operands.
 | 
						|
///
 | 
						|
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  DOUT << "Machine Function\n";
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
  const MRegisterInfo &MRI = *TM.getRegisterInfo();
 | 
						|
  LiveVariables &LV = getAnalysis<LiveVariables>();
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
 | 
						|
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 | 
						|
 | 
						|
  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
 | 
						|
         mi != me; ++mi) {
 | 
						|
      const TargetInstrDescriptor *TID = mi->getInstrDescriptor();
 | 
						|
 | 
						|
      bool FirstTied = true;
 | 
						|
      for (unsigned si = 1, e = TID->numOperands; si < e; ++si) {
 | 
						|
        int ti = TID->getOperandConstraint(si, TOI::TIED_TO);
 | 
						|
        if (ti == -1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (FirstTied) {
 | 
						|
          ++NumTwoAddressInstrs;
 | 
						|
          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
 | 
						|
        }
 | 
						|
        FirstTied = false;
 | 
						|
 | 
						|
        assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
 | 
						|
               mi->getOperand(si).isUse() && "two address instruction invalid");
 | 
						|
 | 
						|
        // if the two operands are the same we just remove the use
 | 
						|
        // and mark the def as def&use, otherwise we have to insert a copy.
 | 
						|
        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
 | 
						|
          // rewrite:
 | 
						|
          //     a = b op c
 | 
						|
          // to:
 | 
						|
          //     a = b
 | 
						|
          //     a = a op c
 | 
						|
          unsigned regA = mi->getOperand(ti).getReg();
 | 
						|
          unsigned regB = mi->getOperand(si).getReg();
 | 
						|
 | 
						|
          assert(MRegisterInfo::isVirtualRegister(regA) &&
 | 
						|
                 MRegisterInfo::isVirtualRegister(regB) &&
 | 
						|
                 "cannot update physical register live information");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
          // First, verify that we don't have a use of a in the instruction (a =
 | 
						|
          // b + a for example) because our transformation will not work. This
 | 
						|
          // should never occur because we are in SSA form.
 | 
						|
          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
 | 
						|
            assert((int)i == ti ||
 | 
						|
                   !mi->getOperand(i).isRegister() ||
 | 
						|
                   mi->getOperand(i).getReg() != regA);
 | 
						|
#endif
 | 
						|
 | 
						|
          // If this instruction is not the killing user of B, see if we can
 | 
						|
          // rearrange the code to make it so.  Making it the killing user will
 | 
						|
          // allow us to coalesce A and B together, eliminating the copy we are
 | 
						|
          // about to insert.
 | 
						|
          if (!LV.KillsRegister(mi, regB)) {
 | 
						|
            // If this instruction is commutative, check to see if C dies.  If
 | 
						|
            // so, swap the B and C operands.  This makes the live ranges of A
 | 
						|
            // and C joinable.
 | 
						|
            // FIXME: This code also works for A := B op C instructions.
 | 
						|
            if ((TID->Flags & M_COMMUTABLE) && mi->getNumOperands() == 3) {
 | 
						|
              assert(mi->getOperand(3-si).isRegister() &&
 | 
						|
                     "Not a proper commutative instruction!");
 | 
						|
              unsigned regC = mi->getOperand(3-si).getReg();
 | 
						|
              if (LV.KillsRegister(mi, regC)) {
 | 
						|
                DOUT << "2addr: COMMUTING  : " << *mi;
 | 
						|
                MachineInstr *NewMI = TII.commuteInstruction(mi);
 | 
						|
                if (NewMI == 0) {
 | 
						|
                  DOUT << "2addr: COMMUTING FAILED!\n";
 | 
						|
                } else {
 | 
						|
                  DOUT << "2addr: COMMUTED TO: " << *NewMI;
 | 
						|
                  // If the instruction changed to commute it, update livevar.
 | 
						|
                  if (NewMI != mi) {
 | 
						|
                    LV.instructionChanged(mi, NewMI);  // Update live variables
 | 
						|
                    mbbi->insert(mi, NewMI);           // Insert the new inst
 | 
						|
                    mbbi->erase(mi);                   // Nuke the old inst.
 | 
						|
                    mi = NewMI;
 | 
						|
                  }
 | 
						|
 | 
						|
                  ++NumCommuted;
 | 
						|
                  regB = regC;
 | 
						|
                  goto InstructionRearranged;
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            // If this instruction is potentially convertible to a true
 | 
						|
            // three-address instruction,
 | 
						|
            if (TID->Flags & M_CONVERTIBLE_TO_3_ADDR)
 | 
						|
              // FIXME: This assumes there are no more operands which are tied
 | 
						|
              // to another register.
 | 
						|
#ifndef NDEBUG
 | 
						|
              for (unsigned i = si+1, e = TID->numOperands; i < e; ++i)
 | 
						|
                assert(TID->getOperandConstraint(i, TOI::TIED_TO) == -1);
 | 
						|
#endif
 | 
						|
 | 
						|
              if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) {
 | 
						|
                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
 | 
						|
                DOUT << "2addr:         TO 3-ADDR: " << *New;
 | 
						|
                mbbi->erase(mi);                 // Nuke the old inst.
 | 
						|
                mi = New;
 | 
						|
                ++NumConvertedTo3Addr;
 | 
						|
                // Done with this instruction.
 | 
						|
                break;
 | 
						|
              }
 | 
						|
          }
 | 
						|
 | 
						|
        InstructionRearranged:
 | 
						|
          const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA);
 | 
						|
          MRI.copyRegToReg(*mbbi, mi, regA, regB, rc);
 | 
						|
 | 
						|
          MachineBasicBlock::iterator prevMi = prior(mi);
 | 
						|
          DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
 | 
						|
 | 
						|
          // Update live variables for regA
 | 
						|
          LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA);
 | 
						|
          varInfo.DefInst = prevMi;
 | 
						|
 | 
						|
          // update live variables for regB
 | 
						|
          LiveVariables::VarInfo& varInfoB = LV.getVarInfo(regB);
 | 
						|
          // regB is used in this BB.
 | 
						|
          varInfoB.UsedBlocks[mbbi->getNumber()] = true;
 | 
						|
          if (LV.removeVirtualRegisterKilled(regB, mbbi, mi))
 | 
						|
            LV.addVirtualRegisterKilled(regB, prevMi);
 | 
						|
 | 
						|
          if (LV.removeVirtualRegisterDead(regB, mbbi, mi))
 | 
						|
            LV.addVirtualRegisterDead(regB, prevMi);
 | 
						|
 | 
						|
          // replace all occurences of regB with regA
 | 
						|
          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
 | 
						|
            if (mi->getOperand(i).isRegister() &&
 | 
						|
                mi->getOperand(i).getReg() == regB)
 | 
						|
              mi->getOperand(i).setReg(regA);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
 | 
						|
        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
 | 
						|
        MadeChange = true;
 | 
						|
 | 
						|
        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 |