mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	and better control the abstraction. Rename the type to MVT. To update out-of-tree patches, the main thing to do is to rename MVT::ValueType to MVT, and rewrite expressions like MVT::getSizeInBits(VT) in the form VT.getSizeInBits(). Use VT.getSimpleVT() to extract a MVT::SimpleValueType for use in switch statements (you will get an assert failure if VT is an extended value type - these shouldn't exist after type legalization). This results in a small speedup of codegen and no new testsuite failures (x86-64 linux). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1862 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1862 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements bottom-up and top-down register pressure reduction list
 | 
						|
// schedulers, using standard algorithms.  The basic approach uses a priority
 | 
						|
// queue of available nodes to schedule.  One at a time, nodes are taken from
 | 
						|
// the priority queue (thus in priority order), checked for legality to
 | 
						|
// schedule, and emitted if legal.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <climits>
 | 
						|
#include <queue>
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
 | 
						|
STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | 
						|
STATISTIC(NumDups,       "Number of duplicated nodes");
 | 
						|
STATISTIC(NumCCCopies,   "Number of cross class copies");
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  burrListDAGScheduler("list-burr",
 | 
						|
                       "  Bottom-up register reduction list scheduling",
 | 
						|
                       createBURRListDAGScheduler);
 | 
						|
static RegisterScheduler
 | 
						|
  tdrListrDAGScheduler("list-tdrr",
 | 
						|
                       "  Top-down register reduction list scheduling",
 | 
						|
                       createTDRRListDAGScheduler);
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGRRList - The actual register reduction list scheduler
 | 
						|
/// implementation.  This supports both top-down and bottom-up scheduling.
 | 
						|
///
 | 
						|
class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
 | 
						|
private:
 | 
						|
  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | 
						|
  /// it is top-down.
 | 
						|
  bool isBottomUp;
 | 
						|
  
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  SchedulingPriorityQueue *AvailableQueue;
 | 
						|
 | 
						|
  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
 | 
						|
  /// that are "live". These nodes must be scheduled before any other nodes that
 | 
						|
  /// modifies the registers can be scheduled.
 | 
						|
  SmallSet<unsigned, 4> LiveRegs;
 | 
						|
  std::vector<SUnit*> LiveRegDefs;
 | 
						|
  std::vector<unsigned> LiveRegCycles;
 | 
						|
 | 
						|
public:
 | 
						|
  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
 | 
						|
                  const TargetMachine &tm, bool isbottomup,
 | 
						|
                  SchedulingPriorityQueue *availqueue)
 | 
						|
    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
 | 
						|
      AvailableQueue(availqueue) {
 | 
						|
    }
 | 
						|
 | 
						|
  ~ScheduleDAGRRList() {
 | 
						|
    delete AvailableQueue;
 | 
						|
  }
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
  /// IsReachable - Checks if SU is reachable from TargetSU.
 | 
						|
  bool IsReachable(SUnit *SU, SUnit *TargetSU);
 | 
						|
 | 
						|
  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | 
						|
  /// create a cycle.
 | 
						|
  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
 | 
						|
 | 
						|
  /// AddPred - This adds the specified node X as a predecessor of 
 | 
						|
  /// the current node Y if not already.
 | 
						|
  /// This returns true if this is a new predecessor.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
 | 
						|
               unsigned PhyReg = 0, int Cost = 1);
 | 
						|
 | 
						|
  /// RemovePred - This removes the specified node N from the predecessors of 
 | 
						|
  /// the current node M. Updates the topological ordering if required.
 | 
						|
  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
 | 
						|
 | 
						|
private:
 | 
						|
  void ReleasePred(SUnit*, bool, unsigned);
 | 
						|
  void ReleaseSucc(SUnit*, bool isChain, unsigned);
 | 
						|
  void CapturePred(SUnit*, SUnit*, bool);
 | 
						|
  void ScheduleNodeBottomUp(SUnit*, unsigned);
 | 
						|
  void ScheduleNodeTopDown(SUnit*, unsigned);
 | 
						|
  void UnscheduleNodeBottomUp(SUnit*);
 | 
						|
  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
 | 
						|
  SUnit *CopyAndMoveSuccessors(SUnit*);
 | 
						|
  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
 | 
						|
                                  const TargetRegisterClass*,
 | 
						|
                                  const TargetRegisterClass*,
 | 
						|
                                  SmallVector<SUnit*, 2>&);
 | 
						|
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
 | 
						|
  void ListScheduleTopDown();
 | 
						|
  void ListScheduleBottomUp();
 | 
						|
  void CommuteNodesToReducePressure();
 | 
						|
 | 
						|
 | 
						|
  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  SUnit *CreateNewSUnit(SDNode *N) {
 | 
						|
    SUnit *NewNode = NewSUnit(N);
 | 
						|
    // Update the topological ordering.
 | 
						|
    if (NewNode->NodeNum >= Node2Index.size())
 | 
						|
      InitDAGTopologicalSorting();
 | 
						|
    return NewNode;
 | 
						|
  }
 | 
						|
 | 
						|
  /// CreateClone - Creates a new SUnit from an existing one.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  SUnit *CreateClone(SUnit *N) {
 | 
						|
    SUnit *NewNode = Clone(N);
 | 
						|
    // Update the topological ordering.
 | 
						|
    if (NewNode->NodeNum >= Node2Index.size())
 | 
						|
      InitDAGTopologicalSorting();
 | 
						|
    return NewNode;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Functions for preserving the topological ordering
 | 
						|
  /// even after dynamic insertions of new edges.
 | 
						|
  /// This allows a very fast implementation of IsReachable.
 | 
						|
 | 
						|
 | 
						|
  /** 
 | 
						|
  The idea of the algorithm is taken from 
 | 
						|
  "Online algorithms for managing the topological order of
 | 
						|
  a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
 | 
						|
  This is the MNR algorithm, which was first introduced by 
 | 
						|
  A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in  
 | 
						|
  "Maintaining a topological order under edge insertions".
 | 
						|
 | 
						|
  Short description of the algorithm: 
 | 
						|
  
 | 
						|
  Topological ordering, ord, of a DAG maps each node to a topological
 | 
						|
  index so that for all edges X->Y it is the case that ord(X) < ord(Y).
 | 
						|
  
 | 
						|
  This means that if there is a path from the node X to the node Z, 
 | 
						|
  then ord(X) < ord(Z).
 | 
						|
  
 | 
						|
  This property can be used to check for reachability of nodes:
 | 
						|
  if Z is reachable from X, then an insertion of the edge Z->X would 
 | 
						|
  create a cycle.
 | 
						|
   
 | 
						|
  The algorithm first computes a topological ordering for the DAG by initializing
 | 
						|
  the Index2Node and Node2Index arrays and then tries to keep the ordering
 | 
						|
  up-to-date after edge insertions by reordering the DAG.
 | 
						|
  
 | 
						|
  On insertion of the edge X->Y, the algorithm first marks by calling DFS the
 | 
						|
  nodes reachable from Y, and then shifts them using Shift to lie immediately
 | 
						|
  after X in Index2Node.
 | 
						|
  */
 | 
						|
 | 
						|
  /// InitDAGTopologicalSorting - create the initial topological 
 | 
						|
  /// ordering from the DAG to be scheduled.
 | 
						|
  void InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  /// DFS - make a DFS traversal and mark all nodes affected by the 
 | 
						|
  /// edge insertion. These nodes will later get new topological indexes
 | 
						|
  /// by means of the Shift method.
 | 
						|
  void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
 | 
						|
 | 
						|
  /// Shift - reassign topological indexes for the nodes in the DAG
 | 
						|
  /// to preserve the topological ordering.
 | 
						|
  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
 | 
						|
 | 
						|
  /// Allocate - assign the topological index to the node n.
 | 
						|
  void Allocate(int n, int index);
 | 
						|
 | 
						|
  /// Index2Node - Maps topological index to the node number.
 | 
						|
  std::vector<int> Index2Node;
 | 
						|
  /// Node2Index - Maps the node number to its topological index.
 | 
						|
  std::vector<int> Node2Index;
 | 
						|
  /// Visited - a set of nodes visited during a DFS traversal.
 | 
						|
  BitVector Visited;
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGRRList::Schedule() {
 | 
						|
  DOUT << "********** List Scheduling **********\n";
 | 
						|
 | 
						|
  LiveRegDefs.resize(TRI->getNumRegs(), NULL);  
 | 
						|
  LiveRegCycles.resize(TRI->getNumRegs(), 0);
 | 
						|
 | 
						|
  // Build scheduling units.
 | 
						|
  BuildSchedUnits();
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(&DAG));
 | 
						|
  CalculateDepths();
 | 
						|
  CalculateHeights();
 | 
						|
  InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  AvailableQueue->initNodes(SUnitMap, SUnits);
 | 
						|
  
 | 
						|
  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | 
						|
  if (isBottomUp)
 | 
						|
    ListScheduleBottomUp();
 | 
						|
  else
 | 
						|
    ListScheduleTopDown();
 | 
						|
  
 | 
						|
  AvailableQueue->releaseState();
 | 
						|
  
 | 
						|
  CommuteNodesToReducePressure();
 | 
						|
  
 | 
						|
  DOUT << "*** Final schedule ***\n";
 | 
						|
  DEBUG(dumpSchedule());
 | 
						|
  DOUT << "\n";
 | 
						|
  
 | 
						|
  // Emit in scheduled order
 | 
						|
  EmitSchedule();
 | 
						|
}
 | 
						|
 | 
						|
/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
 | 
						|
/// it is not the last use of its first operand, add it to the CommuteSet if
 | 
						|
/// possible. It will be commuted when it is translated to a MI.
 | 
						|
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
 | 
						|
  SmallPtrSet<SUnit*, 4> OperandSeen;
 | 
						|
  for (unsigned i = Sequence.size(); i != 0; ) {
 | 
						|
    --i;
 | 
						|
    SUnit *SU = Sequence[i];
 | 
						|
    if (!SU || !SU->Node) continue;
 | 
						|
    if (SU->isCommutable) {
 | 
						|
      unsigned Opc = SU->Node->getTargetOpcode();
 | 
						|
      const TargetInstrDesc &TID = TII->get(Opc);
 | 
						|
      unsigned NumRes = TID.getNumDefs();
 | 
						|
      unsigned NumOps = TID.getNumOperands() - NumRes;
 | 
						|
      for (unsigned j = 0; j != NumOps; ++j) {
 | 
						|
        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        SDNode *OpN = SU->Node->getOperand(j).Val;
 | 
						|
        SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
 | 
						|
        if (OpSU && OperandSeen.count(OpSU) == 1) {
 | 
						|
          // Ok, so SU is not the last use of OpSU, but SU is two-address so
 | 
						|
          // it will clobber OpSU. Try to commute SU if no other source operands
 | 
						|
          // are live below.
 | 
						|
          bool DoCommute = true;
 | 
						|
          for (unsigned k = 0; k < NumOps; ++k) {
 | 
						|
            if (k != j) {
 | 
						|
              OpN = SU->Node->getOperand(k).Val;
 | 
						|
              OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
 | 
						|
              if (OpSU && OperandSeen.count(OpSU) == 1) {
 | 
						|
                DoCommute = false;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (DoCommute)
 | 
						|
            CommuteSet.insert(SU->Node);
 | 
						|
        }
 | 
						|
 | 
						|
        // Only look at the first use&def node for now.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!I->isCtrl)
 | 
						|
        OperandSeen.insert(I->Dep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Bottom-Up Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | 
						|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
 | 
						|
                                    unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | 
						|
 | 
						|
  --PredSU->NumSuccsLeft;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft < 0) {
 | 
						|
    cerr << "*** List scheduling failed! ***\n";
 | 
						|
    PredSU->dump(&DAG);
 | 
						|
    cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if (PredSU->NumSuccsLeft == 0) {
 | 
						|
    PredSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(PredSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its predecessors. If a predecessor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
 | 
						|
  // Bottom up: release predecessors
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    ReleasePred(I->Dep, I->isCtrl, CurCycle);
 | 
						|
    if (I->Cost < 0)  {
 | 
						|
      // This is a physical register dependency and it's impossible or
 | 
						|
      // expensive to copy the register. Make sure nothing that can 
 | 
						|
      // clobber the register is scheduled between the predecessor and
 | 
						|
      // this node.
 | 
						|
      if (LiveRegs.insert(I->Reg)) {
 | 
						|
        LiveRegDefs[I->Reg] = I->Dep;
 | 
						|
        LiveRegCycles[I->Reg] = CurCycle;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Release all the implicit physical register defs that are live.
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->Cost < 0)  {
 | 
						|
      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
 | 
						|
        LiveRegs.erase(I->Reg);
 | 
						|
        assert(LiveRegDefs[I->Reg] == SU &&
 | 
						|
               "Physical register dependency violated?");
 | 
						|
        LiveRegDefs[I->Reg] = NULL;
 | 
						|
        LiveRegCycles[I->Reg] = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
 | 
						|
/// unscheduled, incrcease the succ left count of its predecessors. Remove
 | 
						|
/// them from AvailableQueue if necessary.
 | 
						|
void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {  
 | 
						|
  unsigned CycleBound = 0;
 | 
						|
  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->Dep == SU)
 | 
						|
      continue;
 | 
						|
    CycleBound = std::max(CycleBound,
 | 
						|
                          I->Dep->Cycle + PredSU->Latency);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PredSU->isAvailable) {
 | 
						|
    PredSU->isAvailable = false;
 | 
						|
    if (!PredSU->isPending)
 | 
						|
      AvailableQueue->remove(PredSU);
 | 
						|
  }
 | 
						|
 | 
						|
  PredSU->CycleBound = CycleBound;
 | 
						|
  ++PredSU->NumSuccsLeft;
 | 
						|
}
 | 
						|
 | 
						|
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
 | 
						|
/// its predecessor states to reflect the change.
 | 
						|
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
 | 
						|
  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
 | 
						|
  AvailableQueue->UnscheduledNode(SU);
 | 
						|
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    CapturePred(I->Dep, SU, I->isCtrl);
 | 
						|
    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
 | 
						|
      LiveRegs.erase(I->Reg);
 | 
						|
      assert(LiveRegDefs[I->Reg] == I->Dep &&
 | 
						|
             "Physical register dependency violated?");
 | 
						|
      LiveRegDefs[I->Reg] = NULL;
 | 
						|
      LiveRegCycles[I->Reg] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->Cost < 0)  {
 | 
						|
      if (LiveRegs.insert(I->Reg)) {
 | 
						|
        assert(!LiveRegDefs[I->Reg] &&
 | 
						|
               "Physical register dependency violated?");
 | 
						|
        LiveRegDefs[I->Reg] = SU;
 | 
						|
      }
 | 
						|
      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
 | 
						|
        LiveRegCycles[I->Reg] = I->Dep->Cycle;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SU->Cycle = 0;
 | 
						|
  SU->isScheduled = false;
 | 
						|
  SU->isAvailable = true;
 | 
						|
  AvailableQueue->push(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// IsReachable - Checks if SU is reachable from TargetSU.
 | 
						|
bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
 | 
						|
  // If insertion of the edge SU->TargetSU would create a cycle
 | 
						|
  // then there is a path from TargetSU to SU.
 | 
						|
  int UpperBound, LowerBound;
 | 
						|
  LowerBound = Node2Index[TargetSU->NodeNum];
 | 
						|
  UpperBound = Node2Index[SU->NodeNum];
 | 
						|
  bool HasLoop = false;
 | 
						|
  // Is Ord(TargetSU) < Ord(SU) ?
 | 
						|
  if (LowerBound < UpperBound) {
 | 
						|
    Visited.reset();
 | 
						|
    // There may be a path from TargetSU to SU. Check for it. 
 | 
						|
    DFS(TargetSU, UpperBound, HasLoop);
 | 
						|
  }
 | 
						|
  return HasLoop;
 | 
						|
}
 | 
						|
 | 
						|
/// Allocate - assign the topological index to the node n.
 | 
						|
inline void ScheduleDAGRRList::Allocate(int n, int index) {
 | 
						|
  Node2Index[n] = index;
 | 
						|
  Index2Node[index] = n;
 | 
						|
}
 | 
						|
 | 
						|
/// InitDAGTopologicalSorting - create the initial topological 
 | 
						|
/// ordering from the DAG to be scheduled.
 | 
						|
void ScheduleDAGRRList::InitDAGTopologicalSorting() {
 | 
						|
  unsigned DAGSize = SUnits.size();
 | 
						|
  std::vector<unsigned> InDegree(DAGSize);
 | 
						|
  std::vector<SUnit*> WorkList;
 | 
						|
  WorkList.reserve(DAGSize);
 | 
						|
  std::vector<SUnit*> TopOrder;
 | 
						|
  TopOrder.reserve(DAGSize);
 | 
						|
 | 
						|
  // Initialize the data structures.
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &SUnits[i];
 | 
						|
    int NodeNum = SU->NodeNum;
 | 
						|
    unsigned Degree = SU->Succs.size();
 | 
						|
    InDegree[NodeNum] = Degree;
 | 
						|
 | 
						|
    // Is it a node without dependencies?
 | 
						|
    if (Degree == 0) {
 | 
						|
        assert(SU->Succs.empty() && "SUnit should have no successors");
 | 
						|
        // Collect leaf nodes.
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }  
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SUnit *SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    TopOrder.push_back(SU);
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      SUnit *SU = I->Dep;
 | 
						|
      if (!--InDegree[SU->NodeNum])
 | 
						|
        // If all dependencies of the node are processed already,
 | 
						|
        // then the node can be computed now.
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Second pass, assign the actual topological order as node ids.
 | 
						|
  int Id = 0;
 | 
						|
 | 
						|
  Index2Node.clear();
 | 
						|
  Node2Index.clear();
 | 
						|
  Index2Node.resize(DAGSize);
 | 
						|
  Node2Index.resize(DAGSize);
 | 
						|
  Visited.resize(DAGSize);
 | 
						|
 | 
						|
  for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
 | 
						|
       TE = TopOrder.rend();TI != TE; ++TI) {
 | 
						|
    Allocate((*TI)->NodeNum, Id);
 | 
						|
    Id++;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check correctness of the ordering
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &SUnits[i];
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && 
 | 
						|
       "Wrong topological sorting");
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// AddPred - adds an edge from SUnit X to SUnit Y.
 | 
						|
/// Updates the topological ordering if required.
 | 
						|
bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
 | 
						|
                 unsigned PhyReg, int Cost) {
 | 
						|
  int UpperBound, LowerBound;
 | 
						|
  LowerBound = Node2Index[Y->NodeNum];
 | 
						|
  UpperBound = Node2Index[X->NodeNum];
 | 
						|
  bool HasLoop = false;
 | 
						|
  // Is Ord(X) < Ord(Y) ?
 | 
						|
  if (LowerBound < UpperBound) {
 | 
						|
    // Update the topological order.
 | 
						|
    Visited.reset();
 | 
						|
    DFS(Y, UpperBound, HasLoop);
 | 
						|
    assert(!HasLoop && "Inserted edge creates a loop!");
 | 
						|
    // Recompute topological indexes.
 | 
						|
    Shift(Visited, LowerBound, UpperBound);
 | 
						|
  }
 | 
						|
  // Now really insert the edge.
 | 
						|
  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
 | 
						|
}
 | 
						|
 | 
						|
/// RemovePred - This removes the specified node N from the predecessors of 
 | 
						|
/// the current node M. Updates the topological ordering if required.
 | 
						|
bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N, 
 | 
						|
                                   bool isCtrl, bool isSpecial) {
 | 
						|
  // InitDAGTopologicalSorting();
 | 
						|
  return M->removePred(N, isCtrl, isSpecial);
 | 
						|
}
 | 
						|
 | 
						|
/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
 | 
						|
/// all nodes affected by the edge insertion. These nodes will later get new
 | 
						|
/// topological indexes by means of the Shift method.
 | 
						|
void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
 | 
						|
  std::vector<SUnit*> WorkList;
 | 
						|
  WorkList.reserve(SUnits.size()); 
 | 
						|
 | 
						|
  WorkList.push_back(SU);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    Visited.set(SU->NodeNum);
 | 
						|
    for (int I = SU->Succs.size()-1; I >= 0; --I) {
 | 
						|
      int s = SU->Succs[I].Dep->NodeNum;
 | 
						|
      if (Node2Index[s] == UpperBound) {
 | 
						|
        HasLoop = true; 
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // Visit successors if not already and in affected region.
 | 
						|
      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | 
						|
        WorkList.push_back(SU->Succs[I].Dep);
 | 
						|
      } 
 | 
						|
    } 
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Shift - Renumber the nodes so that the topological ordering is 
 | 
						|
/// preserved.
 | 
						|
void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound, 
 | 
						|
                              int UpperBound) {
 | 
						|
  std::vector<int> L;
 | 
						|
  int shift = 0;
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = LowerBound; i <= UpperBound; ++i) {
 | 
						|
    // w is node at topological index i.
 | 
						|
    int w = Index2Node[i];
 | 
						|
    if (Visited.test(w)) {
 | 
						|
      // Unmark.
 | 
						|
      Visited.reset(w);
 | 
						|
      L.push_back(w);
 | 
						|
      shift = shift + 1;
 | 
						|
    } else {
 | 
						|
      Allocate(w, i - shift);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned j = 0; j < L.size(); ++j) {
 | 
						|
    Allocate(L[j], i - shift);
 | 
						|
    i = i + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | 
						|
/// create a cycle.
 | 
						|
bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
 | 
						|
  if (IsReachable(TargetSU, SU))
 | 
						|
    return true;
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
 | 
						|
/// BTCycle in order to schedule a specific node. Returns the last unscheduled
 | 
						|
/// SUnit. Also returns if a successor is unscheduled in the process.
 | 
						|
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
 | 
						|
                                          unsigned &CurCycle) {
 | 
						|
  SUnit *OldSU = NULL;
 | 
						|
  while (CurCycle > BtCycle) {
 | 
						|
    OldSU = Sequence.back();
 | 
						|
    Sequence.pop_back();
 | 
						|
    if (SU->isSucc(OldSU))
 | 
						|
      // Don't try to remove SU from AvailableQueue.
 | 
						|
      SU->isAvailable = false;
 | 
						|
    UnscheduleNodeBottomUp(OldSU);
 | 
						|
    --CurCycle;
 | 
						|
  }
 | 
						|
 | 
						|
      
 | 
						|
  if (SU->isSucc(OldSU)) {
 | 
						|
    assert(false && "Something is wrong!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumBacktracks;
 | 
						|
}
 | 
						|
 | 
						|
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | 
						|
/// successors to the newly created node.
 | 
						|
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
 | 
						|
  if (SU->FlaggedNodes.size())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SDNode *N = SU->Node;
 | 
						|
  if (!N)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SUnit *NewSU;
 | 
						|
  bool TryUnfold = false;
 | 
						|
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | 
						|
    MVT VT = N->getValueType(i);
 | 
						|
    if (VT == MVT::Flag)
 | 
						|
      return NULL;
 | 
						|
    else if (VT == MVT::Other)
 | 
						|
      TryUnfold = true;
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    const SDOperand &Op = N->getOperand(i);
 | 
						|
    MVT VT = Op.Val->getValueType(Op.ResNo);
 | 
						|
    if (VT == MVT::Flag)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TryUnfold) {
 | 
						|
    SmallVector<SDNode*, 4> NewNodes;
 | 
						|
    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
 | 
						|
      return NULL;
 | 
						|
 | 
						|
    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
 | 
						|
    assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | 
						|
 | 
						|
    N = NewNodes[1];
 | 
						|
    SDNode *LoadNode = NewNodes[0];
 | 
						|
    unsigned NumVals = N->getNumValues();
 | 
						|
    unsigned OldNumVals = SU->Node->getNumValues();
 | 
						|
    for (unsigned i = 0; i != NumVals; ++i)
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
 | 
						|
                                  SDOperand(LoadNode, 1));
 | 
						|
 | 
						|
    SUnit *NewSU = CreateNewSUnit(N);
 | 
						|
    SUnitMap[N].push_back(NewSU);
 | 
						|
    const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
 | 
						|
    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | 
						|
      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | 
						|
        NewSU->isTwoAddress = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (TID.isCommutable())
 | 
						|
      NewSU->isCommutable = true;
 | 
						|
    // FIXME: Calculate height / depth and propagate the changes?
 | 
						|
    NewSU->Depth = SU->Depth;
 | 
						|
    NewSU->Height = SU->Height;
 | 
						|
    ComputeLatency(NewSU);
 | 
						|
 | 
						|
    // LoadNode may already exist. This can happen when there is another
 | 
						|
    // load from the same location and producing the same type of value
 | 
						|
    // but it has different alignment or volatileness.
 | 
						|
    bool isNewLoad = true;
 | 
						|
    SUnit *LoadSU;
 | 
						|
    DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
 | 
						|
      SUnitMap.find(LoadNode);
 | 
						|
    if (SMI != SUnitMap.end()) {
 | 
						|
      LoadSU = SMI->second.front();
 | 
						|
      isNewLoad = false;
 | 
						|
    } else {
 | 
						|
      LoadSU = CreateNewSUnit(LoadNode);
 | 
						|
      SUnitMap[LoadNode].push_back(LoadSU);
 | 
						|
 | 
						|
      LoadSU->Depth = SU->Depth;
 | 
						|
      LoadSU->Height = SU->Height;
 | 
						|
      ComputeLatency(LoadSU);
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *ChainPred = NULL;
 | 
						|
    SmallVector<SDep, 4> ChainSuccs;
 | 
						|
    SmallVector<SDep, 4> LoadPreds;
 | 
						|
    SmallVector<SDep, 4> NodePreds;
 | 
						|
    SmallVector<SDep, 4> NodeSuccs;
 | 
						|
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl)
 | 
						|
        ChainPred = I->Dep;
 | 
						|
      else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
 | 
						|
        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
 | 
						|
      else
 | 
						|
        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
 | 
						|
    }
 | 
						|
    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl)
 | 
						|
        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
 | 
						|
                                  I->isCtrl, I->isSpecial));
 | 
						|
      else
 | 
						|
        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
 | 
						|
                                 I->isCtrl, I->isSpecial));
 | 
						|
    }
 | 
						|
 | 
						|
    if (ChainPred) {
 | 
						|
      RemovePred(SU, ChainPred, true, false);
 | 
						|
      if (isNewLoad)
 | 
						|
        AddPred(LoadSU, ChainPred, true, false);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | 
						|
      SDep *Pred = &LoadPreds[i];
 | 
						|
      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
 | 
						|
      if (isNewLoad) {
 | 
						|
        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
 | 
						|
                Pred->Reg, Pred->Cost);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | 
						|
      SDep *Pred = &NodePreds[i];
 | 
						|
      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
 | 
						|
      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
 | 
						|
              Pred->Reg, Pred->Cost);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | 
						|
      SDep *Succ = &NodeSuccs[i];
 | 
						|
      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
 | 
						|
      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
 | 
						|
              Succ->Reg, Succ->Cost);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | 
						|
      SDep *Succ = &ChainSuccs[i];
 | 
						|
      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
 | 
						|
      if (isNewLoad) {
 | 
						|
        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
 | 
						|
                Succ->Reg, Succ->Cost);
 | 
						|
      }
 | 
						|
    } 
 | 
						|
    if (isNewLoad) {
 | 
						|
      AddPred(NewSU, LoadSU, false, false);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isNewLoad)
 | 
						|
      AvailableQueue->addNode(LoadSU);
 | 
						|
    AvailableQueue->addNode(NewSU);
 | 
						|
 | 
						|
    ++NumUnfolds;
 | 
						|
 | 
						|
    if (NewSU->NumSuccsLeft == 0) {
 | 
						|
      NewSU->isAvailable = true;
 | 
						|
      return NewSU;
 | 
						|
    }
 | 
						|
    SU = NewSU;
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
 | 
						|
  NewSU = CreateClone(SU);
 | 
						|
 | 
						|
  // New SUnit has the exact same predecessors.
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (!I->isSpecial) {
 | 
						|
      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
 | 
						|
      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
 | 
						|
    }
 | 
						|
 | 
						|
  // Only copy scheduled successors. Cut them from old node's successor
 | 
						|
  // list and move them over.
 | 
						|
  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isSpecial)
 | 
						|
      continue;
 | 
						|
    if (I->Dep->isScheduled) {
 | 
						|
      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
 | 
						|
      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
 | 
						|
      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
 | 
						|
    SUnit *Succ = DelDeps[i].first;
 | 
						|
    bool isCtrl = DelDeps[i].second;
 | 
						|
    RemovePred(Succ, SU, isCtrl, false);
 | 
						|
  }
 | 
						|
 | 
						|
  AvailableQueue->updateNode(SU);
 | 
						|
  AvailableQueue->addNode(NewSU);
 | 
						|
 | 
						|
  ++NumDups;
 | 
						|
  return NewSU;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
 | 
						|
/// and move all scheduled successors of the given SUnit to the last copy.
 | 
						|
void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | 
						|
                                              const TargetRegisterClass *DestRC,
 | 
						|
                                              const TargetRegisterClass *SrcRC,
 | 
						|
                                               SmallVector<SUnit*, 2> &Copies) {
 | 
						|
  SUnit *CopyFromSU = CreateNewSUnit(NULL);
 | 
						|
  CopyFromSU->CopySrcRC = SrcRC;
 | 
						|
  CopyFromSU->CopyDstRC = DestRC;
 | 
						|
  CopyFromSU->Depth = SU->Depth;
 | 
						|
  CopyFromSU->Height = SU->Height;
 | 
						|
 | 
						|
  SUnit *CopyToSU = CreateNewSUnit(NULL);
 | 
						|
  CopyToSU->CopySrcRC = DestRC;
 | 
						|
  CopyToSU->CopyDstRC = SrcRC;
 | 
						|
 | 
						|
  // Only copy scheduled successors. Cut them from old node's successor
 | 
						|
  // list and move them over.
 | 
						|
  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isSpecial)
 | 
						|
      continue;
 | 
						|
    if (I->Dep->isScheduled) {
 | 
						|
      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
 | 
						|
      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
 | 
						|
      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
 | 
						|
    SUnit *Succ = DelDeps[i].first;
 | 
						|
    bool isCtrl = DelDeps[i].second;
 | 
						|
    RemovePred(Succ, SU, isCtrl, false);
 | 
						|
  }
 | 
						|
 | 
						|
  AddPred(CopyFromSU, SU, false, false, Reg, -1);
 | 
						|
  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
 | 
						|
 | 
						|
  AvailableQueue->updateNode(SU);
 | 
						|
  AvailableQueue->addNode(CopyFromSU);
 | 
						|
  AvailableQueue->addNode(CopyToSU);
 | 
						|
  Copies.push_back(CopyFromSU);
 | 
						|
  Copies.push_back(CopyToSU);
 | 
						|
 | 
						|
  ++NumCCCopies;
 | 
						|
}
 | 
						|
 | 
						|
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | 
						|
/// definition of the specified node.
 | 
						|
/// FIXME: Move to SelectionDAG?
 | 
						|
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | 
						|
                                 const TargetInstrInfo *TII) {
 | 
						|
  const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
 | 
						|
  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | 
						|
  unsigned NumRes = TID.getNumDefs();
 | 
						|
  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | 
						|
    if (Reg == *ImpDef)
 | 
						|
      break;
 | 
						|
    ++NumRes;
 | 
						|
  }
 | 
						|
  return N->getValueType(NumRes);
 | 
						|
}
 | 
						|
 | 
						|
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | 
						|
/// scheduling of the given node to satisfy live physical register dependencies.
 | 
						|
/// If the specific node is the last one that's available to schedule, do
 | 
						|
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | 
						|
bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
 | 
						|
                                                 SmallVector<unsigned, 4> &LRegs){
 | 
						|
  if (LiveRegs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallSet<unsigned, 4> RegAdded;
 | 
						|
  // If this node would clobber any "live" register, then it's not ready.
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->Cost < 0)  {
 | 
						|
      unsigned Reg = I->Reg;
 | 
						|
      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
 | 
						|
        if (RegAdded.insert(Reg))
 | 
						|
          LRegs.push_back(Reg);
 | 
						|
      }
 | 
						|
      for (const unsigned *Alias = TRI->getAliasSet(Reg);
 | 
						|
           *Alias; ++Alias)
 | 
						|
        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
 | 
						|
          if (RegAdded.insert(*Alias))
 | 
						|
            LRegs.push_back(*Alias);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
 | 
						|
    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
 | 
						|
    if (!Node || !Node->isTargetOpcode())
 | 
						|
      continue;
 | 
						|
    const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
 | 
						|
    if (!TID.ImplicitDefs)
 | 
						|
      continue;
 | 
						|
    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
 | 
						|
      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
 | 
						|
        if (RegAdded.insert(*Reg))
 | 
						|
          LRegs.push_back(*Reg);
 | 
						|
      }
 | 
						|
      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
 | 
						|
           *Alias; ++Alias)
 | 
						|
        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
 | 
						|
          if (RegAdded.insert(*Alias))
 | 
						|
            LRegs.push_back(*Alias);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return !LRegs.empty();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGRRList::ListScheduleBottomUp() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  // Add root to Available queue.
 | 
						|
  if (!SUnits.empty()) {
 | 
						|
    SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
 | 
						|
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | 
						|
    RootSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(RootSU);
 | 
						|
  }
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  SmallVector<SUnit*, 4> NotReady;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    bool Delayed = false;
 | 
						|
    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | 
						|
    SUnit *CurSU = AvailableQueue->pop();
 | 
						|
    while (CurSU) {
 | 
						|
      if (CurSU->CycleBound <= CurCycle) {
 | 
						|
        SmallVector<unsigned, 4> LRegs;
 | 
						|
        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | 
						|
          break;
 | 
						|
        Delayed = true;
 | 
						|
        LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | 
						|
      }
 | 
						|
 | 
						|
      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | 
						|
      NotReady.push_back(CurSU);
 | 
						|
      CurSU = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
 | 
						|
    // All candidates are delayed due to live physical reg dependencies.
 | 
						|
    // Try backtracking, code duplication, or inserting cross class copies
 | 
						|
    // to resolve it.
 | 
						|
    if (Delayed && !CurSU) {
 | 
						|
      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | 
						|
        SUnit *TrySU = NotReady[i];
 | 
						|
        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | 
						|
 | 
						|
        // Try unscheduling up to the point where it's safe to schedule
 | 
						|
        // this node.
 | 
						|
        unsigned LiveCycle = CurCycle;
 | 
						|
        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
 | 
						|
          unsigned Reg = LRegs[j];
 | 
						|
          unsigned LCycle = LiveRegCycles[Reg];
 | 
						|
          LiveCycle = std::min(LiveCycle, LCycle);
 | 
						|
        }
 | 
						|
        SUnit *OldSU = Sequence[LiveCycle];
 | 
						|
        if (!WillCreateCycle(TrySU, OldSU))  {
 | 
						|
          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
 | 
						|
          // Force the current node to be scheduled before the node that
 | 
						|
          // requires the physical reg dep.
 | 
						|
          if (OldSU->isAvailable) {
 | 
						|
            OldSU->isAvailable = false;
 | 
						|
            AvailableQueue->remove(OldSU);
 | 
						|
          }
 | 
						|
          AddPred(TrySU, OldSU, true, true);
 | 
						|
          // If one or more successors has been unscheduled, then the current
 | 
						|
          // node is no longer avaialable. Schedule a successor that's now
 | 
						|
          // available instead.
 | 
						|
          if (!TrySU->isAvailable)
 | 
						|
            CurSU = AvailableQueue->pop();
 | 
						|
          else {
 | 
						|
            CurSU = TrySU;
 | 
						|
            TrySU->isPending = false;
 | 
						|
            NotReady.erase(NotReady.begin()+i);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!CurSU) {
 | 
						|
        // Can't backtrack. Try duplicating the nodes that produces these
 | 
						|
        // "expensive to copy" values to break the dependency. In case even
 | 
						|
        // that doesn't work, insert cross class copies.
 | 
						|
        SUnit *TrySU = NotReady[0];
 | 
						|
        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | 
						|
        assert(LRegs.size() == 1 && "Can't handle this yet!");
 | 
						|
        unsigned Reg = LRegs[0];
 | 
						|
        SUnit *LRDef = LiveRegDefs[Reg];
 | 
						|
        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
 | 
						|
        if (!NewDef) {
 | 
						|
          // Issue expensive cross register class copies.
 | 
						|
          MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
 | 
						|
          const TargetRegisterClass *RC =
 | 
						|
            TRI->getPhysicalRegisterRegClass(Reg, VT);
 | 
						|
          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | 
						|
          if (!DestRC) {
 | 
						|
            assert(false && "Don't know how to copy this physical register!");
 | 
						|
            abort();
 | 
						|
          }
 | 
						|
          SmallVector<SUnit*, 2> Copies;
 | 
						|
          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | 
						|
          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
 | 
						|
               << " to SU #" << Copies.front()->NodeNum << "\n";
 | 
						|
          AddPred(TrySU, Copies.front(), true, true);
 | 
						|
          NewDef = Copies.back();
 | 
						|
        }
 | 
						|
 | 
						|
        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
 | 
						|
             << " to SU #" << TrySU->NodeNum << "\n";
 | 
						|
        LiveRegDefs[Reg] = NewDef;
 | 
						|
        AddPred(NewDef, TrySU, true, true);
 | 
						|
        TrySU->isAvailable = false;
 | 
						|
        CurSU = NewDef;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!CurSU) {
 | 
						|
        assert(false && "Unable to resolve live physical register dependencies!");
 | 
						|
        abort();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | 
						|
      NotReady[i]->isPending = false;
 | 
						|
      // May no longer be available due to backtracking.
 | 
						|
      if (NotReady[i]->isAvailable)
 | 
						|
        AvailableQueue->push(NotReady[i]);
 | 
						|
    }
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (!CurSU)
 | 
						|
      Sequence.push_back(0);
 | 
						|
    else {
 | 
						|
      ScheduleNodeBottomUp(CurSU, CurCycle);
 | 
						|
      Sequence.push_back(CurSU);
 | 
						|
    }
 | 
						|
    ++CurCycle;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the order if it is bottom up.
 | 
						|
  std::reverse(Sequence.begin(), Sequence.end());
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  unsigned DeadNodes = 0;
 | 
						|
  unsigned Noops = 0;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (!SUnits[i].isScheduled) {
 | 
						|
      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
 | 
						|
        ++DeadNodes;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
    if (SUnits[i].NumSuccsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has successors left!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | 
						|
    if (!Sequence[i])
 | 
						|
      ++Noops;
 | 
						|
  assert(!AnyNotSched);
 | 
						|
  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
 | 
						|
         "The number of nodes scheduled doesn't match the expected number!");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
 | 
						|
                                    unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
 | 
						|
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft < 0) {
 | 
						|
    cerr << "*** List scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(&DAG);
 | 
						|
    cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    SuccSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(SuccSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
 | 
						|
  // Top down: release successors
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGRRList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
 | 
						|
  // All leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (SUnits[i].Preds.empty()) {
 | 
						|
      AvailableQueue->push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurSU = AvailableQueue->pop();
 | 
						|
    while (CurSU && CurSU->CycleBound > CurCycle) {
 | 
						|
      NotReady.push_back(CurSU);
 | 
						|
      CurSU = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (!CurSU)
 | 
						|
      Sequence.push_back(0);
 | 
						|
    else {
 | 
						|
      ScheduleNodeTopDown(CurSU, CurCycle);
 | 
						|
      Sequence.push_back(CurSU);
 | 
						|
    }
 | 
						|
    ++CurCycle;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  unsigned DeadNodes = 0;
 | 
						|
  unsigned Noops = 0;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (!SUnits[i].isScheduled) {
 | 
						|
      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
 | 
						|
        ++DeadNodes;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
    if (SUnits[i].NumPredsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has predecessors left!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | 
						|
    if (!Sequence[i])
 | 
						|
      ++Noops;
 | 
						|
  assert(!AnyNotSched);
 | 
						|
  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
 | 
						|
         "The number of nodes scheduled doesn't match the expected number!");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                RegReductionPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | 
						|
// to reduce register pressure.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class RegReductionPriorityQueue;
 | 
						|
  
 | 
						|
  /// Sorting functions for the Available queue.
 | 
						|
  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | 
						|
    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | 
						|
    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
static inline bool isCopyFromLiveIn(const SUnit *SU) {
 | 
						|
  SDNode *N = SU->Node;
 | 
						|
  return N && N->getOpcode() == ISD::CopyFromReg &&
 | 
						|
    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN RegReductionPriorityQueue
 | 
						|
   : public SchedulingPriorityQueue {
 | 
						|
    std::set<SUnit*, SF> Queue;
 | 
						|
    unsigned currentQueueId;
 | 
						|
 | 
						|
  public:
 | 
						|
    RegReductionPriorityQueue() :
 | 
						|
    Queue(SF(this)), currentQueueId(0) {}
 | 
						|
    
 | 
						|
    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
 | 
						|
                           std::vector<SUnit> &sunits) {}
 | 
						|
 | 
						|
    virtual void addNode(const SUnit *SU) {}
 | 
						|
 | 
						|
    virtual void updateNode(const SUnit *SU) {}
 | 
						|
 | 
						|
    virtual void releaseState() {}
 | 
						|
    
 | 
						|
    virtual unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned size() const { return Queue.size(); }
 | 
						|
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    void push(SUnit *U) {
 | 
						|
      assert(!U->NodeQueueId && "Node in the queue already");
 | 
						|
      U->NodeQueueId = ++currentQueueId;
 | 
						|
      Queue.insert(U);
 | 
						|
    }
 | 
						|
 | 
						|
    void push_all(const std::vector<SUnit *> &Nodes) {
 | 
						|
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | 
						|
        push(Nodes[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SUnit *pop() {
 | 
						|
      if (empty()) return NULL;
 | 
						|
      typename std::set<SUnit*, SF>::iterator i = prior(Queue.end());
 | 
						|
      SUnit *V = *i;
 | 
						|
      Queue.erase(i);
 | 
						|
      V->NodeQueueId = 0;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    void remove(SUnit *SU) {
 | 
						|
      assert(!Queue.empty() && "Queue is empty!");
 | 
						|
      size_t RemovedNum = Queue.erase(SU);
 | 
						|
      RemovedNum = RemovedNum; // Silence compiler warning.
 | 
						|
      assert(RemovedNum > 0 && "Not in queue!");
 | 
						|
      assert(RemovedNum == 1 && "Multiple times in the queue!");
 | 
						|
      SU->NodeQueueId = 0;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
 | 
						|
   : public RegReductionPriorityQueue<SF> {
 | 
						|
    // SUnitMap SDNode to SUnit mapping (n -> n).
 | 
						|
    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
 | 
						|
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<unsigned> SethiUllmanNumbers;
 | 
						|
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    ScheduleDAGRRList *scheduleDAG;
 | 
						|
  public:
 | 
						|
    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
 | 
						|
                                         const TargetRegisterInfo *tri)
 | 
						|
      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
 | 
						|
 | 
						|
    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
 | 
						|
                   std::vector<SUnit> &sunits) {
 | 
						|
      SUnitMap = &sumap;
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Add pseudo dependency edges for two-address nodes.
 | 
						|
      AddPseudoTwoAddrDeps();
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculateSethiUllmanNumbers();
 | 
						|
    }
 | 
						|
 | 
						|
    void addNode(const SUnit *SU) {
 | 
						|
      SethiUllmanNumbers.resize(SUnits->size(), 0);
 | 
						|
      CalcNodeSethiUllmanNumber(SU);
 | 
						|
    }
 | 
						|
 | 
						|
    void updateNode(const SUnit *SU) {
 | 
						|
      SethiUllmanNumbers[SU->NodeNum] = 0;
 | 
						|
      CalcNodeSethiUllmanNumber(SU);
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      assert(SU->NodeNum < SethiUllmanNumbers.size());
 | 
						|
      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
 | 
						|
      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
 | 
						|
        // CopyFromReg should be close to its def because it restricts
 | 
						|
        // allocation choices. But if it is a livein then perhaps we want it
 | 
						|
        // closer to its uses so it can be coalesced.
 | 
						|
        return 0xffff;
 | 
						|
      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
        // CopyToReg should be close to its uses to facilitate coalescing and
 | 
						|
        // avoid spilling.
 | 
						|
        return 0;
 | 
						|
      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
 | 
						|
               Opc == TargetInstrInfo::INSERT_SUBREG)
 | 
						|
        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
 | 
						|
        // facilitate coalescing.
 | 
						|
        return 0;
 | 
						|
      else if (SU->NumSuccs == 0)
 | 
						|
        // If SU does not have a use, i.e. it doesn't produce a value that would
 | 
						|
        // be consumed (e.g. store), then it terminates a chain of computation.
 | 
						|
        // Give it a large SethiUllman number so it will be scheduled right
 | 
						|
        // before its predecessors that it doesn't lengthen their live ranges.
 | 
						|
        return 0xffff;
 | 
						|
      else if (SU->NumPreds == 0)
 | 
						|
        // If SU does not have a def, schedule it close to its uses because it
 | 
						|
        // does not lengthen any live ranges.
 | 
						|
        return 0;
 | 
						|
      else
 | 
						|
        return SethiUllmanNumbers[SU->NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { 
 | 
						|
      scheduleDAG = scheduleDag; 
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool canClobber(const SUnit *SU, const SUnit *Op);
 | 
						|
    void AddPseudoTwoAddrDeps();
 | 
						|
    void CalculateSethiUllmanNumbers();
 | 
						|
    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
 | 
						|
   : public RegReductionPriorityQueue<SF> {
 | 
						|
    // SUnitMap SDNode to SUnit mapping (n -> n).
 | 
						|
    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
 | 
						|
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<unsigned> SethiUllmanNumbers;
 | 
						|
 | 
						|
  public:
 | 
						|
    TDRegReductionPriorityQueue() {}
 | 
						|
 | 
						|
    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
 | 
						|
                   std::vector<SUnit> &sunits) {
 | 
						|
      SUnitMap = &sumap;
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculateSethiUllmanNumbers();
 | 
						|
    }
 | 
						|
 | 
						|
    void addNode(const SUnit *SU) {
 | 
						|
      SethiUllmanNumbers.resize(SUnits->size(), 0);
 | 
						|
      CalcNodeSethiUllmanNumber(SU);
 | 
						|
    }
 | 
						|
 | 
						|
    void updateNode(const SUnit *SU) {
 | 
						|
      SethiUllmanNumbers[SU->NodeNum] = 0;
 | 
						|
      CalcNodeSethiUllmanNumber(SU);
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      assert(SU->NodeNum < SethiUllmanNumbers.size());
 | 
						|
      return SethiUllmanNumbers[SU->NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void CalculateSethiUllmanNumbers();
 | 
						|
    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// closestSucc - Returns the scheduled cycle of the successor which is
 | 
						|
/// closet to the current cycle.
 | 
						|
static unsigned closestSucc(const SUnit *SU) {
 | 
						|
  unsigned MaxCycle = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned Cycle = I->Dep->Cycle;
 | 
						|
    // If there are bunch of CopyToRegs stacked up, they should be considered
 | 
						|
    // to be at the same position.
 | 
						|
    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
 | 
						|
      Cycle = closestSucc(I->Dep)+1;
 | 
						|
    if (Cycle > MaxCycle)
 | 
						|
      MaxCycle = Cycle;
 | 
						|
  }
 | 
						|
  return MaxCycle;
 | 
						|
}
 | 
						|
 | 
						|
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | 
						|
/// for scratch registers. Live-in operands and live-out results don't count
 | 
						|
/// since they are "fixed".
 | 
						|
static unsigned calcMaxScratches(const SUnit *SU) {
 | 
						|
  unsigned Scratches = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl) continue;  // ignore chain preds
 | 
						|
    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
 | 
						|
      Scratches++;
 | 
						|
  }
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl) continue;  // ignore chain succs
 | 
						|
    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
 | 
						|
      Scratches += 10;
 | 
						|
  }
 | 
						|
  return Scratches;
 | 
						|
}
 | 
						|
 | 
						|
// Bottom up
 | 
						|
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
 | 
						|
  unsigned LPriority = SPQ->getNodePriority(left);
 | 
						|
  unsigned RPriority = SPQ->getNodePriority(right);
 | 
						|
  if (LPriority != RPriority)
 | 
						|
    return LPriority > RPriority;
 | 
						|
 | 
						|
  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | 
						|
  // e.g.
 | 
						|
  // t1 = op t2, c1
 | 
						|
  // t3 = op t4, c2
 | 
						|
  //
 | 
						|
  // and the following instructions are both ready.
 | 
						|
  // t2 = op c3
 | 
						|
  // t4 = op c4
 | 
						|
  //
 | 
						|
  // Then schedule t2 = op first.
 | 
						|
  // i.e.
 | 
						|
  // t4 = op c4
 | 
						|
  // t2 = op c3
 | 
						|
  // t1 = op t2, c1
 | 
						|
  // t3 = op t4, c2
 | 
						|
  //
 | 
						|
  // This creates more short live intervals.
 | 
						|
  unsigned LDist = closestSucc(left);
 | 
						|
  unsigned RDist = closestSucc(right);
 | 
						|
  if (LDist != RDist)
 | 
						|
    return LDist < RDist;
 | 
						|
 | 
						|
  // Intuitively, it's good to push down instructions whose results are
 | 
						|
  // liveout so their long live ranges won't conflict with other values
 | 
						|
  // which are needed inside the BB. Further prioritize liveout instructions
 | 
						|
  // by the number of operands which are calculated within the BB.
 | 
						|
  unsigned LScratch = calcMaxScratches(left);
 | 
						|
  unsigned RScratch = calcMaxScratches(right);
 | 
						|
  if (LScratch != RScratch)
 | 
						|
    return LScratch > RScratch;
 | 
						|
 | 
						|
  if (left->Height != right->Height)
 | 
						|
    return left->Height > right->Height;
 | 
						|
  
 | 
						|
  if (left->Depth != right->Depth)
 | 
						|
    return left->Depth < right->Depth;
 | 
						|
 | 
						|
  if (left->CycleBound != right->CycleBound)
 | 
						|
    return left->CycleBound > right->CycleBound;
 | 
						|
 | 
						|
  assert(left->NodeQueueId && right->NodeQueueId && 
 | 
						|
         "NodeQueueId cannot be zero");
 | 
						|
  return (left->NodeQueueId > right->NodeQueueId);
 | 
						|
}
 | 
						|
 | 
						|
template<class SF> bool
 | 
						|
BURegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
 | 
						|
  if (SU->isTwoAddress) {
 | 
						|
    unsigned Opc = SU->Node->getTargetOpcode();
 | 
						|
    const TargetInstrDesc &TID = TII->get(Opc);
 | 
						|
    unsigned NumRes = TID.getNumDefs();
 | 
						|
    unsigned NumOps = TID.getNumOperands() - NumRes;
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
 | 
						|
        SDNode *DU = SU->Node->getOperand(i).Val;
 | 
						|
        if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
 | 
						|
            Op == (*SUnitMap)[DU][SU->InstanceNo])
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// hasCopyToRegUse - Return true if SU has a value successor that is a
 | 
						|
/// CopyToReg node.
 | 
						|
static bool hasCopyToRegUse(SUnit *SU) {
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl) continue;
 | 
						|
    SUnit *SuccSU = I->Dep;
 | 
						|
    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
 | 
						|
/// physical register def.
 | 
						|
static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
 | 
						|
                                  const TargetInstrInfo *TII,
 | 
						|
                                  const TargetRegisterInfo *TRI) {
 | 
						|
  SDNode *N = SuccSU->Node;
 | 
						|
  unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
 | 
						|
  const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
 | 
						|
  if (!ImpDefs)
 | 
						|
    return false;
 | 
						|
  const unsigned *SUImpDefs =
 | 
						|
    TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
 | 
						|
  if (!SUImpDefs)
 | 
						|
    return false;
 | 
						|
  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | 
						|
    MVT VT = N->getValueType(i);
 | 
						|
    if (VT == MVT::Flag || VT == MVT::Other)
 | 
						|
      continue;
 | 
						|
    unsigned Reg = ImpDefs[i - NumDefs];
 | 
						|
    for (;*SUImpDefs; ++SUImpDefs) {
 | 
						|
      unsigned SUReg = *SUImpDefs;
 | 
						|
      if (TRI->regsOverlap(Reg, SUReg))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | 
						|
/// it as a def&use operand. Add a pseudo control edge from it to the other
 | 
						|
/// node (if it won't create a cycle) so the two-address one will be scheduled
 | 
						|
/// first (lower in the schedule). If both nodes are two-address, favor the
 | 
						|
/// one that has a CopyToReg use (more likely to be a loop induction update).
 | 
						|
/// If both are two-address, but one is commutable while the other is not
 | 
						|
/// commutable, favor the one that's not commutable.
 | 
						|
template<class SF>
 | 
						|
void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | 
						|
    SUnit *SU = (SUnit *)&((*SUnits)[i]);
 | 
						|
    if (!SU->isTwoAddress)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDNode *Node = SU->Node;
 | 
						|
    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Opc = Node->getTargetOpcode();
 | 
						|
    const TargetInstrDesc &TID = TII->get(Opc);
 | 
						|
    unsigned NumRes = TID.getNumDefs();
 | 
						|
    unsigned NumOps = TID.getNumOperands() - NumRes;
 | 
						|
    for (unsigned j = 0; j != NumOps; ++j) {
 | 
						|
      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
 | 
						|
        SDNode *DU = SU->Node->getOperand(j).Val;
 | 
						|
        if ((*SUnitMap).find(DU) == (*SUnitMap).end())
 | 
						|
          continue;
 | 
						|
        SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
 | 
						|
        if (!DUSU) continue;
 | 
						|
        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
 | 
						|
             I != E; ++I) {
 | 
						|
          if (I->isCtrl) continue;
 | 
						|
          SUnit *SuccSU = I->Dep;
 | 
						|
          if (SuccSU == SU)
 | 
						|
            continue;
 | 
						|
          // Be conservative. Ignore if nodes aren't at roughly the same
 | 
						|
          // depth and height.
 | 
						|
          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
 | 
						|
            continue;
 | 
						|
          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
 | 
						|
            continue;
 | 
						|
          // Don't constrain nodes with physical register defs if the
 | 
						|
          // predecessor can clobber them.
 | 
						|
          if (SuccSU->hasPhysRegDefs) {
 | 
						|
            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
 | 
						|
              continue;
 | 
						|
          }
 | 
						|
          // Don't constraint extract_subreg / insert_subreg these may be
 | 
						|
          // coalesced away. We don't them close to their uses.
 | 
						|
          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
 | 
						|
          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
 | 
						|
              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
 | 
						|
            continue;
 | 
						|
          if ((!canClobber(SuccSU, DUSU) ||
 | 
						|
               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
 | 
						|
               (!SU->isCommutable && SuccSU->isCommutable)) &&
 | 
						|
              !scheduleDAG->IsReachable(SuccSU, SU)) {
 | 
						|
            DOUT << "Adding an edge from SU # " << SU->NodeNum
 | 
						|
                 << " to SU #" << SuccSU->NodeNum << "\n";
 | 
						|
            scheduleDAG->AddPred(SU, SuccSU, true, true);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
template<class SF>
 | 
						|
unsigned BURegReductionPriorityQueue<SF>::
 | 
						|
CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | 
						|
  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Extra = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl) continue;  // ignore chain preds
 | 
						|
    SUnit *PredSU = I->Dep;
 | 
						|
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | 
						|
    if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
      SethiUllmanNumber = PredSethiUllman;
 | 
						|
      Extra = 0;
 | 
						|
    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
 | 
						|
      ++Extra;
 | 
						|
  }
 | 
						|
 | 
						|
  SethiUllmanNumber += Extra;
 | 
						|
 | 
						|
  if (SethiUllmanNumber == 0)
 | 
						|
    SethiUllmanNumber = 1;
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | 
						|
/// scheduling units.
 | 
						|
template<class SF>
 | 
						|
void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
 | 
						|
/// predecessors of the successors of the SUnit SU. Stop when the provided
 | 
						|
/// limit is exceeded.
 | 
						|
static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU, 
 | 
						|
                                                    unsigned Limit) {
 | 
						|
  unsigned Sum = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit *SuccSU = I->Dep;
 | 
						|
    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | 
						|
         EE = SuccSU->Preds.end(); II != EE; ++II) {
 | 
						|
      SUnit *PredSU = II->Dep;
 | 
						|
      if (!PredSU->isScheduled)
 | 
						|
        if (++Sum > Limit)
 | 
						|
          return Sum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Top down
 | 
						|
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LPriority = SPQ->getNodePriority(left);
 | 
						|
  unsigned RPriority = SPQ->getNodePriority(right);
 | 
						|
  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
 | 
						|
  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
 | 
						|
  bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | 
						|
  bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | 
						|
  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
 | 
						|
  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
 | 
						|
 | 
						|
  if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | 
						|
    return false;
 | 
						|
  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (LIsFloater)
 | 
						|
    LBonus -= 2;
 | 
						|
  if (RIsFloater)
 | 
						|
    RBonus -= 2;
 | 
						|
  if (left->NumSuccs == 1)
 | 
						|
    LBonus += 2;
 | 
						|
  if (right->NumSuccs == 1)
 | 
						|
    RBonus += 2;
 | 
						|
 | 
						|
  if (LPriority+LBonus != RPriority+RBonus)
 | 
						|
    return LPriority+LBonus < RPriority+RBonus;
 | 
						|
 | 
						|
  if (left->Depth != right->Depth)
 | 
						|
    return left->Depth < right->Depth;
 | 
						|
 | 
						|
  if (left->NumSuccsLeft != right->NumSuccsLeft)
 | 
						|
    return left->NumSuccsLeft > right->NumSuccsLeft;
 | 
						|
 | 
						|
  if (left->CycleBound != right->CycleBound)
 | 
						|
    return left->CycleBound > right->CycleBound;
 | 
						|
 | 
						|
  assert(left->NodeQueueId && right->NodeQueueId && 
 | 
						|
         "NodeQueueId cannot be zero");
 | 
						|
  return (left->NodeQueueId > right->NodeQueueId);
 | 
						|
}
 | 
						|
 | 
						|
/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
template<class SF>
 | 
						|
unsigned TDRegReductionPriorityQueue<SF>::
 | 
						|
CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | 
						|
  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
 | 
						|
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
    SethiUllmanNumber = 0xffff;
 | 
						|
  else if (SU->NumSuccsLeft == 0)
 | 
						|
    // If SU does not have a use, i.e. it doesn't produce a value that would
 | 
						|
    // be consumed (e.g. store), then it terminates a chain of computation.
 | 
						|
    // Give it a small SethiUllman number so it will be scheduled right before
 | 
						|
    // its predecessors that it doesn't lengthen their live ranges.
 | 
						|
    SethiUllmanNumber = 0;
 | 
						|
  else if (SU->NumPredsLeft == 0 &&
 | 
						|
           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | 
						|
    SethiUllmanNumber = 0xffff;
 | 
						|
  else {
 | 
						|
    int Extra = 0;
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl) continue;  // ignore chain preds
 | 
						|
      SUnit *PredSU = I->Dep;
 | 
						|
      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | 
						|
      if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
        SethiUllmanNumber = PredSethiUllman;
 | 
						|
        Extra = 0;
 | 
						|
      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
 | 
						|
        ++Extra;
 | 
						|
    }
 | 
						|
 | 
						|
    SethiUllmanNumber += Extra;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | 
						|
/// scheduling units.
 | 
						|
template<class SF>
 | 
						|
void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                                    SelectionDAG *DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
 | 
						|
  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
 | 
						|
  
 | 
						|
  BURegReductionPriorityQueue<bu_ls_rr_sort> *priorityQueue = 
 | 
						|
    new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII, TRI);
 | 
						|
 | 
						|
  ScheduleDAGRRList * scheduleDAG = 
 | 
						|
    new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, priorityQueue);
 | 
						|
  priorityQueue->setScheduleDAG(scheduleDAG);
 | 
						|
  return scheduleDAG;  
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                                    SelectionDAG *DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
 | 
						|
                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
 | 
						|
}
 | 
						|
 |