mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Use getFoo() as accessors consistently and some other naming changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236564 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2193 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2193 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Rewrite an existing set of gc.statepoints such that they make potential
 | 
						|
// relocations performed by the garbage collector explicit in the IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/Verifier.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Print tracing output
 | 
						|
static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
 | 
						|
                              cl::init(false));
 | 
						|
 | 
						|
// Print the liveset found at the insert location
 | 
						|
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
 | 
						|
                                  cl::init(false));
 | 
						|
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
 | 
						|
                                      cl::init(false));
 | 
						|
// Print out the base pointers for debugging
 | 
						|
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
 | 
						|
                                       cl::init(false));
 | 
						|
 | 
						|
#ifdef XDEBUG
 | 
						|
static bool ClobberNonLive = true;
 | 
						|
#else
 | 
						|
static bool ClobberNonLive = false;
 | 
						|
#endif
 | 
						|
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
 | 
						|
                                                  cl::location(ClobberNonLive),
 | 
						|
                                                  cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
struct RewriteStatepointsForGC : public FunctionPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  RewriteStatepointsForGC() : FunctionPass(ID) {
 | 
						|
    initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    // We add and rewrite a bunch of instructions, but don't really do much
 | 
						|
    // else.  We could in theory preserve a lot more analyses here.
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
char RewriteStatepointsForGC::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createRewriteStatepointsForGCPass() {
 | 
						|
  return new RewriteStatepointsForGC();
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
 | 
						|
                      "Make relocations explicit at statepoints", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
 | 
						|
                    "Make relocations explicit at statepoints", false, false)
 | 
						|
 | 
						|
namespace {
 | 
						|
struct GCPtrLivenessData {
 | 
						|
  /// Values defined in this block.
 | 
						|
  DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
 | 
						|
  /// Values used in this block (and thus live); does not included values
 | 
						|
  /// killed within this block.
 | 
						|
  DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
 | 
						|
 | 
						|
  /// Values live into this basic block (i.e. used by any
 | 
						|
  /// instruction in this basic block or ones reachable from here)
 | 
						|
  DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
 | 
						|
 | 
						|
  /// Values live out of this basic block (i.e. live into
 | 
						|
  /// any successor block)
 | 
						|
  DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
 | 
						|
};
 | 
						|
 | 
						|
// The type of the internal cache used inside the findBasePointers family
 | 
						|
// of functions.  From the callers perspective, this is an opaque type and
 | 
						|
// should not be inspected.
 | 
						|
//
 | 
						|
// In the actual implementation this caches two relations:
 | 
						|
// - The base relation itself (i.e. this pointer is based on that one)
 | 
						|
// - The base defining value relation (i.e. before base_phi insertion)
 | 
						|
// Generally, after the execution of a full findBasePointer call, only the
 | 
						|
// base relation will remain.  Internally, we add a mixture of the two
 | 
						|
// types, then update all the second type to the first type
 | 
						|
typedef DenseMap<Value *, Value *> DefiningValueMapTy;
 | 
						|
typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
 | 
						|
 | 
						|
struct PartiallyConstructedSafepointRecord {
 | 
						|
  /// The set of values known to be live accross this safepoint
 | 
						|
  StatepointLiveSetTy liveset;
 | 
						|
 | 
						|
  /// Mapping from live pointers to a base-defining-value
 | 
						|
  DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
 | 
						|
 | 
						|
  /// The *new* gc.statepoint instruction itself.  This produces the token
 | 
						|
  /// that normal path gc.relocates and the gc.result are tied to.
 | 
						|
  Instruction *StatepointToken;
 | 
						|
 | 
						|
  /// Instruction to which exceptional gc relocates are attached
 | 
						|
  /// Makes it easier to iterate through them during relocationViaAlloca.
 | 
						|
  Instruction *UnwindToken;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the live-in set for every basic block in the function
 | 
						|
static void computeLiveInValues(DominatorTree &DT, Function &F,
 | 
						|
                                GCPtrLivenessData &Data);
 | 
						|
 | 
						|
/// Given results from the dataflow liveness computation, find the set of live
 | 
						|
/// Values at a particular instruction.
 | 
						|
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
 | 
						|
                              StatepointLiveSetTy &out);
 | 
						|
 | 
						|
// TODO: Once we can get to the GCStrategy, this becomes
 | 
						|
// Optional<bool> isGCManagedPointer(const Value *V) const override {
 | 
						|
 | 
						|
static bool isGCPointerType(const Type *T) {
 | 
						|
  if (const PointerType *PT = dyn_cast<PointerType>(T))
 | 
						|
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
 | 
						|
    // GC managed heap.  We know that a pointer into this heap needs to be
 | 
						|
    // updated and that no other pointer does.
 | 
						|
    return (1 == PT->getAddressSpace());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if this type is one which a) is a gc pointer or contains a GC
 | 
						|
// pointer and b) is of a type this code expects to encounter as a live value.
 | 
						|
// (The insertion code will assert that a type which matches (a) and not (b)
 | 
						|
// is not encountered.)
 | 
						|
static bool isHandledGCPointerType(Type *T) {
 | 
						|
  // We fully support gc pointers
 | 
						|
  if (isGCPointerType(T))
 | 
						|
    return true;
 | 
						|
  // We partially support vectors of gc pointers. The code will assert if it
 | 
						|
  // can't handle something.
 | 
						|
  if (auto VT = dyn_cast<VectorType>(T))
 | 
						|
    if (isGCPointerType(VT->getElementType()))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Returns true if this type contains a gc pointer whether we know how to
 | 
						|
/// handle that type or not.
 | 
						|
static bool containsGCPtrType(Type *Ty) {
 | 
						|
  if (isGCPointerType(Ty))
 | 
						|
    return true;
 | 
						|
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
 | 
						|
    return isGCPointerType(VT->getScalarType());
 | 
						|
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
 | 
						|
    return containsGCPtrType(AT->getElementType());
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(Ty))
 | 
						|
    return std::any_of(
 | 
						|
        ST->subtypes().begin(), ST->subtypes().end(),
 | 
						|
        [](Type *SubType) { return containsGCPtrType(SubType); });
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if this is a type which a) is a gc pointer or contains a GC
 | 
						|
// pointer and b) is of a type which the code doesn't expect (i.e. first class
 | 
						|
// aggregates).  Used to trip assertions.
 | 
						|
static bool isUnhandledGCPointerType(Type *Ty) {
 | 
						|
  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool order_by_name(llvm::Value *a, llvm::Value *b) {
 | 
						|
  if (a->hasName() && b->hasName()) {
 | 
						|
    return -1 == a->getName().compare(b->getName());
 | 
						|
  } else if (a->hasName() && !b->hasName()) {
 | 
						|
    return true;
 | 
						|
  } else if (!a->hasName() && b->hasName()) {
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    // Better than nothing, but not stable
 | 
						|
    return a < b;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Conservatively identifies any definitions which might be live at the
 | 
						|
// given instruction. The  analysis is performed immediately before the
 | 
						|
// given instruction. Values defined by that instruction are not considered
 | 
						|
// live.  Values used by that instruction are considered live.
 | 
						|
static void analyzeParsePointLiveness(
 | 
						|
    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
 | 
						|
    const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
 | 
						|
  Instruction *inst = CS.getInstruction();
 | 
						|
 | 
						|
  StatepointLiveSetTy liveset;
 | 
						|
  findLiveSetAtInst(inst, OriginalLivenessData, liveset);
 | 
						|
 | 
						|
  if (PrintLiveSet) {
 | 
						|
    // Note: This output is used by several of the test cases
 | 
						|
    // The order of elemtns in a set is not stable, put them in a vec and sort
 | 
						|
    // by name
 | 
						|
    SmallVector<Value *, 64> temp;
 | 
						|
    temp.insert(temp.end(), liveset.begin(), liveset.end());
 | 
						|
    std::sort(temp.begin(), temp.end(), order_by_name);
 | 
						|
    errs() << "Live Variables:\n";
 | 
						|
    for (Value *V : temp) {
 | 
						|
      errs() << " " << V->getName(); // no newline
 | 
						|
      V->dump();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (PrintLiveSetSize) {
 | 
						|
    errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
 | 
						|
    errs() << "Number live values: " << liveset.size() << "\n";
 | 
						|
  }
 | 
						|
  result.liveset = liveset;
 | 
						|
}
 | 
						|
 | 
						|
/// If we can trivially determine that this vector contains only base pointers,
 | 
						|
/// return the base instruction.
 | 
						|
static Value *findBaseOfVector(Value *I) {
 | 
						|
  assert(I->getType()->isVectorTy() &&
 | 
						|
         cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
 | 
						|
         "Illegal to ask for the base pointer of a non-pointer type");
 | 
						|
 | 
						|
  // Each case parallels findBaseDefiningValue below, see that code for
 | 
						|
  // detailed motivation.
 | 
						|
 | 
						|
  if (isa<Argument>(I))
 | 
						|
    // An incoming argument to the function is a base pointer
 | 
						|
    return I;
 | 
						|
 | 
						|
  // We shouldn't see the address of a global as a vector value?
 | 
						|
  assert(!isa<GlobalVariable>(I) &&
 | 
						|
         "unexpected global variable found in base of vector");
 | 
						|
 | 
						|
  // inlining could possibly introduce phi node that contains
 | 
						|
  // undef if callee has multiple returns
 | 
						|
  if (isa<UndefValue>(I))
 | 
						|
    // utterly meaningless, but useful for dealing with partially optimized
 | 
						|
    // code.
 | 
						|
    return I;
 | 
						|
 | 
						|
  // Due to inheritance, this must be _after_ the global variable and undef
 | 
						|
  // checks
 | 
						|
  if (Constant *Con = dyn_cast<Constant>(I)) {
 | 
						|
    assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
 | 
						|
           "order of checks wrong!");
 | 
						|
    assert(Con->isNullValue() && "null is the only case which makes sense");
 | 
						|
    return Con;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<LoadInst>(I))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // Note: This code is currently rather incomplete.  We are essentially only
 | 
						|
  // handling cases where the vector element is trivially a base pointer.  We
 | 
						|
  // need to update the entire base pointer construction algorithm to know how
 | 
						|
  // to track vector elements and potentially scalarize, but the case which
 | 
						|
  // would motivate the work hasn't shown up in real workloads yet.
 | 
						|
  llvm_unreachable("no base found for vector element");
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function for findBasePointer - Will return a value which either a)
 | 
						|
/// defines the base pointer for the input or b) blocks the simple search
 | 
						|
/// (i.e. a PHI or Select of two derived pointers)
 | 
						|
static Value *findBaseDefiningValue(Value *I) {
 | 
						|
  assert(I->getType()->isPointerTy() &&
 | 
						|
         "Illegal to ask for the base pointer of a non-pointer type");
 | 
						|
 | 
						|
  // This case is a bit of a hack - it only handles extracts from vectors which
 | 
						|
  // trivially contain only base pointers.  See note inside the function for
 | 
						|
  // how to improve this.
 | 
						|
  if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
 | 
						|
    Value *VectorOperand = EEI->getVectorOperand();
 | 
						|
    Value *VectorBase = findBaseOfVector(VectorOperand);
 | 
						|
    (void)VectorBase;
 | 
						|
    assert(VectorBase && "extract element not known to be a trivial base");
 | 
						|
    return EEI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<Argument>(I))
 | 
						|
    // An incoming argument to the function is a base pointer
 | 
						|
    // We should have never reached here if this argument isn't an gc value
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (isa<GlobalVariable>(I))
 | 
						|
    // base case
 | 
						|
    return I;
 | 
						|
 | 
						|
  // inlining could possibly introduce phi node that contains
 | 
						|
  // undef if callee has multiple returns
 | 
						|
  if (isa<UndefValue>(I))
 | 
						|
    // utterly meaningless, but useful for dealing with
 | 
						|
    // partially optimized code.
 | 
						|
    return I;
 | 
						|
 | 
						|
  // Due to inheritance, this must be _after_ the global variable and undef
 | 
						|
  // checks
 | 
						|
  if (Constant *Con = dyn_cast<Constant>(I)) {
 | 
						|
    assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
 | 
						|
           "order of checks wrong!");
 | 
						|
    // Note: Finding a constant base for something marked for relocation
 | 
						|
    // doesn't really make sense.  The most likely case is either a) some
 | 
						|
    // screwed up the address space usage or b) your validating against
 | 
						|
    // compiled C++ code w/o the proper separation.  The only real exception
 | 
						|
    // is a null pointer.  You could have generic code written to index of
 | 
						|
    // off a potentially null value and have proven it null.  We also use
 | 
						|
    // null pointers in dead paths of relocation phis (which we might later
 | 
						|
    // want to find a base pointer for).
 | 
						|
    assert(isa<ConstantPointerNull>(Con) &&
 | 
						|
           "null is the only case which makes sense");
 | 
						|
    return Con;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
    Value *Def = CI->stripPointerCasts();
 | 
						|
    // If we find a cast instruction here, it means we've found a cast which is
 | 
						|
    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
 | 
						|
    // handle int->ptr conversion.
 | 
						|
    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
 | 
						|
    return findBaseDefiningValue(Def);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<LoadInst>(I))
 | 
						|
    return I; // The value loaded is an gc base itself
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
 | 
						|
    // The base of this GEP is the base
 | 
						|
    return findBaseDefiningValue(GEP->getPointerOperand());
 | 
						|
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    case Intrinsic::experimental_gc_result_ptr:
 | 
						|
    default:
 | 
						|
      // fall through to general call handling
 | 
						|
      break;
 | 
						|
    case Intrinsic::experimental_gc_statepoint:
 | 
						|
    case Intrinsic::experimental_gc_result_float:
 | 
						|
    case Intrinsic::experimental_gc_result_int:
 | 
						|
      llvm_unreachable("these don't produce pointers");
 | 
						|
    case Intrinsic::experimental_gc_relocate: {
 | 
						|
      // Rerunning safepoint insertion after safepoints are already
 | 
						|
      // inserted is not supported.  It could probably be made to work,
 | 
						|
      // but why are you doing this?  There's no good reason.
 | 
						|
      llvm_unreachable("repeat safepoint insertion is not supported");
 | 
						|
    }
 | 
						|
    case Intrinsic::gcroot:
 | 
						|
      // Currently, this mechanism hasn't been extended to work with gcroot.
 | 
						|
      // There's no reason it couldn't be, but I haven't thought about the
 | 
						|
      // implications much.
 | 
						|
      llvm_unreachable(
 | 
						|
          "interaction with the gcroot mechanism is not supported");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // We assume that functions in the source language only return base
 | 
						|
  // pointers.  This should probably be generalized via attributes to support
 | 
						|
  // both source language and internal functions.
 | 
						|
  if (isa<CallInst>(I) || isa<InvokeInst>(I))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // I have absolutely no idea how to implement this part yet.  It's not
 | 
						|
  // neccessarily hard, I just haven't really looked at it yet.
 | 
						|
  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
 | 
						|
 | 
						|
  if (isa<AtomicCmpXchgInst>(I))
 | 
						|
    // A CAS is effectively a atomic store and load combined under a
 | 
						|
    // predicate.  From the perspective of base pointers, we just treat it
 | 
						|
    // like a load.
 | 
						|
    return I;
 | 
						|
 | 
						|
  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
 | 
						|
                                   "binary ops which don't apply to pointers");
 | 
						|
 | 
						|
  // The aggregate ops.  Aggregates can either be in the heap or on the
 | 
						|
  // stack, but in either case, this is simply a field load.  As a result,
 | 
						|
  // this is a defining definition of the base just like a load is.
 | 
						|
  if (isa<ExtractValueInst>(I))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // We should never see an insert vector since that would require we be
 | 
						|
  // tracing back a struct value not a pointer value.
 | 
						|
  assert(!isa<InsertValueInst>(I) &&
 | 
						|
         "Base pointer for a struct is meaningless");
 | 
						|
 | 
						|
  // The last two cases here don't return a base pointer.  Instead, they
 | 
						|
  // return a value which dynamically selects from amoung several base
 | 
						|
  // derived pointers (each with it's own base potentially).  It's the job of
 | 
						|
  // the caller to resolve these.
 | 
						|
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | 
						|
         "missing instruction case in findBaseDefiningValing");
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the base defining value for this value.
 | 
						|
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
 | 
						|
  Value *&Cached = Cache[I];
 | 
						|
  if (!Cached) {
 | 
						|
    Cached = findBaseDefiningValue(I);
 | 
						|
  }
 | 
						|
  assert(Cache[I] != nullptr);
 | 
						|
 | 
						|
  if (TraceLSP) {
 | 
						|
    dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
 | 
						|
           << "\n";
 | 
						|
  }
 | 
						|
  return Cached;
 | 
						|
}
 | 
						|
 | 
						|
/// Return a base pointer for this value if known.  Otherwise, return it's
 | 
						|
/// base defining value.
 | 
						|
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
 | 
						|
  Value *Def = findBaseDefiningValueCached(I, Cache);
 | 
						|
  auto Found = Cache.find(Def);
 | 
						|
  if (Found != Cache.end()) {
 | 
						|
    // Either a base-of relation, or a self reference.  Caller must check.
 | 
						|
    return Found->second;
 | 
						|
  }
 | 
						|
  // Only a BDV available
 | 
						|
  return Def;
 | 
						|
}
 | 
						|
 | 
						|
/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
 | 
						|
/// is it known to be a base pointer?  Or do we need to continue searching.
 | 
						|
static bool isKnownBaseResult(Value *V) {
 | 
						|
  if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
 | 
						|
    // no recursion possible
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (isa<Instruction>(V) &&
 | 
						|
      cast<Instruction>(V)->getMetadata("is_base_value")) {
 | 
						|
    // This is a previously inserted base phi or select.  We know
 | 
						|
    // that this is a base value.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to keep searching
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// TODO: find a better name for this
 | 
						|
namespace {
 | 
						|
class PhiState {
 | 
						|
public:
 | 
						|
  enum Status { Unknown, Base, Conflict };
 | 
						|
 | 
						|
  PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
 | 
						|
    assert(status != Base || b);
 | 
						|
  }
 | 
						|
  PhiState(Value *b) : status(Base), base(b) {}
 | 
						|
  PhiState() : status(Unknown), base(nullptr) {}
 | 
						|
 | 
						|
  Status getStatus() const { return status; }
 | 
						|
  Value *getBase() const { return base; }
 | 
						|
 | 
						|
  bool isBase() const { return getStatus() == Base; }
 | 
						|
  bool isUnknown() const { return getStatus() == Unknown; }
 | 
						|
  bool isConflict() const { return getStatus() == Conflict; }
 | 
						|
 | 
						|
  bool operator==(const PhiState &other) const {
 | 
						|
    return base == other.base && status == other.status;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const PhiState &other) const { return !(*this == other); }
 | 
						|
 | 
						|
  void dump() {
 | 
						|
    errs() << status << " (" << base << " - "
 | 
						|
           << (base ? base->getName() : "nullptr") << "): ";
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  Status status;
 | 
						|
  Value *base; // non null only if status == base
 | 
						|
};
 | 
						|
 | 
						|
typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
 | 
						|
// Values of type PhiState form a lattice, and this is a helper
 | 
						|
// class that implementes the meet operation.  The meat of the meet
 | 
						|
// operation is implemented in MeetPhiStates::pureMeet
 | 
						|
class MeetPhiStates {
 | 
						|
public:
 | 
						|
  // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
 | 
						|
  explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
 | 
						|
      : phiStates(phiStates) {}
 | 
						|
 | 
						|
  // Destructively meet the current result with the base V.  V can
 | 
						|
  // either be a merge instruction (SelectInst / PHINode), in which
 | 
						|
  // case its status is looked up in the phiStates map; or a regular
 | 
						|
  // SSA value, in which case it is assumed to be a base.
 | 
						|
  void meetWith(Value *V) {
 | 
						|
    PhiState otherState = getStateForBDV(V);
 | 
						|
    assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
 | 
						|
            MeetPhiStates::pureMeet(currentResult, otherState)) &&
 | 
						|
           "math is wrong: meet does not commute!");
 | 
						|
    currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
 | 
						|
  }
 | 
						|
 | 
						|
  PhiState getResult() const { return currentResult; }
 | 
						|
 | 
						|
private:
 | 
						|
  const ConflictStateMapTy &phiStates;
 | 
						|
  PhiState currentResult;
 | 
						|
 | 
						|
  /// Return a phi state for a base defining value.  We'll generate a new
 | 
						|
  /// base state for known bases and expect to find a cached state otherwise
 | 
						|
  PhiState getStateForBDV(Value *baseValue) {
 | 
						|
    if (isKnownBaseResult(baseValue)) {
 | 
						|
      return PhiState(baseValue);
 | 
						|
    } else {
 | 
						|
      return lookupFromMap(baseValue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  PhiState lookupFromMap(Value *V) {
 | 
						|
    auto I = phiStates.find(V);
 | 
						|
    assert(I != phiStates.end() && "lookup failed!");
 | 
						|
    return I->second;
 | 
						|
  }
 | 
						|
 | 
						|
  static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
 | 
						|
    switch (stateA.getStatus()) {
 | 
						|
    case PhiState::Unknown:
 | 
						|
      return stateB;
 | 
						|
 | 
						|
    case PhiState::Base:
 | 
						|
      assert(stateA.getBase() && "can't be null");
 | 
						|
      if (stateB.isUnknown())
 | 
						|
        return stateA;
 | 
						|
 | 
						|
      if (stateB.isBase()) {
 | 
						|
        if (stateA.getBase() == stateB.getBase()) {
 | 
						|
          assert(stateA == stateB && "equality broken!");
 | 
						|
          return stateA;
 | 
						|
        }
 | 
						|
        return PhiState(PhiState::Conflict);
 | 
						|
      }
 | 
						|
      assert(stateB.isConflict() && "only three states!");
 | 
						|
      return PhiState(PhiState::Conflict);
 | 
						|
 | 
						|
    case PhiState::Conflict:
 | 
						|
      return stateA;
 | 
						|
    }
 | 
						|
    llvm_unreachable("only three states!");
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
/// For a given value or instruction, figure out what base ptr it's derived
 | 
						|
/// from.  For gc objects, this is simply itself.  On success, returns a value
 | 
						|
/// which is the base pointer.  (This is reliable and can be used for
 | 
						|
/// relocation.)  On failure, returns nullptr.
 | 
						|
static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
 | 
						|
  Value *def = findBaseOrBDV(I, cache);
 | 
						|
 | 
						|
  if (isKnownBaseResult(def)) {
 | 
						|
    return def;
 | 
						|
  }
 | 
						|
 | 
						|
  // Here's the rough algorithm:
 | 
						|
  // - For every SSA value, construct a mapping to either an actual base
 | 
						|
  //   pointer or a PHI which obscures the base pointer.
 | 
						|
  // - Construct a mapping from PHI to unknown TOP state.  Use an
 | 
						|
  //   optimistic algorithm to propagate base pointer information.  Lattice
 | 
						|
  //   looks like:
 | 
						|
  //   UNKNOWN
 | 
						|
  //   b1 b2 b3 b4
 | 
						|
  //   CONFLICT
 | 
						|
  //   When algorithm terminates, all PHIs will either have a single concrete
 | 
						|
  //   base or be in a conflict state.
 | 
						|
  // - For every conflict, insert a dummy PHI node without arguments.  Add
 | 
						|
  //   these to the base[Instruction] = BasePtr mapping.  For every
 | 
						|
  //   non-conflict, add the actual base.
 | 
						|
  //  - For every conflict, add arguments for the base[a] of each input
 | 
						|
  //   arguments.
 | 
						|
  //
 | 
						|
  // Note: A simpler form of this would be to add the conflict form of all
 | 
						|
  // PHIs without running the optimistic algorithm.  This would be
 | 
						|
  // analougous to pessimistic data flow and would likely lead to an
 | 
						|
  // overall worse solution.
 | 
						|
 | 
						|
  ConflictStateMapTy states;
 | 
						|
  states[def] = PhiState();
 | 
						|
  // Recursively fill in all phis & selects reachable from the initial one
 | 
						|
  // for which we don't already know a definite base value for
 | 
						|
  // TODO: This should be rewritten with a worklist
 | 
						|
  bool done = false;
 | 
						|
  while (!done) {
 | 
						|
    done = true;
 | 
						|
    // Since we're adding elements to 'states' as we run, we can't keep
 | 
						|
    // iterators into the set.
 | 
						|
    SmallVector<Value *, 16> Keys;
 | 
						|
    Keys.reserve(states.size());
 | 
						|
    for (auto Pair : states) {
 | 
						|
      Value *V = Pair.first;
 | 
						|
      Keys.push_back(V);
 | 
						|
    }
 | 
						|
    for (Value *v : Keys) {
 | 
						|
      assert(!isKnownBaseResult(v) && "why did it get added?");
 | 
						|
      if (PHINode *phi = dyn_cast<PHINode>(v)) {
 | 
						|
        assert(phi->getNumIncomingValues() > 0 &&
 | 
						|
               "zero input phis are illegal");
 | 
						|
        for (Value *InVal : phi->incoming_values()) {
 | 
						|
          Value *local = findBaseOrBDV(InVal, cache);
 | 
						|
          if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
 | 
						|
            states[local] = PhiState();
 | 
						|
            done = false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
 | 
						|
        Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
 | 
						|
        if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
 | 
						|
          states[local] = PhiState();
 | 
						|
          done = false;
 | 
						|
        }
 | 
						|
        local = findBaseOrBDV(sel->getFalseValue(), cache);
 | 
						|
        if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
 | 
						|
          states[local] = PhiState();
 | 
						|
          done = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TraceLSP) {
 | 
						|
    errs() << "States after initialization:\n";
 | 
						|
    for (auto Pair : states) {
 | 
						|
      Instruction *v = cast<Instruction>(Pair.first);
 | 
						|
      PhiState state = Pair.second;
 | 
						|
      state.dump();
 | 
						|
      v->dump();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: come back and revisit the state transitions around inputs which
 | 
						|
  // have reached conflict state.  The current version seems too conservative.
 | 
						|
 | 
						|
  bool progress = true;
 | 
						|
  while (progress) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    size_t oldSize = states.size();
 | 
						|
#endif
 | 
						|
    progress = false;
 | 
						|
    // We're only changing keys in this loop, thus safe to keep iterators
 | 
						|
    for (auto Pair : states) {
 | 
						|
      MeetPhiStates calculateMeet(states);
 | 
						|
      Value *v = Pair.first;
 | 
						|
      assert(!isKnownBaseResult(v) && "why did it get added?");
 | 
						|
      if (SelectInst *select = dyn_cast<SelectInst>(v)) {
 | 
						|
        calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
 | 
						|
        calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
 | 
						|
      } else
 | 
						|
        for (Value *Val : cast<PHINode>(v)->incoming_values())
 | 
						|
          calculateMeet.meetWith(findBaseOrBDV(Val, cache));
 | 
						|
 | 
						|
      PhiState oldState = states[v];
 | 
						|
      PhiState newState = calculateMeet.getResult();
 | 
						|
      if (oldState != newState) {
 | 
						|
        progress = true;
 | 
						|
        states[v] = newState;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(oldSize <= states.size());
 | 
						|
    assert(oldSize == states.size() || progress);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TraceLSP) {
 | 
						|
    errs() << "States after meet iteration:\n";
 | 
						|
    for (auto Pair : states) {
 | 
						|
      Instruction *v = cast<Instruction>(Pair.first);
 | 
						|
      PhiState state = Pair.second;
 | 
						|
      state.dump();
 | 
						|
      v->dump();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert Phis for all conflicts
 | 
						|
  // We want to keep naming deterministic in the loop that follows, so
 | 
						|
  // sort the keys before iteration.  This is useful in allowing us to
 | 
						|
  // write stable tests. Note that there is no invalidation issue here.
 | 
						|
  SmallVector<Value *, 16> Keys;
 | 
						|
  Keys.reserve(states.size());
 | 
						|
  for (auto Pair : states) {
 | 
						|
    Value *V = Pair.first;
 | 
						|
    Keys.push_back(V);
 | 
						|
  }
 | 
						|
  std::sort(Keys.begin(), Keys.end(), order_by_name);
 | 
						|
  // TODO: adjust naming patterns to avoid this order of iteration dependency
 | 
						|
  for (Value *V : Keys) {
 | 
						|
    Instruction *v = cast<Instruction>(V);
 | 
						|
    PhiState state = states[V];
 | 
						|
    assert(!isKnownBaseResult(v) && "why did it get added?");
 | 
						|
    assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
 | 
						|
    if (!state.isConflict())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isa<PHINode>(v)) {
 | 
						|
      int num_preds =
 | 
						|
          std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
 | 
						|
      assert(num_preds > 0 && "how did we reach here");
 | 
						|
      PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
 | 
						|
      // Add metadata marking this as a base value
 | 
						|
      auto *const_1 = ConstantInt::get(
 | 
						|
          Type::getInt32Ty(
 | 
						|
              v->getParent()->getParent()->getParent()->getContext()),
 | 
						|
          1);
 | 
						|
      auto MDConst = ConstantAsMetadata::get(const_1);
 | 
						|
      MDNode *md = MDNode::get(
 | 
						|
          v->getParent()->getParent()->getParent()->getContext(), MDConst);
 | 
						|
      phi->setMetadata("is_base_value", md);
 | 
						|
      states[v] = PhiState(PhiState::Conflict, phi);
 | 
						|
    } else {
 | 
						|
      SelectInst *sel = cast<SelectInst>(v);
 | 
						|
      // The undef will be replaced later
 | 
						|
      UndefValue *undef = UndefValue::get(sel->getType());
 | 
						|
      SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
 | 
						|
                                               undef, "base_select", sel);
 | 
						|
      // Add metadata marking this as a base value
 | 
						|
      auto *const_1 = ConstantInt::get(
 | 
						|
          Type::getInt32Ty(
 | 
						|
              v->getParent()->getParent()->getParent()->getContext()),
 | 
						|
          1);
 | 
						|
      auto MDConst = ConstantAsMetadata::get(const_1);
 | 
						|
      MDNode *md = MDNode::get(
 | 
						|
          v->getParent()->getParent()->getParent()->getContext(), MDConst);
 | 
						|
      basesel->setMetadata("is_base_value", md);
 | 
						|
      states[v] = PhiState(PhiState::Conflict, basesel);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fixup all the inputs of the new PHIs
 | 
						|
  for (auto Pair : states) {
 | 
						|
    Instruction *v = cast<Instruction>(Pair.first);
 | 
						|
    PhiState state = Pair.second;
 | 
						|
 | 
						|
    assert(!isKnownBaseResult(v) && "why did it get added?");
 | 
						|
    assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
 | 
						|
    if (!state.isConflict())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
 | 
						|
      PHINode *phi = cast<PHINode>(v);
 | 
						|
      unsigned NumPHIValues = phi->getNumIncomingValues();
 | 
						|
      for (unsigned i = 0; i < NumPHIValues; i++) {
 | 
						|
        Value *InVal = phi->getIncomingValue(i);
 | 
						|
        BasicBlock *InBB = phi->getIncomingBlock(i);
 | 
						|
 | 
						|
        // If we've already seen InBB, add the same incoming value
 | 
						|
        // we added for it earlier.  The IR verifier requires phi
 | 
						|
        // nodes with multiple entries from the same basic block
 | 
						|
        // to have the same incoming value for each of those
 | 
						|
        // entries.  If we don't do this check here and basephi
 | 
						|
        // has a different type than base, we'll end up adding two
 | 
						|
        // bitcasts (and hence two distinct values) as incoming
 | 
						|
        // values for the same basic block.
 | 
						|
 | 
						|
        int blockIndex = basephi->getBasicBlockIndex(InBB);
 | 
						|
        if (blockIndex != -1) {
 | 
						|
          Value *oldBase = basephi->getIncomingValue(blockIndex);
 | 
						|
          basephi->addIncoming(oldBase, InBB);
 | 
						|
#ifndef NDEBUG
 | 
						|
          Value *base = findBaseOrBDV(InVal, cache);
 | 
						|
          if (!isKnownBaseResult(base)) {
 | 
						|
            // Either conflict or base.
 | 
						|
            assert(states.count(base));
 | 
						|
            base = states[base].getBase();
 | 
						|
            assert(base != nullptr && "unknown PhiState!");
 | 
						|
          }
 | 
						|
 | 
						|
          // In essense this assert states: the only way two
 | 
						|
          // values incoming from the same basic block may be
 | 
						|
          // different is by being different bitcasts of the same
 | 
						|
          // value.  A cleanup that remains TODO is changing
 | 
						|
          // findBaseOrBDV to return an llvm::Value of the correct
 | 
						|
          // type (and still remain pure).  This will remove the
 | 
						|
          // need to add bitcasts.
 | 
						|
          assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
 | 
						|
                 "sanity -- findBaseOrBDV should be pure!");
 | 
						|
#endif
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Find either the defining value for the PHI or the normal base for
 | 
						|
        // a non-phi node
 | 
						|
        Value *base = findBaseOrBDV(InVal, cache);
 | 
						|
        if (!isKnownBaseResult(base)) {
 | 
						|
          // Either conflict or base.
 | 
						|
          assert(states.count(base));
 | 
						|
          base = states[base].getBase();
 | 
						|
          assert(base != nullptr && "unknown PhiState!");
 | 
						|
        }
 | 
						|
        assert(base && "can't be null");
 | 
						|
        // Must use original input BB since base may not be Instruction
 | 
						|
        // The cast is needed since base traversal may strip away bitcasts
 | 
						|
        if (base->getType() != basephi->getType()) {
 | 
						|
          base = new BitCastInst(base, basephi->getType(), "cast",
 | 
						|
                                 InBB->getTerminator());
 | 
						|
        }
 | 
						|
        basephi->addIncoming(base, InBB);
 | 
						|
      }
 | 
						|
      assert(basephi->getNumIncomingValues() == NumPHIValues);
 | 
						|
    } else {
 | 
						|
      SelectInst *basesel = cast<SelectInst>(state.getBase());
 | 
						|
      SelectInst *sel = cast<SelectInst>(v);
 | 
						|
      // Operand 1 & 2 are true, false path respectively. TODO: refactor to
 | 
						|
      // something more safe and less hacky.
 | 
						|
      for (int i = 1; i <= 2; i++) {
 | 
						|
        Value *InVal = sel->getOperand(i);
 | 
						|
        // Find either the defining value for the PHI or the normal base for
 | 
						|
        // a non-phi node
 | 
						|
        Value *base = findBaseOrBDV(InVal, cache);
 | 
						|
        if (!isKnownBaseResult(base)) {
 | 
						|
          // Either conflict or base.
 | 
						|
          assert(states.count(base));
 | 
						|
          base = states[base].getBase();
 | 
						|
          assert(base != nullptr && "unknown PhiState!");
 | 
						|
        }
 | 
						|
        assert(base && "can't be null");
 | 
						|
        // Must use original input BB since base may not be Instruction
 | 
						|
        // The cast is needed since base traversal may strip away bitcasts
 | 
						|
        if (base->getType() != basesel->getType()) {
 | 
						|
          base = new BitCastInst(base, basesel->getType(), "cast", basesel);
 | 
						|
        }
 | 
						|
        basesel->setOperand(i, base);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Cache all of our results so we can cheaply reuse them
 | 
						|
  // NOTE: This is actually two caches: one of the base defining value
 | 
						|
  // relation and one of the base pointer relation!  FIXME
 | 
						|
  for (auto item : states) {
 | 
						|
    Value *v = item.first;
 | 
						|
    Value *base = item.second.getBase();
 | 
						|
    assert(v && base);
 | 
						|
    assert(!isKnownBaseResult(v) && "why did it get added?");
 | 
						|
 | 
						|
    if (TraceLSP) {
 | 
						|
      std::string fromstr =
 | 
						|
          cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
 | 
						|
                         : "none";
 | 
						|
      errs() << "Updating base value cache"
 | 
						|
             << " for: " << (v->hasName() ? v->getName() : "")
 | 
						|
             << " from: " << fromstr
 | 
						|
             << " to: " << (base->hasName() ? base->getName() : "") << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
    assert(isKnownBaseResult(base) &&
 | 
						|
           "must be something we 'know' is a base pointer");
 | 
						|
    if (cache.count(v)) {
 | 
						|
      // Once we transition from the BDV relation being store in the cache to
 | 
						|
      // the base relation being stored, it must be stable
 | 
						|
      assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
 | 
						|
             "base relation should be stable");
 | 
						|
    }
 | 
						|
    cache[v] = base;
 | 
						|
  }
 | 
						|
  assert(cache.find(def) != cache.end());
 | 
						|
  return cache[def];
 | 
						|
}
 | 
						|
 | 
						|
// For a set of live pointers (base and/or derived), identify the base
 | 
						|
// pointer of the object which they are derived from.  This routine will
 | 
						|
// mutate the IR graph as needed to make the 'base' pointer live at the
 | 
						|
// definition site of 'derived'.  This ensures that any use of 'derived' can
 | 
						|
// also use 'base'.  This may involve the insertion of a number of
 | 
						|
// additional PHI nodes.
 | 
						|
//
 | 
						|
// preconditions: live is a set of pointer type Values
 | 
						|
//
 | 
						|
// side effects: may insert PHI nodes into the existing CFG, will preserve
 | 
						|
// CFG, will not remove or mutate any existing nodes
 | 
						|
//
 | 
						|
// post condition: PointerToBase contains one (derived, base) pair for every
 | 
						|
// pointer in live.  Note that derived can be equal to base if the original
 | 
						|
// pointer was a base pointer.
 | 
						|
static void
 | 
						|
findBasePointers(const StatepointLiveSetTy &live,
 | 
						|
                 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
 | 
						|
                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
 | 
						|
  // For the naming of values inserted to be deterministic - which makes for
 | 
						|
  // much cleaner and more stable tests - we need to assign an order to the
 | 
						|
  // live values.  DenseSets do not provide a deterministic order across runs.
 | 
						|
  SmallVector<Value *, 64> Temp;
 | 
						|
  Temp.insert(Temp.end(), live.begin(), live.end());
 | 
						|
  std::sort(Temp.begin(), Temp.end(), order_by_name);
 | 
						|
  for (Value *ptr : Temp) {
 | 
						|
    Value *base = findBasePointer(ptr, DVCache);
 | 
						|
    assert(base && "failed to find base pointer");
 | 
						|
    PointerToBase[ptr] = base;
 | 
						|
    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
 | 
						|
            DT->dominates(cast<Instruction>(base)->getParent(),
 | 
						|
                          cast<Instruction>(ptr)->getParent())) &&
 | 
						|
           "The base we found better dominate the derived pointer");
 | 
						|
 | 
						|
    // If you see this trip and like to live really dangerously, the code should
 | 
						|
    // be correct, just with idioms the verifier can't handle.  You can try
 | 
						|
    // disabling the verifier at your own substaintial risk.
 | 
						|
    assert(!isa<ConstantPointerNull>(base) &&
 | 
						|
           "the relocation code needs adjustment to handle the relocation of "
 | 
						|
           "a null pointer constant without causing false positives in the "
 | 
						|
           "safepoint ir verifier.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Find the required based pointers (and adjust the live set) for the given
 | 
						|
/// parse point.
 | 
						|
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
 | 
						|
                             const CallSite &CS,
 | 
						|
                             PartiallyConstructedSafepointRecord &result) {
 | 
						|
  DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
 | 
						|
  findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
 | 
						|
 | 
						|
  if (PrintBasePointers) {
 | 
						|
    // Note: Need to print these in a stable order since this is checked in
 | 
						|
    // some tests.
 | 
						|
    errs() << "Base Pairs (w/o Relocation):\n";
 | 
						|
    SmallVector<Value *, 64> Temp;
 | 
						|
    Temp.reserve(PointerToBase.size());
 | 
						|
    for (auto Pair : PointerToBase) {
 | 
						|
      Temp.push_back(Pair.first);
 | 
						|
    }
 | 
						|
    std::sort(Temp.begin(), Temp.end(), order_by_name);
 | 
						|
    for (Value *Ptr : Temp) {
 | 
						|
      Value *Base = PointerToBase[Ptr];
 | 
						|
      errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
 | 
						|
             << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  result.PointerToBase = PointerToBase;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an updated version of the dataflow liveness results, update the
 | 
						|
/// liveset and base pointer maps for the call site CS.
 | 
						|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | 
						|
                                  const CallSite &CS,
 | 
						|
                                  PartiallyConstructedSafepointRecord &result);
 | 
						|
 | 
						|
static void recomputeLiveInValues(
 | 
						|
    Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
 | 
						|
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | 
						|
  // TODO-PERF: reuse the original liveness, then simply run the dataflow
 | 
						|
  // again.  The old values are still live and will help it stablize quickly.
 | 
						|
  GCPtrLivenessData RevisedLivenessData;
 | 
						|
  computeLiveInValues(DT, F, RevisedLivenessData);
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    const CallSite &CS = toUpdate[i];
 | 
						|
    recomputeLiveInValues(RevisedLivenessData, CS, info);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// When inserting gc.relocate calls, we need to ensure there are no uses
 | 
						|
// of the original value between the gc.statepoint and the gc.relocate call.
 | 
						|
// One case which can arise is a phi node starting one of the successor blocks.
 | 
						|
// We also need to be able to insert the gc.relocates only on the path which
 | 
						|
// goes through the statepoint.  We might need to split an edge to make this
 | 
						|
// possible.
 | 
						|
static BasicBlock *
 | 
						|
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) {
 | 
						|
  DominatorTree *DT = nullptr;
 | 
						|
  if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
 | 
						|
    DT = &DTP->getDomTree();
 | 
						|
 | 
						|
  BasicBlock *Ret = BB;
 | 
						|
  if (!BB->getUniquePredecessor()) {
 | 
						|
    Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that 'ret' has unique predecessor we can safely remove all phi nodes
 | 
						|
  // from it
 | 
						|
  FoldSingleEntryPHINodes(Ret);
 | 
						|
  assert(!isa<PHINode>(Ret->begin()));
 | 
						|
 | 
						|
  // At this point, we can safely insert a gc.relocate as the first instruction
 | 
						|
  // in Ret if needed.
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static int find_index(ArrayRef<Value *> livevec, Value *val) {
 | 
						|
  auto itr = std::find(livevec.begin(), livevec.end(), val);
 | 
						|
  assert(livevec.end() != itr);
 | 
						|
  size_t index = std::distance(livevec.begin(), itr);
 | 
						|
  assert(index < livevec.size());
 | 
						|
  return index;
 | 
						|
}
 | 
						|
 | 
						|
// Create new attribute set containing only attributes which can be transfered
 | 
						|
// from original call to the safepoint.
 | 
						|
static AttributeSet legalizeCallAttributes(AttributeSet AS) {
 | 
						|
  AttributeSet ret;
 | 
						|
 | 
						|
  for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
 | 
						|
    unsigned index = AS.getSlotIndex(Slot);
 | 
						|
 | 
						|
    if (index == AttributeSet::ReturnIndex ||
 | 
						|
        index == AttributeSet::FunctionIndex) {
 | 
						|
 | 
						|
      for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
 | 
						|
           ++it) {
 | 
						|
        Attribute attr = *it;
 | 
						|
 | 
						|
        // Do not allow certain attributes - just skip them
 | 
						|
        // Safepoint can not be read only or read none.
 | 
						|
        if (attr.hasAttribute(Attribute::ReadNone) ||
 | 
						|
            attr.hasAttribute(Attribute::ReadOnly))
 | 
						|
          continue;
 | 
						|
 | 
						|
        ret = ret.addAttributes(
 | 
						|
            AS.getContext(), index,
 | 
						|
            AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Just skip parameter attributes for now
 | 
						|
  }
 | 
						|
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to place all gc relocates necessary for the given
 | 
						|
/// statepoint.
 | 
						|
/// Inputs:
 | 
						|
///   liveVariables - list of variables to be relocated.
 | 
						|
///   liveStart - index of the first live variable.
 | 
						|
///   basePtrs - base pointers.
 | 
						|
///   statepointToken - statepoint instruction to which relocates should be
 | 
						|
///   bound.
 | 
						|
///   Builder - Llvm IR builder to be used to construct new calls.
 | 
						|
static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
 | 
						|
                              const int liveStart,
 | 
						|
                              ArrayRef<llvm::Value *> basePtrs,
 | 
						|
                              Instruction *statepointToken,
 | 
						|
                              IRBuilder<> Builder) {
 | 
						|
  SmallVector<Instruction *, 64> NewDefs;
 | 
						|
  NewDefs.reserve(liveVariables.size());
 | 
						|
 | 
						|
  Module *M = statepointToken->getParent()->getParent()->getParent();
 | 
						|
 | 
						|
  for (unsigned i = 0; i < liveVariables.size(); i++) {
 | 
						|
    // We generate a (potentially) unique declaration for every pointer type
 | 
						|
    // combination.  This results is some blow up the function declarations in
 | 
						|
    // the IR, but removes the need for argument bitcasts which shrinks the IR
 | 
						|
    // greatly and makes it much more readable.
 | 
						|
    SmallVector<Type *, 1> types;                 // one per 'any' type
 | 
						|
    types.push_back(liveVariables[i]->getType()); // result type
 | 
						|
    Value *gc_relocate_decl = Intrinsic::getDeclaration(
 | 
						|
        M, Intrinsic::experimental_gc_relocate, types);
 | 
						|
 | 
						|
    // Generate the gc.relocate call and save the result
 | 
						|
    Value *baseIdx =
 | 
						|
        ConstantInt::get(Type::getInt32Ty(M->getContext()),
 | 
						|
                         liveStart + find_index(liveVariables, basePtrs[i]));
 | 
						|
    Value *liveIdx = ConstantInt::get(
 | 
						|
        Type::getInt32Ty(M->getContext()),
 | 
						|
        liveStart + find_index(liveVariables, liveVariables[i]));
 | 
						|
 | 
						|
    // only specify a debug name if we can give a useful one
 | 
						|
    Value *reloc = Builder.CreateCall3(
 | 
						|
        gc_relocate_decl, statepointToken, baseIdx, liveIdx,
 | 
						|
        liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
 | 
						|
                                    : "");
 | 
						|
    // Trick CodeGen into thinking there are lots of free registers at this
 | 
						|
    // fake call.
 | 
						|
    cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
 | 
						|
 | 
						|
    NewDefs.push_back(cast<Instruction>(reloc));
 | 
						|
  }
 | 
						|
  assert(NewDefs.size() == liveVariables.size() &&
 | 
						|
         "missing or extra redefinition at safepoint");
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
 | 
						|
                           const SmallVectorImpl<llvm::Value *> &basePtrs,
 | 
						|
                           const SmallVectorImpl<llvm::Value *> &liveVariables,
 | 
						|
                           Pass *P,
 | 
						|
                           PartiallyConstructedSafepointRecord &result) {
 | 
						|
  assert(basePtrs.size() == liveVariables.size());
 | 
						|
  assert(isStatepoint(CS) &&
 | 
						|
         "This method expects to be rewriting a statepoint");
 | 
						|
 | 
						|
  BasicBlock *BB = CS.getInstruction()->getParent();
 | 
						|
  assert(BB);
 | 
						|
  Function *F = BB->getParent();
 | 
						|
  assert(F && "must be set");
 | 
						|
  Module *M = F->getParent();
 | 
						|
  (void)M;
 | 
						|
  assert(M && "must be set");
 | 
						|
 | 
						|
  // We're not changing the function signature of the statepoint since the gc
 | 
						|
  // arguments go into the var args section.
 | 
						|
  Function *gc_statepoint_decl = CS.getCalledFunction();
 | 
						|
 | 
						|
  // Then go ahead and use the builder do actually do the inserts.  We insert
 | 
						|
  // immediately before the previous instruction under the assumption that all
 | 
						|
  // arguments will be available here.  We can't insert afterwards since we may
 | 
						|
  // be replacing a terminator.
 | 
						|
  Instruction *insertBefore = CS.getInstruction();
 | 
						|
  IRBuilder<> Builder(insertBefore);
 | 
						|
  // Copy all of the arguments from the original statepoint - this includes the
 | 
						|
  // target, call args, and deopt args
 | 
						|
  SmallVector<llvm::Value *, 64> args;
 | 
						|
  args.insert(args.end(), CS.arg_begin(), CS.arg_end());
 | 
						|
  // TODO: Clear the 'needs rewrite' flag
 | 
						|
 | 
						|
  // add all the pointers to be relocated (gc arguments)
 | 
						|
  // Capture the start of the live variable list for use in the gc_relocates
 | 
						|
  const int live_start = args.size();
 | 
						|
  args.insert(args.end(), liveVariables.begin(), liveVariables.end());
 | 
						|
 | 
						|
  // Create the statepoint given all the arguments
 | 
						|
  Instruction *token = nullptr;
 | 
						|
  AttributeSet return_attributes;
 | 
						|
  if (CS.isCall()) {
 | 
						|
    CallInst *toReplace = cast<CallInst>(CS.getInstruction());
 | 
						|
    CallInst *call =
 | 
						|
        Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
 | 
						|
    call->setTailCall(toReplace->isTailCall());
 | 
						|
    call->setCallingConv(toReplace->getCallingConv());
 | 
						|
 | 
						|
    // Currently we will fail on parameter attributes and on certain
 | 
						|
    // function attributes.
 | 
						|
    AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
 | 
						|
    // In case if we can handle this set of sttributes - set up function attrs
 | 
						|
    // directly on statepoint and return attrs later for gc_result intrinsic.
 | 
						|
    call->setAttributes(new_attrs.getFnAttributes());
 | 
						|
    return_attributes = new_attrs.getRetAttributes();
 | 
						|
 | 
						|
    token = call;
 | 
						|
 | 
						|
    // Put the following gc_result and gc_relocate calls immediately after the
 | 
						|
    // the old call (which we're about to delete)
 | 
						|
    BasicBlock::iterator next(toReplace);
 | 
						|
    assert(BB->end() != next && "not a terminator, must have next");
 | 
						|
    next++;
 | 
						|
    Instruction *IP = &*(next);
 | 
						|
    Builder.SetInsertPoint(IP);
 | 
						|
    Builder.SetCurrentDebugLocation(IP->getDebugLoc());
 | 
						|
 | 
						|
  } else {
 | 
						|
    InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
 | 
						|
 | 
						|
    // Insert the new invoke into the old block.  We'll remove the old one in a
 | 
						|
    // moment at which point this will become the new terminator for the
 | 
						|
    // original block.
 | 
						|
    InvokeInst *invoke = InvokeInst::Create(
 | 
						|
        gc_statepoint_decl, toReplace->getNormalDest(),
 | 
						|
        toReplace->getUnwindDest(), args, "", toReplace->getParent());
 | 
						|
    invoke->setCallingConv(toReplace->getCallingConv());
 | 
						|
 | 
						|
    // Currently we will fail on parameter attributes and on certain
 | 
						|
    // function attributes.
 | 
						|
    AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
 | 
						|
    // In case if we can handle this set of sttributes - set up function attrs
 | 
						|
    // directly on statepoint and return attrs later for gc_result intrinsic.
 | 
						|
    invoke->setAttributes(new_attrs.getFnAttributes());
 | 
						|
    return_attributes = new_attrs.getRetAttributes();
 | 
						|
 | 
						|
    token = invoke;
 | 
						|
 | 
						|
    // Generate gc relocates in exceptional path
 | 
						|
    BasicBlock *unwindBlock = toReplace->getUnwindDest();
 | 
						|
    assert(!isa<PHINode>(unwindBlock->begin()) &&
 | 
						|
           unwindBlock->getUniquePredecessor() &&
 | 
						|
           "can't safely insert in this block!");
 | 
						|
 | 
						|
    Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
 | 
						|
    Builder.SetInsertPoint(IP);
 | 
						|
    Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
 | 
						|
 | 
						|
    // Extract second element from landingpad return value. We will attach
 | 
						|
    // exceptional gc relocates to it.
 | 
						|
    const unsigned idx = 1;
 | 
						|
    Instruction *exceptional_token =
 | 
						|
        cast<Instruction>(Builder.CreateExtractValue(
 | 
						|
            unwindBlock->getLandingPadInst(), idx, "relocate_token"));
 | 
						|
    result.UnwindToken = exceptional_token;
 | 
						|
 | 
						|
    // Just throw away return value. We will use the one we got for normal
 | 
						|
    // block.
 | 
						|
    (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
 | 
						|
                            exceptional_token, Builder);
 | 
						|
 | 
						|
    // Generate gc relocates and returns for normal block
 | 
						|
    BasicBlock *normalDest = toReplace->getNormalDest();
 | 
						|
    assert(!isa<PHINode>(normalDest->begin()) &&
 | 
						|
           normalDest->getUniquePredecessor() &&
 | 
						|
           "can't safely insert in this block!");
 | 
						|
 | 
						|
    IP = &*(normalDest->getFirstInsertionPt());
 | 
						|
    Builder.SetInsertPoint(IP);
 | 
						|
 | 
						|
    // gc relocates will be generated later as if it were regular call
 | 
						|
    // statepoint
 | 
						|
  }
 | 
						|
  assert(token);
 | 
						|
 | 
						|
  // Take the name of the original value call if it had one.
 | 
						|
  token->takeName(CS.getInstruction());
 | 
						|
 | 
						|
// The GCResult is already inserted, we just need to find it
 | 
						|
#ifndef NDEBUG
 | 
						|
  Instruction *toReplace = CS.getInstruction();
 | 
						|
  assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
 | 
						|
         "only valid use before rewrite is gc.result");
 | 
						|
  assert(!toReplace->hasOneUse() ||
 | 
						|
         isGCResult(cast<Instruction>(*toReplace->user_begin())));
 | 
						|
#endif
 | 
						|
 | 
						|
  // Update the gc.result of the original statepoint (if any) to use the newly
 | 
						|
  // inserted statepoint.  This is safe to do here since the token can't be
 | 
						|
  // considered a live reference.
 | 
						|
  CS.getInstruction()->replaceAllUsesWith(token);
 | 
						|
 | 
						|
  result.StatepointToken = token;
 | 
						|
 | 
						|
  // Second, create a gc.relocate for every live variable
 | 
						|
  CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct name_ordering {
 | 
						|
  Value *base;
 | 
						|
  Value *derived;
 | 
						|
  bool operator()(name_ordering const &a, name_ordering const &b) {
 | 
						|
    return -1 == a.derived->getName().compare(b.derived->getName());
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
static void stablize_order(SmallVectorImpl<Value *> &basevec,
 | 
						|
                           SmallVectorImpl<Value *> &livevec) {
 | 
						|
  assert(basevec.size() == livevec.size());
 | 
						|
 | 
						|
  SmallVector<name_ordering, 64> temp;
 | 
						|
  for (size_t i = 0; i < basevec.size(); i++) {
 | 
						|
    name_ordering v;
 | 
						|
    v.base = basevec[i];
 | 
						|
    v.derived = livevec[i];
 | 
						|
    temp.push_back(v);
 | 
						|
  }
 | 
						|
  std::sort(temp.begin(), temp.end(), name_ordering());
 | 
						|
  for (size_t i = 0; i < basevec.size(); i++) {
 | 
						|
    basevec[i] = temp[i].base;
 | 
						|
    livevec[i] = temp[i].derived;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
 | 
						|
// which make the relocations happening at this safepoint explicit.
 | 
						|
//
 | 
						|
// WARNING: Does not do any fixup to adjust users of the original live
 | 
						|
// values.  That's the callers responsibility.
 | 
						|
static void
 | 
						|
makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
 | 
						|
                       PartiallyConstructedSafepointRecord &result) {
 | 
						|
  auto liveset = result.liveset;
 | 
						|
  auto PointerToBase = result.PointerToBase;
 | 
						|
 | 
						|
  // Convert to vector for efficient cross referencing.
 | 
						|
  SmallVector<Value *, 64> basevec, livevec;
 | 
						|
  livevec.reserve(liveset.size());
 | 
						|
  basevec.reserve(liveset.size());
 | 
						|
  for (Value *L : liveset) {
 | 
						|
    livevec.push_back(L);
 | 
						|
 | 
						|
    assert(PointerToBase.find(L) != PointerToBase.end());
 | 
						|
    Value *base = PointerToBase[L];
 | 
						|
    basevec.push_back(base);
 | 
						|
  }
 | 
						|
  assert(livevec.size() == basevec.size());
 | 
						|
 | 
						|
  // To make the output IR slightly more stable (for use in diffs), ensure a
 | 
						|
  // fixed order of the values in the safepoint (by sorting the value name).
 | 
						|
  // The order is otherwise meaningless.
 | 
						|
  stablize_order(basevec, livevec);
 | 
						|
 | 
						|
  // Do the actual rewriting and delete the old statepoint
 | 
						|
  makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
 | 
						|
  CS.getInstruction()->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for the relocationViaAlloca.
 | 
						|
// It receives iterator to the statepoint gc relocates and emits store to the
 | 
						|
// assigned
 | 
						|
// location (via allocaMap) for the each one of them.
 | 
						|
// Add visited values into the visitedLiveValues set we will later use them
 | 
						|
// for sanity check.
 | 
						|
static void
 | 
						|
insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
 | 
						|
                       DenseMap<Value *, Value *> &allocaMap,
 | 
						|
                       DenseSet<Value *> &visitedLiveValues) {
 | 
						|
 | 
						|
  for (User *U : gcRelocs) {
 | 
						|
    if (!isa<IntrinsicInst>(U))
 | 
						|
      continue;
 | 
						|
 | 
						|
    IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
 | 
						|
 | 
						|
    // We only care about relocates
 | 
						|
    if (relocatedValue->getIntrinsicID() !=
 | 
						|
        Intrinsic::experimental_gc_relocate) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    GCRelocateOperands relocateOperands(relocatedValue);
 | 
						|
    Value *originalValue =
 | 
						|
        const_cast<Value *>(relocateOperands.getDerivedPtr());
 | 
						|
    assert(allocaMap.count(originalValue));
 | 
						|
    Value *alloca = allocaMap[originalValue];
 | 
						|
 | 
						|
    // Emit store into the related alloca
 | 
						|
    StoreInst *store = new StoreInst(relocatedValue, alloca);
 | 
						|
    store->insertAfter(relocatedValue);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    visitedLiveValues.insert(originalValue);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// do all the relocation update via allocas and mem2reg
 | 
						|
static void relocationViaAlloca(
 | 
						|
    Function &F, DominatorTree &DT, ArrayRef<Value *> live,
 | 
						|
    ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // record initial number of (static) allocas; we'll check we have the same
 | 
						|
  // number when we get done.
 | 
						|
  int InitialAllocaNum = 0;
 | 
						|
  for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
 | 
						|
       I++)
 | 
						|
    if (isa<AllocaInst>(*I))
 | 
						|
      InitialAllocaNum++;
 | 
						|
#endif
 | 
						|
 | 
						|
  // TODO-PERF: change data structures, reserve
 | 
						|
  DenseMap<Value *, Value *> allocaMap;
 | 
						|
  SmallVector<AllocaInst *, 200> PromotableAllocas;
 | 
						|
  PromotableAllocas.reserve(live.size());
 | 
						|
 | 
						|
  // emit alloca for each live gc pointer
 | 
						|
  for (unsigned i = 0; i < live.size(); i++) {
 | 
						|
    Value *liveValue = live[i];
 | 
						|
    AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
 | 
						|
                                        F.getEntryBlock().getFirstNonPHI());
 | 
						|
    allocaMap[liveValue] = alloca;
 | 
						|
    PromotableAllocas.push_back(alloca);
 | 
						|
  }
 | 
						|
 | 
						|
  // The next two loops are part of the same conceptual operation.  We need to
 | 
						|
  // insert a store to the alloca after the original def and at each
 | 
						|
  // redefinition.  We need to insert a load before each use.  These are split
 | 
						|
  // into distinct loops for performance reasons.
 | 
						|
 | 
						|
  // update gc pointer after each statepoint
 | 
						|
  // either store a relocated value or null (if no relocated value found for
 | 
						|
  // this gc pointer and it is not a gc_result)
 | 
						|
  // this must happen before we update the statepoint with load of alloca
 | 
						|
  // otherwise we lose the link between statepoint and old def
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    const struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    Value *Statepoint = info.StatepointToken;
 | 
						|
 | 
						|
    // This will be used for consistency check
 | 
						|
    DenseSet<Value *> visitedLiveValues;
 | 
						|
 | 
						|
    // Insert stores for normal statepoint gc relocates
 | 
						|
    insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);
 | 
						|
 | 
						|
    // In case if it was invoke statepoint
 | 
						|
    // we will insert stores for exceptional path gc relocates.
 | 
						|
    if (isa<InvokeInst>(Statepoint)) {
 | 
						|
      insertRelocationStores(info.UnwindToken->users(), allocaMap,
 | 
						|
                             visitedLiveValues);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ClobberNonLive) {
 | 
						|
      // As a debuging aid, pretend that an unrelocated pointer becomes null at
 | 
						|
      // the gc.statepoint.  This will turn some subtle GC problems into
 | 
						|
      // slightly easier to debug SEGVs.  Note that on large IR files with
 | 
						|
      // lots of gc.statepoints this is extremely costly both memory and time
 | 
						|
      // wise.
 | 
						|
      SmallVector<AllocaInst *, 64> ToClobber;
 | 
						|
      for (auto Pair : allocaMap) {
 | 
						|
        Value *Def = Pair.first;
 | 
						|
        AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
 | 
						|
 | 
						|
        // This value was relocated
 | 
						|
        if (visitedLiveValues.count(Def)) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ToClobber.push_back(Alloca);
 | 
						|
      }
 | 
						|
 | 
						|
      auto InsertClobbersAt = [&](Instruction *IP) {
 | 
						|
        for (auto *AI : ToClobber) {
 | 
						|
          auto AIType = cast<PointerType>(AI->getType());
 | 
						|
          auto PT = cast<PointerType>(AIType->getElementType());
 | 
						|
          Constant *CPN = ConstantPointerNull::get(PT);
 | 
						|
          StoreInst *store = new StoreInst(CPN, AI);
 | 
						|
          store->insertBefore(IP);
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
      // Insert the clobbering stores.  These may get intermixed with the
 | 
						|
      // gc.results and gc.relocates, but that's fine.
 | 
						|
      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
 | 
						|
        InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
 | 
						|
        InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
 | 
						|
      } else {
 | 
						|
        BasicBlock::iterator Next(cast<CallInst>(Statepoint));
 | 
						|
        Next++;
 | 
						|
        InsertClobbersAt(Next);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // update use with load allocas and add store for gc_relocated
 | 
						|
  for (auto Pair : allocaMap) {
 | 
						|
    Value *def = Pair.first;
 | 
						|
    Value *alloca = Pair.second;
 | 
						|
 | 
						|
    // we pre-record the uses of allocas so that we dont have to worry about
 | 
						|
    // later update
 | 
						|
    // that change the user information.
 | 
						|
    SmallVector<Instruction *, 20> uses;
 | 
						|
    // PERF: trade a linear scan for repeated reallocation
 | 
						|
    uses.reserve(std::distance(def->user_begin(), def->user_end()));
 | 
						|
    for (User *U : def->users()) {
 | 
						|
      if (!isa<ConstantExpr>(U)) {
 | 
						|
        // If the def has a ConstantExpr use, then the def is either a
 | 
						|
        // ConstantExpr use itself or null.  In either case
 | 
						|
        // (recursively in the first, directly in the second), the oop
 | 
						|
        // it is ultimately dependent on is null and this particular
 | 
						|
        // use does not need to be fixed up.
 | 
						|
        uses.push_back(cast<Instruction>(U));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    std::sort(uses.begin(), uses.end());
 | 
						|
    auto last = std::unique(uses.begin(), uses.end());
 | 
						|
    uses.erase(last, uses.end());
 | 
						|
 | 
						|
    for (Instruction *use : uses) {
 | 
						|
      if (isa<PHINode>(use)) {
 | 
						|
        PHINode *phi = cast<PHINode>(use);
 | 
						|
        for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
 | 
						|
          if (def == phi->getIncomingValue(i)) {
 | 
						|
            LoadInst *load = new LoadInst(
 | 
						|
                alloca, "", phi->getIncomingBlock(i)->getTerminator());
 | 
						|
            phi->setIncomingValue(i, load);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        LoadInst *load = new LoadInst(alloca, "", use);
 | 
						|
        use->replaceUsesOfWith(def, load);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // emit store for the initial gc value
 | 
						|
    // store must be inserted after load, otherwise store will be in alloca's
 | 
						|
    // use list and an extra load will be inserted before it
 | 
						|
    StoreInst *store = new StoreInst(def, alloca);
 | 
						|
    if (Instruction *inst = dyn_cast<Instruction>(def)) {
 | 
						|
      if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) {
 | 
						|
        // InvokeInst is a TerminatorInst so the store need to be inserted
 | 
						|
        // into its normal destination block.
 | 
						|
        BasicBlock *normalDest = invoke->getNormalDest();
 | 
						|
        store->insertBefore(normalDest->getFirstNonPHI());
 | 
						|
      } else {
 | 
						|
        assert(!inst->isTerminator() &&
 | 
						|
               "The only TerminatorInst that can produce a value is "
 | 
						|
               "InvokeInst which is handled above.");
 | 
						|
        store->insertAfter(inst);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(isa<Argument>(def));
 | 
						|
      store->insertAfter(cast<Instruction>(alloca));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(PromotableAllocas.size() == live.size() &&
 | 
						|
         "we must have the same allocas with lives");
 | 
						|
  if (!PromotableAllocas.empty()) {
 | 
						|
    // apply mem2reg to promote alloca to SSA
 | 
						|
    PromoteMemToReg(PromotableAllocas, DT);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
 | 
						|
       I++)
 | 
						|
    if (isa<AllocaInst>(*I))
 | 
						|
      InitialAllocaNum--;
 | 
						|
  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Implement a unique function which doesn't require we sort the input
 | 
						|
/// vector.  Doing so has the effect of changing the output of a couple of
 | 
						|
/// tests in ways which make them less useful in testing fused safepoints.
 | 
						|
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
 | 
						|
  DenseSet<T> Seen;
 | 
						|
  SmallVector<T, 128> TempVec;
 | 
						|
  TempVec.reserve(Vec.size());
 | 
						|
  for (auto Element : Vec)
 | 
						|
    TempVec.push_back(Element);
 | 
						|
  Vec.clear();
 | 
						|
  for (auto V : TempVec) {
 | 
						|
    if (Seen.insert(V).second) {
 | 
						|
      Vec.push_back(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert holders so that each Value is obviously live through the entire
 | 
						|
/// lifetime of the call.
 | 
						|
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
 | 
						|
                                 SmallVectorImpl<CallInst *> &Holders) {
 | 
						|
  if (Values.empty())
 | 
						|
    // No values to hold live, might as well not insert the empty holder
 | 
						|
    return;
 | 
						|
 | 
						|
  Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
 | 
						|
  // Use a dummy vararg function to actually hold the values live
 | 
						|
  Function *Func = cast<Function>(M->getOrInsertFunction(
 | 
						|
      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
 | 
						|
  if (CS.isCall()) {
 | 
						|
    // For call safepoints insert dummy calls right after safepoint
 | 
						|
    BasicBlock::iterator Next(CS.getInstruction());
 | 
						|
    Next++;
 | 
						|
    Holders.push_back(CallInst::Create(Func, Values, "", Next));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // For invoke safepooints insert dummy calls both in normal and
 | 
						|
  // exceptional destination blocks
 | 
						|
  auto *II = cast<InvokeInst>(CS.getInstruction());
 | 
						|
  Holders.push_back(CallInst::Create(
 | 
						|
      Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
 | 
						|
  Holders.push_back(CallInst::Create(
 | 
						|
      Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
 | 
						|
}
 | 
						|
 | 
						|
static void findLiveReferences(
 | 
						|
    Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
 | 
						|
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | 
						|
  GCPtrLivenessData OriginalLivenessData;
 | 
						|
  computeLiveInValues(DT, F, OriginalLivenessData);
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    const CallSite &CS = toUpdate[i];
 | 
						|
    analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Remove any vector of pointers from the liveset by scalarizing them over the
 | 
						|
/// statepoint instruction.  Adds the scalarized pieces to the liveset.  It
 | 
						|
/// would be preferrable to include the vector in the statepoint itself, but
 | 
						|
/// the lowering code currently does not handle that.  Extending it would be
 | 
						|
/// slightly non-trivial since it requires a format change.  Given how rare
 | 
						|
/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
 | 
						|
static void splitVectorValues(Instruction *StatepointInst,
 | 
						|
                              StatepointLiveSetTy &LiveSet, DominatorTree &DT) {
 | 
						|
  SmallVector<Value *, 16> ToSplit;
 | 
						|
  for (Value *V : LiveSet)
 | 
						|
    if (isa<VectorType>(V->getType()))
 | 
						|
      ToSplit.push_back(V);
 | 
						|
 | 
						|
  if (ToSplit.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Function &F = *(StatepointInst->getParent()->getParent());
 | 
						|
 | 
						|
  DenseMap<Value *, AllocaInst *> AllocaMap;
 | 
						|
  // First is normal return, second is exceptional return (invoke only)
 | 
						|
  DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
 | 
						|
  for (Value *V : ToSplit) {
 | 
						|
    LiveSet.erase(V);
 | 
						|
 | 
						|
    AllocaInst *Alloca =
 | 
						|
        new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
 | 
						|
    AllocaMap[V] = Alloca;
 | 
						|
 | 
						|
    VectorType *VT = cast<VectorType>(V->getType());
 | 
						|
    IRBuilder<> Builder(StatepointInst);
 | 
						|
    SmallVector<Value *, 16> Elements;
 | 
						|
    for (unsigned i = 0; i < VT->getNumElements(); i++)
 | 
						|
      Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
 | 
						|
    LiveSet.insert(Elements.begin(), Elements.end());
 | 
						|
 | 
						|
    auto InsertVectorReform = [&](Instruction *IP) {
 | 
						|
      Builder.SetInsertPoint(IP);
 | 
						|
      Builder.SetCurrentDebugLocation(IP->getDebugLoc());
 | 
						|
      Value *ResultVec = UndefValue::get(VT);
 | 
						|
      for (unsigned i = 0; i < VT->getNumElements(); i++)
 | 
						|
        ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
 | 
						|
                                                Builder.getInt32(i));
 | 
						|
      return ResultVec;
 | 
						|
    };
 | 
						|
 | 
						|
    if (isa<CallInst>(StatepointInst)) {
 | 
						|
      BasicBlock::iterator Next(StatepointInst);
 | 
						|
      Next++;
 | 
						|
      Instruction *IP = &*(Next);
 | 
						|
      Replacements[V].first = InsertVectorReform(IP);
 | 
						|
      Replacements[V].second = nullptr;
 | 
						|
    } else {
 | 
						|
      InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
 | 
						|
      // We've already normalized - check that we don't have shared destination
 | 
						|
      // blocks
 | 
						|
      BasicBlock *NormalDest = Invoke->getNormalDest();
 | 
						|
      assert(!isa<PHINode>(NormalDest->begin()));
 | 
						|
      BasicBlock *UnwindDest = Invoke->getUnwindDest();
 | 
						|
      assert(!isa<PHINode>(UnwindDest->begin()));
 | 
						|
      // Insert insert element sequences in both successors
 | 
						|
      Instruction *IP = &*(NormalDest->getFirstInsertionPt());
 | 
						|
      Replacements[V].first = InsertVectorReform(IP);
 | 
						|
      IP = &*(UnwindDest->getFirstInsertionPt());
 | 
						|
      Replacements[V].second = InsertVectorReform(IP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (Value *V : ToSplit) {
 | 
						|
    AllocaInst *Alloca = AllocaMap[V];
 | 
						|
 | 
						|
    // Capture all users before we start mutating use lists
 | 
						|
    SmallVector<Instruction *, 16> Users;
 | 
						|
    for (User *U : V->users())
 | 
						|
      Users.push_back(cast<Instruction>(U));
 | 
						|
 | 
						|
    for (Instruction *I : Users) {
 | 
						|
      if (auto Phi = dyn_cast<PHINode>(I)) {
 | 
						|
        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
 | 
						|
          if (V == Phi->getIncomingValue(i)) {
 | 
						|
            LoadInst *Load = new LoadInst(
 | 
						|
                Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
 | 
						|
            Phi->setIncomingValue(i, Load);
 | 
						|
          }
 | 
						|
      } else {
 | 
						|
        LoadInst *Load = new LoadInst(Alloca, "", I);
 | 
						|
        I->replaceUsesOfWith(V, Load);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Store the original value and the replacement value into the alloca
 | 
						|
    StoreInst *Store = new StoreInst(V, Alloca);
 | 
						|
    if (auto I = dyn_cast<Instruction>(V))
 | 
						|
      Store->insertAfter(I);
 | 
						|
    else
 | 
						|
      Store->insertAfter(Alloca);
 | 
						|
 | 
						|
    // Normal return for invoke, or call return
 | 
						|
    Instruction *Replacement = cast<Instruction>(Replacements[V].first);
 | 
						|
    (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
 | 
						|
    // Unwind return for invoke only
 | 
						|
    Replacement = cast_or_null<Instruction>(Replacements[V].second);
 | 
						|
    if (Replacement)
 | 
						|
      (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
 | 
						|
  }
 | 
						|
 | 
						|
  // apply mem2reg to promote alloca to SSA
 | 
						|
  SmallVector<AllocaInst *, 16> Allocas;
 | 
						|
  for (Value *V : ToSplit)
 | 
						|
    Allocas.push_back(AllocaMap[V]);
 | 
						|
  PromoteMemToReg(Allocas, DT);
 | 
						|
}
 | 
						|
 | 
						|
static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
 | 
						|
                              SmallVectorImpl<CallSite> &toUpdate) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // sanity check the input
 | 
						|
  std::set<CallSite> uniqued;
 | 
						|
  uniqued.insert(toUpdate.begin(), toUpdate.end());
 | 
						|
  assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
 | 
						|
 | 
						|
  for (size_t i = 0; i < toUpdate.size(); i++) {
 | 
						|
    CallSite &CS = toUpdate[i];
 | 
						|
    assert(CS.getInstruction()->getParent()->getParent() == &F);
 | 
						|
    assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // When inserting gc.relocates for invokes, we need to be able to insert at
 | 
						|
  // the top of the successor blocks.  See the comment on
 | 
						|
  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
 | 
						|
  // may restructure the CFG.
 | 
						|
  for (CallSite CS : toUpdate) {
 | 
						|
    if (!CS.isInvoke())
 | 
						|
      continue;
 | 
						|
    InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
 | 
						|
    normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
 | 
						|
                                P);
 | 
						|
    normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
 | 
						|
                                P);
 | 
						|
  }
 | 
						|
 | 
						|
  // A list of dummy calls added to the IR to keep various values obviously
 | 
						|
  // live in the IR.  We'll remove all of these when done.
 | 
						|
  SmallVector<CallInst *, 64> holders;
 | 
						|
 | 
						|
  // Insert a dummy call with all of the arguments to the vm_state we'll need
 | 
						|
  // for the actual safepoint insertion.  This ensures reference arguments in
 | 
						|
  // the deopt argument list are considered live through the safepoint (and
 | 
						|
  // thus makes sure they get relocated.)
 | 
						|
  for (size_t i = 0; i < toUpdate.size(); i++) {
 | 
						|
    CallSite &CS = toUpdate[i];
 | 
						|
    Statepoint StatepointCS(CS);
 | 
						|
 | 
						|
    SmallVector<Value *, 64> DeoptValues;
 | 
						|
    for (Use &U : StatepointCS.vm_state_args()) {
 | 
						|
      Value *Arg = cast<Value>(&U);
 | 
						|
      assert(!isUnhandledGCPointerType(Arg->getType()) &&
 | 
						|
             "support for FCA unimplemented");
 | 
						|
      if (isHandledGCPointerType(Arg->getType()))
 | 
						|
        DeoptValues.push_back(Arg);
 | 
						|
    }
 | 
						|
    insertUseHolderAfter(CS, DeoptValues, holders);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
 | 
						|
  records.reserve(toUpdate.size());
 | 
						|
  for (size_t i = 0; i < toUpdate.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord info;
 | 
						|
    records.push_back(info);
 | 
						|
  }
 | 
						|
  assert(records.size() == toUpdate.size());
 | 
						|
 | 
						|
  // A) Identify all gc pointers which are staticly live at the given call
 | 
						|
  // site.
 | 
						|
  findLiveReferences(F, DT, P, toUpdate, records);
 | 
						|
 | 
						|
  // Do a limited scalarization of any live at safepoint vector values which
 | 
						|
  // contain pointers.  This enables this pass to run after vectorization at
 | 
						|
  // the cost of some possible performance loss.  TODO: it would be nice to
 | 
						|
  // natively support vectors all the way through the backend so we don't need
 | 
						|
  // to scalarize here.
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    Instruction *statepoint = toUpdate[i].getInstruction();
 | 
						|
    splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT);
 | 
						|
  }
 | 
						|
 | 
						|
  // B) Find the base pointers for each live pointer
 | 
						|
  /* scope for caching */ {
 | 
						|
    // Cache the 'defining value' relation used in the computation and
 | 
						|
    // insertion of base phis and selects.  This ensures that we don't insert
 | 
						|
    // large numbers of duplicate base_phis.
 | 
						|
    DefiningValueMapTy DVCache;
 | 
						|
 | 
						|
    for (size_t i = 0; i < records.size(); i++) {
 | 
						|
      struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
      CallSite &CS = toUpdate[i];
 | 
						|
      findBasePointers(DT, DVCache, CS, info);
 | 
						|
    }
 | 
						|
  } // end of cache scope
 | 
						|
 | 
						|
  // The base phi insertion logic (for any safepoint) may have inserted new
 | 
						|
  // instructions which are now live at some safepoint.  The simplest such
 | 
						|
  // example is:
 | 
						|
  // loop:
 | 
						|
  //   phi a  <-- will be a new base_phi here
 | 
						|
  //   safepoint 1 <-- that needs to be live here
 | 
						|
  //   gep a + 1
 | 
						|
  //   safepoint 2
 | 
						|
  //   br loop
 | 
						|
  // We insert some dummy calls after each safepoint to definitely hold live
 | 
						|
  // the base pointers which were identified for that safepoint.  We'll then
 | 
						|
  // ask liveness for _every_ base inserted to see what is now live.  Then we
 | 
						|
  // remove the dummy calls.
 | 
						|
  holders.reserve(holders.size() + records.size());
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    CallSite &CS = toUpdate[i];
 | 
						|
 | 
						|
    SmallVector<Value *, 128> Bases;
 | 
						|
    for (auto Pair : info.PointerToBase) {
 | 
						|
      Bases.push_back(Pair.second);
 | 
						|
    }
 | 
						|
    insertUseHolderAfter(CS, Bases, holders);
 | 
						|
  }
 | 
						|
 | 
						|
  // By selecting base pointers, we've effectively inserted new uses. Thus, we
 | 
						|
  // need to rerun liveness.  We may *also* have inserted new defs, but that's
 | 
						|
  // not the key issue.
 | 
						|
  recomputeLiveInValues(F, DT, P, toUpdate, records);
 | 
						|
 | 
						|
  if (PrintBasePointers) {
 | 
						|
    for (size_t i = 0; i < records.size(); i++) {
 | 
						|
      struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
      errs() << "Base Pairs: (w/Relocation)\n";
 | 
						|
      for (auto Pair : info.PointerToBase) {
 | 
						|
        errs() << " derived %" << Pair.first->getName() << " base %"
 | 
						|
               << Pair.second->getName() << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (size_t i = 0; i < holders.size(); i++) {
 | 
						|
    holders[i]->eraseFromParent();
 | 
						|
    holders[i] = nullptr;
 | 
						|
  }
 | 
						|
  holders.clear();
 | 
						|
 | 
						|
  // Now run through and replace the existing statepoints with new ones with
 | 
						|
  // the live variables listed.  We do not yet update uses of the values being
 | 
						|
  // relocated. We have references to live variables that need to
 | 
						|
  // survive to the last iteration of this loop.  (By construction, the
 | 
						|
  // previous statepoint can not be a live variable, thus we can and remove
 | 
						|
  // the old statepoint calls as we go.)
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    CallSite &CS = toUpdate[i];
 | 
						|
    makeStatepointExplicit(DT, CS, P, info);
 | 
						|
  }
 | 
						|
  toUpdate.clear(); // prevent accident use of invalid CallSites
 | 
						|
 | 
						|
  // Do all the fixups of the original live variables to their relocated selves
 | 
						|
  SmallVector<Value *, 128> live;
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    // We can't simply save the live set from the original insertion.  One of
 | 
						|
    // the live values might be the result of a call which needs a safepoint.
 | 
						|
    // That Value* no longer exists and we need to use the new gc_result.
 | 
						|
    // Thankfully, the liveset is embedded in the statepoint (and updated), so
 | 
						|
    // we just grab that.
 | 
						|
    Statepoint statepoint(info.StatepointToken);
 | 
						|
    live.insert(live.end(), statepoint.gc_args_begin(),
 | 
						|
                statepoint.gc_args_end());
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Do some basic sanity checks on our liveness results before performing
 | 
						|
    // relocation.  Relocation can and will turn mistakes in liveness results
 | 
						|
    // into non-sensical code which is must harder to debug.
 | 
						|
    // TODO: It would be nice to test consistency as well
 | 
						|
    assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
 | 
						|
           "statepoint must be reachable or liveness is meaningless");
 | 
						|
    for (Value *V : statepoint.gc_args()) {
 | 
						|
      if (!isa<Instruction>(V))
 | 
						|
        // Non-instruction values trivial dominate all possible uses
 | 
						|
        continue;
 | 
						|
      auto LiveInst = cast<Instruction>(V);
 | 
						|
      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
 | 
						|
             "unreachable values should never be live");
 | 
						|
      assert(DT.dominates(LiveInst, info.StatepointToken) &&
 | 
						|
             "basic SSA liveness expectation violated by liveness analysis");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  unique_unsorted(live);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // sanity check
 | 
						|
  for (auto ptr : live) {
 | 
						|
    assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  relocationViaAlloca(F, DT, live, records);
 | 
						|
  return !records.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if this function should be rewritten by this pass.  The main
 | 
						|
/// point of this function is as an extension point for custom logic.
 | 
						|
static bool shouldRewriteStatepointsIn(Function &F) {
 | 
						|
  // TODO: This should check the GCStrategy
 | 
						|
  if (F.hasGC()) {
 | 
						|
    const std::string StatepointExampleName("statepoint-example");
 | 
						|
    return StatepointExampleName == F.getGC();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool RewriteStatepointsForGC::runOnFunction(Function &F) {
 | 
						|
  // Nothing to do for declarations.
 | 
						|
  if (F.isDeclaration() || F.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Policy choice says not to rewrite - the most common reason is that we're
 | 
						|
  // compiling code without a GCStrategy.
 | 
						|
  if (!shouldRewriteStatepointsIn(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  // Gather all the statepoints which need rewritten.  Be careful to only
 | 
						|
  // consider those in reachable code since we need to ask dominance queries
 | 
						|
  // when rewriting.  We'll delete the unreachable ones in a moment.
 | 
						|
  SmallVector<CallSite, 64> ParsePointNeeded;
 | 
						|
  bool HasUnreachableStatepoint = false;
 | 
						|
  for (Instruction &I : inst_range(F)) {
 | 
						|
    // TODO: only the ones with the flag set!
 | 
						|
    if (isStatepoint(I)) {
 | 
						|
      if (DT.isReachableFromEntry(I.getParent()))
 | 
						|
        ParsePointNeeded.push_back(CallSite(&I));
 | 
						|
      else
 | 
						|
        HasUnreachableStatepoint = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Delete any unreachable statepoints so that we don't have unrewritten
 | 
						|
  // statepoints surviving this pass.  This makes testing easier and the
 | 
						|
  // resulting IR less confusing to human readers.  Rather than be fancy, we
 | 
						|
  // just reuse a utility function which removes the unreachable blocks.
 | 
						|
  if (HasUnreachableStatepoint)
 | 
						|
    MadeChange |= removeUnreachableBlocks(F);
 | 
						|
 | 
						|
  // Return early if no work to do.
 | 
						|
  if (ParsePointNeeded.empty())
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
 | 
						|
  // These are created by LCSSA.  They have the effect of increasing the size
 | 
						|
  // of liveness sets for no good reason.  It may be harder to do this post
 | 
						|
  // insertion since relocations and base phis can confuse things.
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    if (BB.getUniquePredecessor()) {
 | 
						|
      MadeChange = true;
 | 
						|
      FoldSingleEntryPHINodes(&BB);
 | 
						|
    }
 | 
						|
 | 
						|
  MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// liveness computation via standard dataflow
 | 
						|
// -------------------------------------------------------------------
 | 
						|
 | 
						|
// TODO: Consider using bitvectors for liveness, the set of potentially
 | 
						|
// interesting values should be small and easy to pre-compute.
 | 
						|
 | 
						|
/// Compute the live-in set for the location rbegin starting from
 | 
						|
/// the live-out set of the basic block
 | 
						|
static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
 | 
						|
                                BasicBlock::reverse_iterator rend,
 | 
						|
                                DenseSet<Value *> &LiveTmp) {
 | 
						|
 | 
						|
  for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
 | 
						|
    Instruction *I = &*ritr;
 | 
						|
 | 
						|
    // KILL/Def - Remove this definition from LiveIn
 | 
						|
    LiveTmp.erase(I);
 | 
						|
 | 
						|
    // Don't consider *uses* in PHI nodes, we handle their contribution to
 | 
						|
    // predecessor blocks when we seed the LiveOut sets
 | 
						|
    if (isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // USE - Add to the LiveIn set for this instruction
 | 
						|
    for (Value *V : I->operands()) {
 | 
						|
      assert(!isUnhandledGCPointerType(V->getType()) &&
 | 
						|
             "support for FCA unimplemented");
 | 
						|
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
 | 
						|
        // The choice to exclude all things constant here is slightly subtle.
 | 
						|
        // There are two idependent reasons:
 | 
						|
        // - We assume that things which are constant (from LLVM's definition)
 | 
						|
        // do not move at runtime.  For example, the address of a global
 | 
						|
        // variable is fixed, even though it's contents may not be.
 | 
						|
        // - Second, we can't disallow arbitrary inttoptr constants even
 | 
						|
        // if the language frontend does.  Optimization passes are free to
 | 
						|
        // locally exploit facts without respect to global reachability.  This
 | 
						|
        // can create sections of code which are dynamically unreachable and
 | 
						|
        // contain just about anything.  (see constants.ll in tests)
 | 
						|
        LiveTmp.insert(V);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
 | 
						|
 | 
						|
  for (BasicBlock *Succ : successors(BB)) {
 | 
						|
    const BasicBlock::iterator E(Succ->getFirstNonPHI());
 | 
						|
    for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
 | 
						|
      PHINode *Phi = cast<PHINode>(&*I);
 | 
						|
      Value *V = Phi->getIncomingValueForBlock(BB);
 | 
						|
      assert(!isUnhandledGCPointerType(V->getType()) &&
 | 
						|
             "support for FCA unimplemented");
 | 
						|
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
 | 
						|
        LiveTmp.insert(V);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
 | 
						|
  DenseSet<Value *> KillSet;
 | 
						|
  for (Instruction &I : *BB)
 | 
						|
    if (isHandledGCPointerType(I.getType()))
 | 
						|
      KillSet.insert(&I);
 | 
						|
  return KillSet;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
 | 
						|
/// sanity check for the liveness computation.
 | 
						|
static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
 | 
						|
                          TerminatorInst *TI, bool TermOkay = false) {
 | 
						|
  for (Value *V : Live) {
 | 
						|
    if (auto *I = dyn_cast<Instruction>(V)) {
 | 
						|
      // The terminator can be a member of the LiveOut set.  LLVM's definition
 | 
						|
      // of instruction dominance states that V does not dominate itself.  As
 | 
						|
      // such, we need to special case this to allow it.
 | 
						|
      if (TermOkay && TI == I)
 | 
						|
        continue;
 | 
						|
      assert(DT.dominates(I, TI) &&
 | 
						|
             "basic SSA liveness expectation violated by liveness analysis");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check that all the liveness sets used during the computation of liveness
 | 
						|
/// obey basic SSA properties.  This is useful for finding cases where we miss
 | 
						|
/// a def.
 | 
						|
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
 | 
						|
                          BasicBlock &BB) {
 | 
						|
  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
 | 
						|
  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
 | 
						|
  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void computeLiveInValues(DominatorTree &DT, Function &F,
 | 
						|
                                GCPtrLivenessData &Data) {
 | 
						|
 | 
						|
  SmallSetVector<BasicBlock *, 200> Worklist;
 | 
						|
  auto AddPredsToWorklist = [&](BasicBlock *BB) {
 | 
						|
    // We use a SetVector so that we don't have duplicates in the worklist.
 | 
						|
    Worklist.insert(pred_begin(BB), pred_end(BB));
 | 
						|
  };
 | 
						|
  auto NextItem = [&]() {
 | 
						|
    BasicBlock *BB = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
    return BB;
 | 
						|
  };
 | 
						|
 | 
						|
  // Seed the liveness for each individual block
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    Data.KillSet[&BB] = computeKillSet(&BB);
 | 
						|
    Data.LiveSet[&BB].clear();
 | 
						|
    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    for (Value *Kill : Data.KillSet[&BB])
 | 
						|
      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
 | 
						|
#endif
 | 
						|
 | 
						|
    Data.LiveOut[&BB] = DenseSet<Value *>();
 | 
						|
    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
 | 
						|
    Data.LiveIn[&BB] = Data.LiveSet[&BB];
 | 
						|
    set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
 | 
						|
    set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
 | 
						|
    if (!Data.LiveIn[&BB].empty())
 | 
						|
      AddPredsToWorklist(&BB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Propagate that liveness until stable
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    BasicBlock *BB = NextItem();
 | 
						|
 | 
						|
    // Compute our new liveout set, then exit early if it hasn't changed
 | 
						|
    // despite the contribution of our successor.
 | 
						|
    DenseSet<Value *> LiveOut = Data.LiveOut[BB];
 | 
						|
    const auto OldLiveOutSize = LiveOut.size();
 | 
						|
    for (BasicBlock *Succ : successors(BB)) {
 | 
						|
      assert(Data.LiveIn.count(Succ));
 | 
						|
      set_union(LiveOut, Data.LiveIn[Succ]);
 | 
						|
    }
 | 
						|
    // assert OutLiveOut is a subset of LiveOut
 | 
						|
    if (OldLiveOutSize == LiveOut.size()) {
 | 
						|
      // If the sets are the same size, then we didn't actually add anything
 | 
						|
      // when unioning our successors LiveIn  Thus, the LiveIn of this block
 | 
						|
      // hasn't changed.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    Data.LiveOut[BB] = LiveOut;
 | 
						|
 | 
						|
    // Apply the effects of this basic block
 | 
						|
    DenseSet<Value *> LiveTmp = LiveOut;
 | 
						|
    set_union(LiveTmp, Data.LiveSet[BB]);
 | 
						|
    set_subtract(LiveTmp, Data.KillSet[BB]);
 | 
						|
 | 
						|
    assert(Data.LiveIn.count(BB));
 | 
						|
    const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
 | 
						|
    // assert: OldLiveIn is a subset of LiveTmp
 | 
						|
    if (OldLiveIn.size() != LiveTmp.size()) {
 | 
						|
      Data.LiveIn[BB] = LiveTmp;
 | 
						|
      AddPredsToWorklist(BB);
 | 
						|
    }
 | 
						|
  } // while( !worklist.empty() )
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Sanity check our ouput against SSA properties.  This helps catch any
 | 
						|
  // missing kills during the above iteration.
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    checkBasicSSA(DT, Data, BB);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
 | 
						|
                              StatepointLiveSetTy &Out) {
 | 
						|
 | 
						|
  BasicBlock *BB = Inst->getParent();
 | 
						|
 | 
						|
  // Note: The copy is intentional and required
 | 
						|
  assert(Data.LiveOut.count(BB));
 | 
						|
  DenseSet<Value *> LiveOut = Data.LiveOut[BB];
 | 
						|
 | 
						|
  // We want to handle the statepoint itself oddly.  It's
 | 
						|
  // call result is not live (normal), nor are it's arguments
 | 
						|
  // (unless they're used again later).  This adjustment is
 | 
						|
  // specifically what we need to relocate
 | 
						|
  BasicBlock::reverse_iterator rend(Inst);
 | 
						|
  computeLiveInValues(BB->rbegin(), rend, LiveOut);
 | 
						|
  LiveOut.erase(Inst);
 | 
						|
  Out.insert(LiveOut.begin(), LiveOut.end());
 | 
						|
}
 | 
						|
 | 
						|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | 
						|
                                  const CallSite &CS,
 | 
						|
                                  PartiallyConstructedSafepointRecord &Info) {
 | 
						|
  Instruction *Inst = CS.getInstruction();
 | 
						|
  StatepointLiveSetTy Updated;
 | 
						|
  findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  DenseSet<Value *> Bases;
 | 
						|
  for (auto KVPair : Info.PointerToBase) {
 | 
						|
    Bases.insert(KVPair.second);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  // We may have base pointers which are now live that weren't before.  We need
 | 
						|
  // to update the PointerToBase structure to reflect this.
 | 
						|
  for (auto V : Updated)
 | 
						|
    if (!Info.PointerToBase.count(V)) {
 | 
						|
      assert(Bases.count(V) && "can't find base for unexpected live value");
 | 
						|
      Info.PointerToBase[V] = V;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (auto V : Updated) {
 | 
						|
    assert(Info.PointerToBase.count(V) &&
 | 
						|
           "must be able to find base for live value");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Remove any stale base mappings - this can happen since our liveness is
 | 
						|
  // more precise then the one inherent in the base pointer analysis
 | 
						|
  DenseSet<Value *> ToErase;
 | 
						|
  for (auto KVPair : Info.PointerToBase)
 | 
						|
    if (!Updated.count(KVPair.first))
 | 
						|
      ToErase.insert(KVPair.first);
 | 
						|
  for (auto V : ToErase)
 | 
						|
    Info.PointerToBase.erase(V);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (auto KVPair : Info.PointerToBase)
 | 
						|
    assert(Updated.count(KVPair.first) && "record for non-live value");
 | 
						|
#endif
 | 
						|
 | 
						|
  Info.liveset = Updated;
 | 
						|
}
 |