mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Maybe there is a better wording, but at least it should be technically correct now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235660 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1051 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1051 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Loop unrolling may create many similar GEPs for array accesses.
 | 
						|
// e.g., a 2-level loop
 | 
						|
//
 | 
						|
// float a[32][32]; // global variable
 | 
						|
//
 | 
						|
// for (int i = 0; i < 2; ++i) {
 | 
						|
//   for (int j = 0; j < 2; ++j) {
 | 
						|
//     ...
 | 
						|
//     ... = a[x + i][y + j];
 | 
						|
//     ...
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// will probably be unrolled to:
 | 
						|
//
 | 
						|
// gep %a, 0, %x, %y; load
 | 
						|
// gep %a, 0, %x, %y + 1; load
 | 
						|
// gep %a, 0, %x + 1, %y; load
 | 
						|
// gep %a, 0, %x + 1, %y + 1; load
 | 
						|
//
 | 
						|
// LLVM's GVN does not use partial redundancy elimination yet, and is thus
 | 
						|
// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
 | 
						|
// significant slowdown in targets with limited addressing modes. For instance,
 | 
						|
// because the PTX target does not support the reg+reg addressing mode, the
 | 
						|
// NVPTX backend emits PTX code that literally computes the pointer address of
 | 
						|
// each GEP, wasting tons of registers. It emits the following PTX for the
 | 
						|
// first load and similar PTX for other loads.
 | 
						|
//
 | 
						|
// mov.u32         %r1, %x;
 | 
						|
// mov.u32         %r2, %y;
 | 
						|
// mul.wide.u32    %rl2, %r1, 128;
 | 
						|
// mov.u64         %rl3, a;
 | 
						|
// add.s64         %rl4, %rl3, %rl2;
 | 
						|
// mul.wide.u32    %rl5, %r2, 4;
 | 
						|
// add.s64         %rl6, %rl4, %rl5;
 | 
						|
// ld.global.f32   %f1, [%rl6];
 | 
						|
//
 | 
						|
// To reduce the register pressure, the optimization implemented in this file
 | 
						|
// merges the common part of a group of GEPs, so we can compute each pointer
 | 
						|
// address by adding a simple offset to the common part, saving many registers.
 | 
						|
//
 | 
						|
// It works by splitting each GEP into a variadic base and a constant offset.
 | 
						|
// The variadic base can be computed once and reused by multiple GEPs, and the
 | 
						|
// constant offsets can be nicely folded into the reg+immediate addressing mode
 | 
						|
// (supported by most targets) without using any extra register.
 | 
						|
//
 | 
						|
// For instance, we transform the four GEPs and four loads in the above example
 | 
						|
// into:
 | 
						|
//
 | 
						|
// base = gep a, 0, x, y
 | 
						|
// load base
 | 
						|
// laod base + 1  * sizeof(float)
 | 
						|
// load base + 32 * sizeof(float)
 | 
						|
// load base + 33 * sizeof(float)
 | 
						|
//
 | 
						|
// Given the transformed IR, a backend that supports the reg+immediate
 | 
						|
// addressing mode can easily fold the pointer arithmetics into the loads. For
 | 
						|
// example, the NVPTX backend can easily fold the pointer arithmetics into the
 | 
						|
// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
 | 
						|
//
 | 
						|
// mov.u32         %r1, %tid.x;
 | 
						|
// mov.u32         %r2, %tid.y;
 | 
						|
// mul.wide.u32    %rl2, %r1, 128;
 | 
						|
// mov.u64         %rl3, a;
 | 
						|
// add.s64         %rl4, %rl3, %rl2;
 | 
						|
// mul.wide.u32    %rl5, %r2, 4;
 | 
						|
// add.s64         %rl6, %rl4, %rl5;
 | 
						|
// ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
 | 
						|
// ld.global.f32   %f2, [%rl6+4]; // much better
 | 
						|
// ld.global.f32   %f3, [%rl6+128]; // much better
 | 
						|
// ld.global.f32   %f4, [%rl6+132]; // much better
 | 
						|
//
 | 
						|
// Another improvement enabled by the LowerGEP flag is to lower a GEP with
 | 
						|
// multiple indices to either multiple GEPs with a single index or arithmetic
 | 
						|
// operations (depending on whether the target uses alias analysis in codegen).
 | 
						|
// Such transformation can have following benefits:
 | 
						|
// (1) It can always extract constants in the indices of structure type.
 | 
						|
// (2) After such Lowering, there are more optimization opportunities such as
 | 
						|
//     CSE, LICM and CGP.
 | 
						|
//
 | 
						|
// E.g. The following GEPs have multiple indices:
 | 
						|
//  BB1:
 | 
						|
//    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
 | 
						|
//    load %p
 | 
						|
//    ...
 | 
						|
//  BB2:
 | 
						|
//    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
 | 
						|
//    load %p2
 | 
						|
//    ...
 | 
						|
//
 | 
						|
// We can not do CSE for to the common part related to index "i64 %i". Lowering
 | 
						|
// GEPs can achieve such goals.
 | 
						|
// If the target does not use alias analysis in codegen, this pass will
 | 
						|
// lower a GEP with multiple indices into arithmetic operations:
 | 
						|
//  BB1:
 | 
						|
//    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
 | 
						|
//    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
 | 
						|
//    %3 = add i64 %1, %2                          ; CSE opportunity
 | 
						|
//    %4 = mul i64 %j1, length_of_struct
 | 
						|
//    %5 = add i64 %3, %4
 | 
						|
//    %6 = add i64 %3, struct_field_3              ; Constant offset
 | 
						|
//    %p = inttoptr i64 %6 to i32*
 | 
						|
//    load %p
 | 
						|
//    ...
 | 
						|
//  BB2:
 | 
						|
//    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
 | 
						|
//    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
 | 
						|
//    %9 = add i64 %7, %8                          ; CSE opportunity
 | 
						|
//    %10 = mul i64 %j2, length_of_struct
 | 
						|
//    %11 = add i64 %9, %10
 | 
						|
//    %12 = add i64 %11, struct_field_2            ; Constant offset
 | 
						|
//    %p = inttoptr i64 %12 to i32*
 | 
						|
//    load %p2
 | 
						|
//    ...
 | 
						|
//
 | 
						|
// If the target uses alias analysis in codegen, this pass will lower a GEP
 | 
						|
// with multiple indices into multiple GEPs with a single index:
 | 
						|
//  BB1:
 | 
						|
//    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
 | 
						|
//    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
 | 
						|
//    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
 | 
						|
//    %4 = mul i64 %j1, length_of_struct
 | 
						|
//    %5 = getelementptr i8* %3, i64 %4
 | 
						|
//    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
 | 
						|
//    %p = bitcast i8* %6 to i32*
 | 
						|
//    load %p
 | 
						|
//    ...
 | 
						|
//  BB2:
 | 
						|
//    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
 | 
						|
//    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
 | 
						|
//    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
 | 
						|
//    %10 = mul i64 %j2, length_of_struct
 | 
						|
//    %11 = getelementptr i8* %9, i64 %10
 | 
						|
//    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
 | 
						|
//    %p2 = bitcast i8* %12 to i32*
 | 
						|
//    load %p2
 | 
						|
//    ...
 | 
						|
//
 | 
						|
// Lowering GEPs can also benefit other passes such as LICM and CGP.
 | 
						|
// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
 | 
						|
// indices if one of the index is variant. If we lower such GEP into invariant
 | 
						|
// parts and variant parts, LICM can hoist/sink those invariant parts.
 | 
						|
// CGP (CodeGen Prepare) tries to sink address calculations that match the
 | 
						|
// target's addressing modes. A GEP with multiple indices may not match and will
 | 
						|
// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
 | 
						|
// them. So we end up with a better addressing mode.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
 | 
						|
    "disable-separate-const-offset-from-gep", cl::init(false),
 | 
						|
    cl::desc("Do not separate the constant offset from a GEP instruction"),
 | 
						|
    cl::Hidden);
 | 
						|
// Setting this flag may emit false positives when the input module already
 | 
						|
// contains dead instructions. Therefore, we set it only in unit tests that are
 | 
						|
// free of dead code.
 | 
						|
static cl::opt<bool>
 | 
						|
    VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
 | 
						|
                     cl::desc("Verify this pass produces no dead code"),
 | 
						|
                     cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief A helper class for separating a constant offset from a GEP index.
 | 
						|
///
 | 
						|
/// In real programs, a GEP index may be more complicated than a simple addition
 | 
						|
/// of something and a constant integer which can be trivially splitted. For
 | 
						|
/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
 | 
						|
/// constant offset, so that we can separate the index to (a << 3) + b and 5.
 | 
						|
///
 | 
						|
/// Therefore, this class looks into the expression that computes a given GEP
 | 
						|
/// index, and tries to find a constant integer that can be hoisted to the
 | 
						|
/// outermost level of the expression as an addition. Not every constant in an
 | 
						|
/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
 | 
						|
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
 | 
						|
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
 | 
						|
class ConstantOffsetExtractor {
 | 
						|
 public:
 | 
						|
  /// Extracts a constant offset from the given GEP index. It returns the
 | 
						|
  /// new index representing the remainder (equal to the original index minus
 | 
						|
  /// the constant offset), or nullptr if we cannot extract a constant offset.
 | 
						|
  /// \p Idx The given GEP index
 | 
						|
  /// \p GEP The given GEP
 | 
						|
  /// \p UserChainTail Outputs the tail of UserChain so that we can
 | 
						|
  ///                  garbage-collect unused instructions in UserChain.
 | 
						|
   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
 | 
						|
                         User *&UserChainTail);
 | 
						|
  /// Looks for a constant offset from the given GEP index without extracting
 | 
						|
  /// it. It returns the numeric value of the extracted constant offset (0 if
 | 
						|
  /// failed). The meaning of the arguments are the same as Extract.
 | 
						|
   static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
 | 
						|
 | 
						|
 private:
 | 
						|
   ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
 | 
						|
  /// Searches the expression that computes V for a non-zero constant C s.t.
 | 
						|
  /// V can be reassociated into the form V' + C. If the searching is
 | 
						|
  /// successful, returns C and update UserChain as a def-use chain from C to V;
 | 
						|
  /// otherwise, UserChain is empty.
 | 
						|
  ///
 | 
						|
  /// \p V            The given expression
 | 
						|
  /// \p SignExtended Whether V will be sign-extended in the computation of the
 | 
						|
  ///                 GEP index
 | 
						|
  /// \p ZeroExtended Whether V will be zero-extended in the computation of the
 | 
						|
  ///                 GEP index
 | 
						|
  /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
 | 
						|
  ///                 an index of an inbounds GEP is guaranteed to be
 | 
						|
  ///                 non-negative. Levaraging this, we can better split
 | 
						|
  ///                 inbounds GEPs.
 | 
						|
  APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
 | 
						|
  /// A helper function to look into both operands of a binary operator.
 | 
						|
  APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
 | 
						|
                            bool ZeroExtended);
 | 
						|
  /// After finding the constant offset C from the GEP index I, we build a new
 | 
						|
  /// index I' s.t. I' + C = I. This function builds and returns the new
 | 
						|
  /// index I' according to UserChain produced by function "find".
 | 
						|
  ///
 | 
						|
  /// The building conceptually takes two steps:
 | 
						|
  /// 1) iteratively distribute s/zext towards the leaves of the expression tree
 | 
						|
  /// that computes I
 | 
						|
  /// 2) reassociate the expression tree to the form I' + C.
 | 
						|
  ///
 | 
						|
  /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
 | 
						|
  /// sext to a, b and 5 so that we have
 | 
						|
  ///   sext(a) + (sext(b) + 5).
 | 
						|
  /// Then, we reassociate it to
 | 
						|
  ///   (sext(a) + sext(b)) + 5.
 | 
						|
  /// Given this form, we know I' is sext(a) + sext(b).
 | 
						|
  Value *rebuildWithoutConstOffset();
 | 
						|
  /// After the first step of rebuilding the GEP index without the constant
 | 
						|
  /// offset, distribute s/zext to the operands of all operators in UserChain.
 | 
						|
  /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
 | 
						|
  /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
 | 
						|
  ///
 | 
						|
  /// The function also updates UserChain to point to new subexpressions after
 | 
						|
  /// distributing s/zext. e.g., the old UserChain of the above example is
 | 
						|
  /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
 | 
						|
  /// and the new UserChain is
 | 
						|
  /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
 | 
						|
  ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
 | 
						|
  ///
 | 
						|
  /// \p ChainIndex The index to UserChain. ChainIndex is initially
 | 
						|
  ///               UserChain.size() - 1, and is decremented during
 | 
						|
  ///               the recursion.
 | 
						|
  Value *distributeExtsAndCloneChain(unsigned ChainIndex);
 | 
						|
  /// Reassociates the GEP index to the form I' + C and returns I'.
 | 
						|
  Value *removeConstOffset(unsigned ChainIndex);
 | 
						|
  /// A helper function to apply ExtInsts, a list of s/zext, to value V.
 | 
						|
  /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
 | 
						|
  /// returns "sext i32 (zext i16 V to i32) to i64".
 | 
						|
  Value *applyExts(Value *V);
 | 
						|
 | 
						|
  /// Returns true if LHS and RHS have no bits in common, i.e., for every n
 | 
						|
  /// the n-th bit of either LHS, or RHS is 0.
 | 
						|
  bool NoCommonBits(Value *LHS, Value *RHS) const;
 | 
						|
  /// Computes which bits are known to be one or zero.
 | 
						|
  /// \p KnownOne Mask of all bits that are known to be one.
 | 
						|
  /// \p KnownZero Mask of all bits that are known to be zero.
 | 
						|
  void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
 | 
						|
  /// A helper function that returns whether we can trace into the operands
 | 
						|
  /// of binary operator BO for a constant offset.
 | 
						|
  ///
 | 
						|
  /// \p SignExtended Whether BO is surrounded by sext
 | 
						|
  /// \p ZeroExtended Whether BO is surrounded by zext
 | 
						|
  /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
 | 
						|
  ///                array index.
 | 
						|
  bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
 | 
						|
                    bool NonNegative);
 | 
						|
 | 
						|
  /// The path from the constant offset to the old GEP index. e.g., if the GEP
 | 
						|
  /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
 | 
						|
  /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
 | 
						|
  /// UserChain[2] will be the entire expression "a * b + (c + 5)".
 | 
						|
  ///
 | 
						|
  /// This path helps to rebuild the new GEP index.
 | 
						|
  SmallVector<User *, 8> UserChain;
 | 
						|
  /// A data structure used in rebuildWithoutConstOffset. Contains all
 | 
						|
  /// sext/zext instructions along UserChain.
 | 
						|
  SmallVector<CastInst *, 16> ExtInsts;
 | 
						|
  Instruction *IP;  /// Insertion position of cloned instructions.
 | 
						|
};
 | 
						|
 | 
						|
/// \brief A pass that tries to split every GEP in the function into a variadic
 | 
						|
/// base and a constant offset. It is a FunctionPass because searching for the
 | 
						|
/// constant offset may inspect other basic blocks.
 | 
						|
class SeparateConstOffsetFromGEP : public FunctionPass {
 | 
						|
 public:
 | 
						|
  static char ID;
 | 
						|
  SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
 | 
						|
                             bool LowerGEP = false)
 | 
						|
      : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
 | 
						|
    initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
 private:
 | 
						|
  /// Tries to split the given GEP into a variadic base and a constant offset,
 | 
						|
  /// and returns true if the splitting succeeds.
 | 
						|
  bool splitGEP(GetElementPtrInst *GEP);
 | 
						|
  /// Lower a GEP with multiple indices into multiple GEPs with a single index.
 | 
						|
  /// Function splitGEP already split the original GEP into a variadic part and
 | 
						|
  /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
 | 
						|
  /// variadic part into a set of GEPs with a single index and applies
 | 
						|
  /// AccumulativeByteOffset to it.
 | 
						|
  /// \p Variadic                  The variadic part of the original GEP.
 | 
						|
  /// \p AccumulativeByteOffset    The constant offset.
 | 
						|
  void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
 | 
						|
                              int64_t AccumulativeByteOffset);
 | 
						|
  /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
 | 
						|
  /// Function splitGEP already split the original GEP into a variadic part and
 | 
						|
  /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
 | 
						|
  /// variadic part into a set of arithmetic operations and applies
 | 
						|
  /// AccumulativeByteOffset to it.
 | 
						|
  /// \p Variadic                  The variadic part of the original GEP.
 | 
						|
  /// \p AccumulativeByteOffset    The constant offset.
 | 
						|
  void lowerToArithmetics(GetElementPtrInst *Variadic,
 | 
						|
                          int64_t AccumulativeByteOffset);
 | 
						|
  /// Finds the constant offset within each index and accumulates them. If
 | 
						|
  /// LowerGEP is true, it finds in indices of both sequential and structure
 | 
						|
  /// types, otherwise it only finds in sequential indices. The output
 | 
						|
  /// NeedsExtraction indicates whether we successfully find a non-zero constant
 | 
						|
  /// offset.
 | 
						|
  int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
 | 
						|
  /// Canonicalize array indices to pointer-size integers. This helps to
 | 
						|
  /// simplify the logic of splitting a GEP. For example, if a + b is a
 | 
						|
  /// pointer-size integer, we have
 | 
						|
  ///   gep base, a + b = gep (gep base, a), b
 | 
						|
  /// However, this equality may not hold if the size of a + b is smaller than
 | 
						|
  /// the pointer size, because LLVM conceptually sign-extends GEP indices to
 | 
						|
  /// pointer size before computing the address
 | 
						|
  /// (http://llvm.org/docs/LangRef.html#id181).
 | 
						|
  ///
 | 
						|
  /// This canonicalization is very likely already done in clang and
 | 
						|
  /// instcombine. Therefore, the program will probably remain the same.
 | 
						|
  ///
 | 
						|
  /// Returns true if the module changes.
 | 
						|
  ///
 | 
						|
  /// Verified in @i32_add in split-gep.ll
 | 
						|
  bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
 | 
						|
  /// Verify F is free of dead code.
 | 
						|
  void verifyNoDeadCode(Function &F);
 | 
						|
 | 
						|
  const TargetMachine *TM;
 | 
						|
  /// Whether to lower a GEP with multiple indices into arithmetic operations or
 | 
						|
  /// multiple GEPs with a single index.
 | 
						|
  bool LowerGEP;
 | 
						|
};
 | 
						|
}  // anonymous namespace
 | 
						|
 | 
						|
char SeparateConstOffsetFromGEP::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(
 | 
						|
    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
 | 
						|
    "Split GEPs to a variadic base and a constant offset for better CSE", false,
 | 
						|
    false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(
 | 
						|
    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
 | 
						|
    "Split GEPs to a variadic base and a constant offset for better CSE", false,
 | 
						|
    false)
 | 
						|
 | 
						|
FunctionPass *
 | 
						|
llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
 | 
						|
                                           bool LowerGEP) {
 | 
						|
  return new SeparateConstOffsetFromGEP(TM, LowerGEP);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
 | 
						|
                                            bool ZeroExtended,
 | 
						|
                                            BinaryOperator *BO,
 | 
						|
                                            bool NonNegative) {
 | 
						|
  // We only consider ADD, SUB and OR, because a non-zero constant found in
 | 
						|
  // expressions composed of these operations can be easily hoisted as a
 | 
						|
  // constant offset by reassociation.
 | 
						|
  if (BO->getOpcode() != Instruction::Add &&
 | 
						|
      BO->getOpcode() != Instruction::Sub &&
 | 
						|
      BO->getOpcode() != Instruction::Or) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
 | 
						|
  // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
 | 
						|
  // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
 | 
						|
  if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In addition, tracing into BO requires that its surrounding s/zext (if
 | 
						|
  // any) is distributable to both operands.
 | 
						|
  //
 | 
						|
  // Suppose BO = A op B.
 | 
						|
  //  SignExtended | ZeroExtended | Distributable?
 | 
						|
  // --------------+--------------+----------------------------------
 | 
						|
  //       0       |      0       | true because no s/zext exists
 | 
						|
  //       0       |      1       | zext(BO) == zext(A) op zext(B)
 | 
						|
  //       1       |      0       | sext(BO) == sext(A) op sext(B)
 | 
						|
  //       1       |      1       | zext(sext(BO)) ==
 | 
						|
  //               |              |     zext(sext(A)) op zext(sext(B))
 | 
						|
  if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
 | 
						|
    // If a + b >= 0 and (a >= 0 or b >= 0), then
 | 
						|
    //   sext(a + b) = sext(a) + sext(b)
 | 
						|
    // even if the addition is not marked nsw.
 | 
						|
    //
 | 
						|
    // Leveraging this invarient, we can trace into an sext'ed inbound GEP
 | 
						|
    // index if the constant offset is non-negative.
 | 
						|
    //
 | 
						|
    // Verified in @sext_add in split-gep.ll.
 | 
						|
    if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
 | 
						|
      if (!ConstLHS->isNegative())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
      if (!ConstRHS->isNegative())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
 | 
						|
  // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
 | 
						|
  if (BO->getOpcode() == Instruction::Add ||
 | 
						|
      BO->getOpcode() == Instruction::Sub) {
 | 
						|
    if (SignExtended && !BO->hasNoSignedWrap())
 | 
						|
      return false;
 | 
						|
    if (ZeroExtended && !BO->hasNoUnsignedWrap())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
 | 
						|
                                                   bool SignExtended,
 | 
						|
                                                   bool ZeroExtended) {
 | 
						|
  // BO being non-negative does not shed light on whether its operands are
 | 
						|
  // non-negative. Clear the NonNegative flag here.
 | 
						|
  APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
 | 
						|
                              /* NonNegative */ false);
 | 
						|
  // If we found a constant offset in the left operand, stop and return that.
 | 
						|
  // This shortcut might cause us to miss opportunities of combining the
 | 
						|
  // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
 | 
						|
  // However, such cases are probably already handled by -instcombine,
 | 
						|
  // given this pass runs after the standard optimizations.
 | 
						|
  if (ConstantOffset != 0) return ConstantOffset;
 | 
						|
  ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
 | 
						|
                        /* NonNegative */ false);
 | 
						|
  // If U is a sub operator, negate the constant offset found in the right
 | 
						|
  // operand.
 | 
						|
  if (BO->getOpcode() == Instruction::Sub)
 | 
						|
    ConstantOffset = -ConstantOffset;
 | 
						|
  return ConstantOffset;
 | 
						|
}
 | 
						|
 | 
						|
APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
 | 
						|
                                    bool ZeroExtended, bool NonNegative) {
 | 
						|
  // TODO(jingyue): We could trace into integer/pointer casts, such as
 | 
						|
  // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
 | 
						|
  // integers because it gives good enough results for our benchmarks.
 | 
						|
  unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | 
						|
 | 
						|
  // We cannot do much with Values that are not a User, such as an Argument.
 | 
						|
  User *U = dyn_cast<User>(V);
 | 
						|
  if (U == nullptr) return APInt(BitWidth, 0);
 | 
						|
 | 
						|
  APInt ConstantOffset(BitWidth, 0);
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    // Hooray, we found it!
 | 
						|
    ConstantOffset = CI->getValue();
 | 
						|
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
 | 
						|
    // Trace into subexpressions for more hoisting opportunities.
 | 
						|
    if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
 | 
						|
      ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
 | 
						|
    }
 | 
						|
  } else if (isa<SExtInst>(V)) {
 | 
						|
    ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
 | 
						|
                          ZeroExtended, NonNegative).sext(BitWidth);
 | 
						|
  } else if (isa<ZExtInst>(V)) {
 | 
						|
    // As an optimization, we can clear the SignExtended flag because
 | 
						|
    // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
 | 
						|
    //
 | 
						|
    // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
 | 
						|
    ConstantOffset =
 | 
						|
        find(U->getOperand(0), /* SignExtended */ false,
 | 
						|
             /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found a non-zero constant offset, add it to the path for
 | 
						|
  // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
 | 
						|
  // help this optimization.
 | 
						|
  if (ConstantOffset != 0)
 | 
						|
    UserChain.push_back(U);
 | 
						|
  return ConstantOffset;
 | 
						|
}
 | 
						|
 | 
						|
Value *ConstantOffsetExtractor::applyExts(Value *V) {
 | 
						|
  Value *Current = V;
 | 
						|
  // ExtInsts is built in the use-def order. Therefore, we apply them to V
 | 
						|
  // in the reversed order.
 | 
						|
  for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
 | 
						|
    if (Constant *C = dyn_cast<Constant>(Current)) {
 | 
						|
      // If Current is a constant, apply s/zext using ConstantExpr::getCast.
 | 
						|
      // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
 | 
						|
      Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
 | 
						|
    } else {
 | 
						|
      Instruction *Ext = (*I)->clone();
 | 
						|
      Ext->setOperand(0, Current);
 | 
						|
      Ext->insertBefore(IP);
 | 
						|
      Current = Ext;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Current;
 | 
						|
}
 | 
						|
 | 
						|
Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
 | 
						|
  distributeExtsAndCloneChain(UserChain.size() - 1);
 | 
						|
  // Remove all nullptrs (used to be s/zext) from UserChain.
 | 
						|
  unsigned NewSize = 0;
 | 
						|
  for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
 | 
						|
    if (*I != nullptr) {
 | 
						|
      UserChain[NewSize] = *I;
 | 
						|
      NewSize++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  UserChain.resize(NewSize);
 | 
						|
  return removeConstOffset(UserChain.size() - 1);
 | 
						|
}
 | 
						|
 | 
						|
Value *
 | 
						|
ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
 | 
						|
  User *U = UserChain[ChainIndex];
 | 
						|
  if (ChainIndex == 0) {
 | 
						|
    assert(isa<ConstantInt>(U));
 | 
						|
    // If U is a ConstantInt, applyExts will return a ConstantInt as well.
 | 
						|
    return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *Cast = dyn_cast<CastInst>(U)) {
 | 
						|
    assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
 | 
						|
           "We only traced into two types of CastInst: sext and zext");
 | 
						|
    ExtInsts.push_back(Cast);
 | 
						|
    UserChain[ChainIndex] = nullptr;
 | 
						|
    return distributeExtsAndCloneChain(ChainIndex - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Function find only trace into BinaryOperator and CastInst.
 | 
						|
  BinaryOperator *BO = cast<BinaryOperator>(U);
 | 
						|
  // OpNo = which operand of BO is UserChain[ChainIndex - 1]
 | 
						|
  unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
 | 
						|
  Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
 | 
						|
  Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
 | 
						|
 | 
						|
  BinaryOperator *NewBO = nullptr;
 | 
						|
  if (OpNo == 0) {
 | 
						|
    NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
 | 
						|
                                   BO->getName(), IP);
 | 
						|
  } else {
 | 
						|
    NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
 | 
						|
                                   BO->getName(), IP);
 | 
						|
  }
 | 
						|
  return UserChain[ChainIndex] = NewBO;
 | 
						|
}
 | 
						|
 | 
						|
Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
 | 
						|
  if (ChainIndex == 0) {
 | 
						|
    assert(isa<ConstantInt>(UserChain[ChainIndex]));
 | 
						|
    return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
 | 
						|
  assert(BO->getNumUses() <= 1 &&
 | 
						|
         "distributeExtsAndCloneChain clones each BinaryOperator in "
 | 
						|
         "UserChain, so no one should be used more than "
 | 
						|
         "once");
 | 
						|
 | 
						|
  unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
 | 
						|
  assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
 | 
						|
  Value *NextInChain = removeConstOffset(ChainIndex - 1);
 | 
						|
  Value *TheOther = BO->getOperand(1 - OpNo);
 | 
						|
 | 
						|
  // If NextInChain is 0 and not the LHS of a sub, we can simplify the
 | 
						|
  // sub-expression to be just TheOther.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
 | 
						|
    if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
 | 
						|
      return TheOther;
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator::BinaryOps NewOp = BO->getOpcode();
 | 
						|
  if (BO->getOpcode() == Instruction::Or) {
 | 
						|
    // Rebuild "or" as "add", because "or" may be invalid for the new
 | 
						|
    // epxression.
 | 
						|
    //
 | 
						|
    // For instance, given
 | 
						|
    //   a | (b + 5) where a and b + 5 have no common bits,
 | 
						|
    // we can extract 5 as the constant offset.
 | 
						|
    //
 | 
						|
    // However, reusing the "or" in the new index would give us
 | 
						|
    //   (a | b) + 5
 | 
						|
    // which does not equal a | (b + 5).
 | 
						|
    //
 | 
						|
    // Replacing the "or" with "add" is fine, because
 | 
						|
    //   a | (b + 5) = a + (b + 5) = (a + b) + 5
 | 
						|
    NewOp = Instruction::Add;
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *NewBO;
 | 
						|
  if (OpNo == 0) {
 | 
						|
    NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
 | 
						|
  } else {
 | 
						|
    NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
 | 
						|
  }
 | 
						|
  NewBO->takeName(BO);
 | 
						|
  return NewBO;
 | 
						|
}
 | 
						|
 | 
						|
Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
 | 
						|
                                        User *&UserChainTail) {
 | 
						|
  ConstantOffsetExtractor Extractor(GEP);
 | 
						|
  // Find a non-zero constant offset first.
 | 
						|
  APInt ConstantOffset =
 | 
						|
      Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
 | 
						|
                     GEP->isInBounds());
 | 
						|
  if (ConstantOffset == 0) {
 | 
						|
    UserChainTail = nullptr;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  // Separates the constant offset from the GEP index.
 | 
						|
  Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
 | 
						|
  UserChainTail = Extractor.UserChain.back();
 | 
						|
  return IdxWithoutConstOffset;
 | 
						|
}
 | 
						|
 | 
						|
int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
 | 
						|
  // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
 | 
						|
  return ConstantOffsetExtractor(GEP)
 | 
						|
      .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
 | 
						|
            GEP->isInBounds())
 | 
						|
      .getSExtValue();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
 | 
						|
                                               APInt &KnownZero) const {
 | 
						|
  IntegerType *IT = cast<IntegerType>(V->getType());
 | 
						|
  KnownOne = APInt(IT->getBitWidth(), 0);
 | 
						|
  KnownZero = APInt(IT->getBitWidth(), 0);
 | 
						|
  const DataLayout &DL = IP->getModule()->getDataLayout();
 | 
						|
  llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
 | 
						|
  assert(LHS->getType() == RHS->getType() &&
 | 
						|
         "LHS and RHS should have the same type");
 | 
						|
  APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
 | 
						|
  ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
 | 
						|
  ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
 | 
						|
  return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
 | 
						|
}
 | 
						|
 | 
						|
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
 | 
						|
    GetElementPtrInst *GEP) {
 | 
						|
  bool Changed = false;
 | 
						|
  const DataLayout &DL = GEP->getModule()->getDataLayout();
 | 
						|
  Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
 | 
						|
  gep_type_iterator GTI = gep_type_begin(*GEP);
 | 
						|
  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
 | 
						|
       I != E; ++I, ++GTI) {
 | 
						|
    // Skip struct member indices which must be i32.
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      if ((*I)->getType() != IntPtrTy) {
 | 
						|
        *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
int64_t
 | 
						|
SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
 | 
						|
                                                 bool &NeedsExtraction) {
 | 
						|
  NeedsExtraction = false;
 | 
						|
  int64_t AccumulativeByteOffset = 0;
 | 
						|
  gep_type_iterator GTI = gep_type_begin(*GEP);
 | 
						|
  const DataLayout &DL = GEP->getModule()->getDataLayout();
 | 
						|
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      // Tries to extract a constant offset from this GEP index.
 | 
						|
      int64_t ConstantOffset =
 | 
						|
          ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
 | 
						|
      if (ConstantOffset != 0) {
 | 
						|
        NeedsExtraction = true;
 | 
						|
        // A GEP may have multiple indices.  We accumulate the extracted
 | 
						|
        // constant offset to a byte offset, and later offset the remainder of
 | 
						|
        // the original GEP with this byte offset.
 | 
						|
        AccumulativeByteOffset +=
 | 
						|
            ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
      }
 | 
						|
    } else if (LowerGEP) {
 | 
						|
      StructType *StTy = cast<StructType>(*GTI);
 | 
						|
      uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
 | 
						|
      // Skip field 0 as the offset is always 0.
 | 
						|
      if (Field != 0) {
 | 
						|
        NeedsExtraction = true;
 | 
						|
        AccumulativeByteOffset +=
 | 
						|
            DL.getStructLayout(StTy)->getElementOffset(Field);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return AccumulativeByteOffset;
 | 
						|
}
 | 
						|
 | 
						|
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
 | 
						|
    GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
 | 
						|
  IRBuilder<> Builder(Variadic);
 | 
						|
  const DataLayout &DL = Variadic->getModule()->getDataLayout();
 | 
						|
  Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
 | 
						|
 | 
						|
  Type *I8PtrTy =
 | 
						|
      Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
 | 
						|
  Value *ResultPtr = Variadic->getOperand(0);
 | 
						|
  if (ResultPtr->getType() != I8PtrTy)
 | 
						|
    ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
 | 
						|
 | 
						|
  gep_type_iterator GTI = gep_type_begin(*Variadic);
 | 
						|
  // Create an ugly GEP for each sequential index. We don't create GEPs for
 | 
						|
  // structure indices, as they are accumulated in the constant offset index.
 | 
						|
  for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      Value *Idx = Variadic->getOperand(I);
 | 
						|
      // Skip zero indices.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
 | 
						|
        if (CI->isZero())
 | 
						|
          continue;
 | 
						|
 | 
						|
      APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
 | 
						|
                                DL.getTypeAllocSize(GTI.getIndexedType()));
 | 
						|
      // Scale the index by element size.
 | 
						|
      if (ElementSize != 1) {
 | 
						|
        if (ElementSize.isPowerOf2()) {
 | 
						|
          Idx = Builder.CreateShl(
 | 
						|
              Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
 | 
						|
        } else {
 | 
						|
          Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Create an ugly GEP with a single index for each index.
 | 
						|
      ResultPtr =
 | 
						|
          Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a GEP with the constant offset index.
 | 
						|
  if (AccumulativeByteOffset != 0) {
 | 
						|
    Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
 | 
						|
    ResultPtr =
 | 
						|
        Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
 | 
						|
  }
 | 
						|
  if (ResultPtr->getType() != Variadic->getType())
 | 
						|
    ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
 | 
						|
 | 
						|
  Variadic->replaceAllUsesWith(ResultPtr);
 | 
						|
  Variadic->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
 | 
						|
                                               int64_t AccumulativeByteOffset) {
 | 
						|
  IRBuilder<> Builder(Variadic);
 | 
						|
  const DataLayout &DL = Variadic->getModule()->getDataLayout();
 | 
						|
  Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
 | 
						|
 | 
						|
  Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
 | 
						|
  gep_type_iterator GTI = gep_type_begin(*Variadic);
 | 
						|
  // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
 | 
						|
  // don't create arithmetics for structure indices, as they are accumulated
 | 
						|
  // in the constant offset index.
 | 
						|
  for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      Value *Idx = Variadic->getOperand(I);
 | 
						|
      // Skip zero indices.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
 | 
						|
        if (CI->isZero())
 | 
						|
          continue;
 | 
						|
 | 
						|
      APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
 | 
						|
                                DL.getTypeAllocSize(GTI.getIndexedType()));
 | 
						|
      // Scale the index by element size.
 | 
						|
      if (ElementSize != 1) {
 | 
						|
        if (ElementSize.isPowerOf2()) {
 | 
						|
          Idx = Builder.CreateShl(
 | 
						|
              Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
 | 
						|
        } else {
 | 
						|
          Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Create an ADD for each index.
 | 
						|
      ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create an ADD for the constant offset index.
 | 
						|
  if (AccumulativeByteOffset != 0) {
 | 
						|
    ResultPtr = Builder.CreateAdd(
 | 
						|
        ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
 | 
						|
  }
 | 
						|
 | 
						|
  ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
 | 
						|
  Variadic->replaceAllUsesWith(ResultPtr);
 | 
						|
  Variadic->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
 | 
						|
  // Skip vector GEPs.
 | 
						|
  if (GEP->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The backend can already nicely handle the case where all indices are
 | 
						|
  // constant.
 | 
						|
  if (GEP->hasAllConstantIndices())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
 | 
						|
 | 
						|
  bool NeedsExtraction;
 | 
						|
  int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
 | 
						|
 | 
						|
  if (!NeedsExtraction)
 | 
						|
    return Changed;
 | 
						|
  // If LowerGEP is disabled, before really splitting the GEP, check whether the
 | 
						|
  // backend supports the addressing mode we are about to produce. If no, this
 | 
						|
  // splitting probably won't be beneficial.
 | 
						|
  // If LowerGEP is enabled, even the extracted constant offset can not match
 | 
						|
  // the addressing mode, we can still do optimizations to other lowered parts
 | 
						|
  // of variable indices. Therefore, we don't check for addressing modes in that
 | 
						|
  // case.
 | 
						|
  if (!LowerGEP) {
 | 
						|
    TargetTransformInfo &TTI =
 | 
						|
        getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | 
						|
            *GEP->getParent()->getParent());
 | 
						|
    if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
 | 
						|
                                   /*BaseGV=*/nullptr, AccumulativeByteOffset,
 | 
						|
                                   /*HasBaseReg=*/true, /*Scale=*/0)) {
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the constant offset in each sequential index. The resultant GEP
 | 
						|
  // computes the variadic base.
 | 
						|
  // Notice that we don't remove struct field indices here. If LowerGEP is
 | 
						|
  // disabled, a structure index is not accumulated and we still use the old
 | 
						|
  // one. If LowerGEP is enabled, a structure index is accumulated in the
 | 
						|
  // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
 | 
						|
  // handle the constant offset and won't need a new structure index.
 | 
						|
  gep_type_iterator GTI = gep_type_begin(*GEP);
 | 
						|
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      // Splits this GEP index into a variadic part and a constant offset, and
 | 
						|
      // uses the variadic part as the new index.
 | 
						|
      Value *OldIdx = GEP->getOperand(I);
 | 
						|
      User *UserChainTail;
 | 
						|
      Value *NewIdx =
 | 
						|
          ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail);
 | 
						|
      if (NewIdx != nullptr) {
 | 
						|
        // Switches to the index with the constant offset removed.
 | 
						|
        GEP->setOperand(I, NewIdx);
 | 
						|
        // After switching to the new index, we can garbage-collect UserChain
 | 
						|
        // and the old index if they are not used.
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear the inbounds attribute because the new index may be off-bound.
 | 
						|
  // e.g.,
 | 
						|
  //
 | 
						|
  // b = add i64 a, 5
 | 
						|
  // addr = gep inbounds float* p, i64 b
 | 
						|
  //
 | 
						|
  // is transformed to:
 | 
						|
  //
 | 
						|
  // addr2 = gep float* p, i64 a
 | 
						|
  // addr = gep float* addr2, i64 5
 | 
						|
  //
 | 
						|
  // If a is -4, although the old index b is in bounds, the new index a is
 | 
						|
  // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
 | 
						|
  // inbounds keyword is not present, the offsets are added to the base
 | 
						|
  // address with silently-wrapping two's complement arithmetic".
 | 
						|
  // Therefore, the final code will be a semantically equivalent.
 | 
						|
  //
 | 
						|
  // TODO(jingyue): do some range analysis to keep as many inbounds as
 | 
						|
  // possible. GEPs with inbounds are more friendly to alias analysis.
 | 
						|
  GEP->setIsInBounds(false);
 | 
						|
 | 
						|
  // Lowers a GEP to either GEPs with a single index or arithmetic operations.
 | 
						|
  if (LowerGEP) {
 | 
						|
    // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
 | 
						|
    // arithmetic operations if the target uses alias analysis in codegen.
 | 
						|
    if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
 | 
						|
      lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
 | 
						|
    else
 | 
						|
      lowerToArithmetics(GEP, AccumulativeByteOffset);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // No need to create another GEP if the accumulative byte offset is 0.
 | 
						|
  if (AccumulativeByteOffset == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Offsets the base with the accumulative byte offset.
 | 
						|
  //
 | 
						|
  //   %gep                        ; the base
 | 
						|
  //   ... %gep ...
 | 
						|
  //
 | 
						|
  // => add the offset
 | 
						|
  //
 | 
						|
  //   %gep2                       ; clone of %gep
 | 
						|
  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
 | 
						|
  //   %gep                        ; will be removed
 | 
						|
  //   ... %gep ...
 | 
						|
  //
 | 
						|
  // => replace all uses of %gep with %new.gep and remove %gep
 | 
						|
  //
 | 
						|
  //   %gep2                       ; clone of %gep
 | 
						|
  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
 | 
						|
  //   ... %new.gep ...
 | 
						|
  //
 | 
						|
  // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
 | 
						|
  // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
 | 
						|
  // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
 | 
						|
  // type of %gep.
 | 
						|
  //
 | 
						|
  //   %gep2                       ; clone of %gep
 | 
						|
  //   %0       = bitcast %gep2 to i8*
 | 
						|
  //   %uglygep = gep %0, <offset>
 | 
						|
  //   %new.gep = bitcast %uglygep to <type of %gep>
 | 
						|
  //   ... %new.gep ...
 | 
						|
  Instruction *NewGEP = GEP->clone();
 | 
						|
  NewGEP->insertBefore(GEP);
 | 
						|
 | 
						|
  // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
 | 
						|
  // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
 | 
						|
  // used with unsigned integers later.
 | 
						|
  const DataLayout &DL = GEP->getModule()->getDataLayout();
 | 
						|
  int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
 | 
						|
      DL.getTypeAllocSize(GEP->getType()->getElementType()));
 | 
						|
  Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
 | 
						|
  if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
 | 
						|
    // Very likely. As long as %gep is natually aligned, the byte offset we
 | 
						|
    // extracted should be a multiple of sizeof(*%gep).
 | 
						|
    int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
 | 
						|
    NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
 | 
						|
                                       ConstantInt::get(IntPtrTy, Index, true),
 | 
						|
                                       GEP->getName(), GEP);
 | 
						|
  } else {
 | 
						|
    // Unlikely but possible. For example,
 | 
						|
    // #pragma pack(1)
 | 
						|
    // struct S {
 | 
						|
    //   int a[3];
 | 
						|
    //   int64 b[8];
 | 
						|
    // };
 | 
						|
    // #pragma pack()
 | 
						|
    //
 | 
						|
    // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
 | 
						|
    // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
 | 
						|
    // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
 | 
						|
    // sizeof(int64).
 | 
						|
    //
 | 
						|
    // Emit an uglygep in this case.
 | 
						|
    Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
 | 
						|
                                       GEP->getPointerAddressSpace());
 | 
						|
    NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
 | 
						|
    NewGEP = GetElementPtrInst::Create(
 | 
						|
        Type::getInt8Ty(GEP->getContext()), NewGEP,
 | 
						|
        ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
 | 
						|
        GEP);
 | 
						|
    if (GEP->getType() != I8PtrTy)
 | 
						|
      NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
 | 
						|
  }
 | 
						|
 | 
						|
  GEP->replaceAllUsesWith(NewGEP);
 | 
						|
  GEP->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
 | 
						|
  if (skipOptnoneFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (DisableSeparateConstOffsetFromGEP)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
 | 
						|
    for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
 | 
						|
      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
 | 
						|
        Changed |= splitGEP(GEP);
 | 
						|
      }
 | 
						|
      // No need to split GEP ConstantExprs because all its indices are constant
 | 
						|
      // already.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VerifyNoDeadCode)
 | 
						|
    verifyNoDeadCode(F);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
 | 
						|
  for (auto &B : F) {
 | 
						|
    for (auto &I : B) {
 | 
						|
      if (isInstructionTriviallyDead(&I)) {
 | 
						|
        std::string ErrMessage;
 | 
						|
        raw_string_ostream RSO(ErrMessage);
 | 
						|
        RSO << "Dead instruction detected!\n" << I << "\n";
 | 
						|
        llvm_unreachable(RSO.str().c_str());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |