mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	before reglist were not properly handled with respect to IT Block. Fix that by creating a new method ARMBasicMCBuilder::DoPredicateOperands() used by those instructions for disassembly. Add a test case. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101974 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3351 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3351 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ARMDisassemblerCore.cpp - ARM disassembler helpers -------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is part of the ARM Disassembler.
 | 
						|
// It contains code to represent the core concepts of Builder and DisassembleFP
 | 
						|
// to solve the problem of disassembling an ARM instr.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-disassembler"
 | 
						|
 | 
						|
#include "ARMDisassemblerCore.h"
 | 
						|
#include "ARMAddressingModes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
/// ARMGenInstrInfo.inc - ARMGenInstrInfo.inc contains the static const
 | 
						|
/// TargetInstrDesc ARMInsts[] definition and the TargetOperandInfo[]'s
 | 
						|
/// describing the operand info for each ARMInsts[i].
 | 
						|
///
 | 
						|
/// Together with an instruction's encoding format, we can take advantage of the
 | 
						|
/// NumOperands and the OpInfo fields of the target instruction description in
 | 
						|
/// the quest to build out the MCOperand list for an MCInst.
 | 
						|
///
 | 
						|
/// The general guideline is that with a known format, the number of dst and src
 | 
						|
/// operands are well-known.  The dst is built first, followed by the src
 | 
						|
/// operand(s).  The operands not yet used at this point are for the Implicit
 | 
						|
/// Uses and Defs by this instr.  For the Uses part, the pred:$p operand is
 | 
						|
/// defined with two components:
 | 
						|
///
 | 
						|
/// def pred {	// Operand PredicateOperand
 | 
						|
///   ValueType Type = OtherVT;
 | 
						|
///   string PrintMethod = "printPredicateOperand";
 | 
						|
///   string AsmOperandLowerMethod = ?;
 | 
						|
///   dag MIOperandInfo = (ops i32imm, CCR);
 | 
						|
///   AsmOperandClass ParserMatchClass = ImmAsmOperand;
 | 
						|
///   dag DefaultOps = (ops (i32 14), (i32 zero_reg));
 | 
						|
/// }
 | 
						|
///
 | 
						|
/// which is manifested by the TargetOperandInfo[] of:
 | 
						|
///
 | 
						|
/// { 0, 0|(1<<TOI::Predicate), 0 },
 | 
						|
/// { ARM::CCRRegClassID, 0|(1<<TOI::Predicate), 0 }
 | 
						|
///
 | 
						|
/// So the first predicate MCOperand corresponds to the immediate part of the
 | 
						|
/// ARM condition field (Inst{31-28}), and the second predicate MCOperand
 | 
						|
/// corresponds to a register kind of ARM::CPSR.
 | 
						|
///
 | 
						|
/// For the Defs part, in the simple case of only cc_out:$s, we have:
 | 
						|
///
 | 
						|
/// def cc_out {	// Operand OptionalDefOperand
 | 
						|
///   ValueType Type = OtherVT;
 | 
						|
///   string PrintMethod = "printSBitModifierOperand";
 | 
						|
///   string AsmOperandLowerMethod = ?;
 | 
						|
///   dag MIOperandInfo = (ops CCR);
 | 
						|
///   AsmOperandClass ParserMatchClass = ImmAsmOperand;
 | 
						|
///   dag DefaultOps = (ops (i32 zero_reg));
 | 
						|
/// }
 | 
						|
///
 | 
						|
/// which is manifested by the one TargetOperandInfo of:
 | 
						|
///
 | 
						|
/// { ARM::CCRRegClassID, 0|(1<<TOI::OptionalDef), 0 }
 | 
						|
///
 | 
						|
/// And this maps to one MCOperand with the regsiter kind of ARM::CPSR.
 | 
						|
#include "ARMGenInstrInfo.inc"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
const char *ARMUtils::OpcodeName(unsigned Opcode) {
 | 
						|
  return ARMInsts[Opcode].Name;
 | 
						|
}
 | 
						|
 | 
						|
// Return the register enum Based on RegClass and the raw register number.
 | 
						|
// For DRegPair, see comments below.
 | 
						|
// FIXME: Auto-gened?
 | 
						|
static unsigned getRegisterEnum(BO B, unsigned RegClassID, unsigned RawRegister,
 | 
						|
                                bool DRegPair = false) {
 | 
						|
 | 
						|
  if (DRegPair && RegClassID == ARM::QPRRegClassID) {
 | 
						|
    // LLVM expects { Dd, Dd+1 } to form a super register; this is not specified
 | 
						|
    // in the ARM Architecture Manual as far as I understand it (A8.6.307).
 | 
						|
    // Therefore, we morph the RegClassID to be the sub register class and don't
 | 
						|
    // subsequently transform the RawRegister encoding when calculating RegNum.
 | 
						|
    //
 | 
						|
    // See also ARMinstPrinter::printOperand() wrt "dregpair" modifier part
 | 
						|
    // where this workaround is meant for.
 | 
						|
    RegClassID = ARM::DPRRegClassID;
 | 
						|
  }
 | 
						|
 | 
						|
  // See also decodeNEONRd(), decodeNEONRn(), decodeNEONRm().
 | 
						|
  unsigned RegNum =
 | 
						|
    RegClassID == ARM::QPRRegClassID ? RawRegister >> 1 : RawRegister;
 | 
						|
 | 
						|
  switch (RegNum) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case 0:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R0;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D0;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
 | 
						|
    case ARM::QPR_VFP2RegClassID:
 | 
						|
      return ARM::Q0;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S0;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R1;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D1;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
 | 
						|
    case ARM::QPR_VFP2RegClassID:
 | 
						|
      return ARM::Q1;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S1;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R2;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D2;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
 | 
						|
    case ARM::QPR_VFP2RegClassID:
 | 
						|
      return ARM::Q2;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S2;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R3;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D3;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
 | 
						|
    case ARM::QPR_VFP2RegClassID:
 | 
						|
      return ARM::Q3;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S3;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R4;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D4;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q4;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S4;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 5:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R5;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D5;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q5;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S5;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 6:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R6;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D6;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q6;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S6;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 7:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R7;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
 | 
						|
    case ARM::DPR_VFP2RegClassID:
 | 
						|
      return ARM::D7;
 | 
						|
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q7;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S7;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 8:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::R8;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D8;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q8;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S8;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 9:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::R9;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D9;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q9;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S9;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 10:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::R10;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D10;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q10;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S10;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 11:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::R11;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D11;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q11;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S11;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 12:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::R12;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D12;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q12;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S12;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 13:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::SP;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D13;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q13;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S13;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 14:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::LR;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D14;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q14;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S14;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 15:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::GPRRegClassID: return ARM::PC;
 | 
						|
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D15;
 | 
						|
    case ARM::QPRRegClassID: return ARM::Q15;
 | 
						|
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S15;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 16:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D16;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S16;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 17:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D17;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S17;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 18:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D18;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S18;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 19:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D19;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S19;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 20:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D20;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S20;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 21:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D21;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S21;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 22:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D22;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S22;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 23:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D23;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S23;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 24:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D24;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S24;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 25:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D25;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S25;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 26:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D26;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S26;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 27:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D27;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S27;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 28:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D28;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S28;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 29:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D29;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S29;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 30:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D30;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S30;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 31:
 | 
						|
    switch (RegClassID) {
 | 
						|
    case ARM::DPRRegClassID: return ARM::D31;
 | 
						|
    case ARM::SPRRegClassID: return ARM::S31;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  DEBUG(errs() << "Invalid (RegClassID, RawRegister) combination\n");
 | 
						|
  // Encoding error.  Mark the builder with error code != 0.
 | 
						|
  B->SetErr(-1);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
///////////////////////////////
 | 
						|
//                           //
 | 
						|
//     Utility Functions     //
 | 
						|
//                           //
 | 
						|
///////////////////////////////
 | 
						|
 | 
						|
// Extract/Decode Rd: Inst{15-12}.
 | 
						|
static inline unsigned decodeRd(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::RegRdShift) & ARMII::GPRRegMask;
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode Rn: Inst{19-16}.
 | 
						|
static inline unsigned decodeRn(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::RegRnShift) & ARMII::GPRRegMask;
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode Rm: Inst{3-0}.
 | 
						|
static inline unsigned decodeRm(uint32_t insn) {
 | 
						|
  return (insn & ARMII::GPRRegMask);
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode Rs: Inst{11-8}.
 | 
						|
static inline unsigned decodeRs(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::RegRsShift) & ARMII::GPRRegMask;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getCondField(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::CondShift);
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getIBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::I_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getAM3IBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::AM3_I_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getPBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::P_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getUBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::U_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getPUBits(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::U_BitShift) & 3;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getSBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::S_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getWBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::W_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getDBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::D_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getNBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::N_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getMBit(uint32_t insn) {
 | 
						|
  return (insn >> ARMII::M_BitShift) & 1;
 | 
						|
}
 | 
						|
 | 
						|
// See A8.4 Shifts applied to a register.
 | 
						|
//     A8.4.2 Register controlled shifts.
 | 
						|
//
 | 
						|
// getShiftOpcForBits - getShiftOpcForBits translates from the ARM encoding bits
 | 
						|
// into llvm enums for shift opcode.  The API clients should pass in the value
 | 
						|
// encoded with two bits, so the assert stays to signal a wrong API usage.
 | 
						|
//
 | 
						|
// A8-12: DecodeRegShift()
 | 
						|
static inline ARM_AM::ShiftOpc getShiftOpcForBits(unsigned bits) {
 | 
						|
  switch (bits) {
 | 
						|
  default: assert(0 && "No such value"); return ARM_AM::no_shift;
 | 
						|
  case 0:  return ARM_AM::lsl;
 | 
						|
  case 1:  return ARM_AM::lsr;
 | 
						|
  case 2:  return ARM_AM::asr;
 | 
						|
  case 3:  return ARM_AM::ror;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// See A8.4 Shifts applied to a register.
 | 
						|
//     A8.4.1 Constant shifts.
 | 
						|
//
 | 
						|
// getImmShiftSE - getImmShiftSE translates from the raw ShiftOpc and raw Imm5
 | 
						|
// encodings into the intended ShiftOpc and shift amount.
 | 
						|
//
 | 
						|
// A8-11: DecodeImmShift()
 | 
						|
static inline void getImmShiftSE(ARM_AM::ShiftOpc &ShOp, unsigned &ShImm) {
 | 
						|
  // If type == 0b11 and imm5 == 0, we have an rrx, instead.
 | 
						|
  if (ShOp == ARM_AM::ror && ShImm == 0)
 | 
						|
    ShOp = ARM_AM::rrx;
 | 
						|
  // If (lsr or asr) and imm5 == 0, shift amount is 32.
 | 
						|
  if ((ShOp == ARM_AM::lsr || ShOp == ARM_AM::asr) && ShImm == 0)
 | 
						|
    ShImm = 32;
 | 
						|
}
 | 
						|
 | 
						|
// getAMSubModeForBits - getAMSubModeForBits translates from the ARM encoding
 | 
						|
// bits Inst{24-23} (P(24) and U(23)) into llvm enums for AMSubMode.  The API
 | 
						|
// clients should pass in the value encoded with two bits, so the assert stays
 | 
						|
// to signal a wrong API usage.
 | 
						|
static inline ARM_AM::AMSubMode getAMSubModeForBits(unsigned bits) {
 | 
						|
  switch (bits) {
 | 
						|
  default: assert(0 && "No such value"); return ARM_AM::bad_am_submode;
 | 
						|
  case 1:  return ARM_AM::ia;   // P=0 U=1
 | 
						|
  case 3:  return ARM_AM::ib;   // P=1 U=1
 | 
						|
  case 0:  return ARM_AM::da;   // P=0 U=0
 | 
						|
  case 2:  return ARM_AM::db;   // P=1 U=0
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////
 | 
						|
//                                        //
 | 
						|
//    Disassemble function definitions    //
 | 
						|
//                                        //
 | 
						|
////////////////////////////////////////////
 | 
						|
 | 
						|
/// There is a separate Disassemble*Frm function entry for disassembly of an ARM
 | 
						|
/// instr into a list of MCOperands in the appropriate order, with possible dst,
 | 
						|
/// followed by possible src(s).
 | 
						|
///
 | 
						|
/// The processing of the predicate, and the 'S' modifier bit, if MI modifies
 | 
						|
/// the CPSR, is factored into ARMBasicMCBuilder's method named
 | 
						|
/// TryPredicateAndSBitModifier.
 | 
						|
 | 
						|
static bool DisassemblePseudo(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO) {
 | 
						|
 | 
						|
  if (Opcode == ARM::Int_MemBarrierV7 || Opcode == ARM::Int_SyncBarrierV7)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(0 && "Unexpected pseudo instruction!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Multiply Instructions.
 | 
						|
// MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMMLA, SMMLS:
 | 
						|
//     Rd{19-16} Rn{3-0} Rm{11-8} Ra{15-12}
 | 
						|
//
 | 
						|
// MUL, SMMUL, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT:
 | 
						|
//     Rd{19-16} Rn{3-0} Rm{11-8}
 | 
						|
//
 | 
						|
// SMLAL, SMULL, UMAAL, UMLAL, UMULL, SMLALBB, SMLALBT, SMLALTB, SMLALTT:
 | 
						|
//     RdLo{15-12} RdHi{19-16} Rn{3-0} Rm{11-8}
 | 
						|
//
 | 
						|
// The mapping of the multiply registers to the "regular" ARM registers, where
 | 
						|
// there are convenience decoder functions, is:
 | 
						|
//
 | 
						|
// Inst{15-12} => Rd
 | 
						|
// Inst{19-16} => Rn
 | 
						|
// Inst{3-0} => Rm
 | 
						|
// Inst{11-8} => Rs
 | 
						|
static bool DisassembleMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  unsigned short NumDefs = TID.getNumDefs();
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  assert(NumDefs > 0 && "NumDefs should be greater than 0 for MulFrm");
 | 
						|
  assert(NumOps >= 3
 | 
						|
         && OpInfo[0].RegClass == ARM::GPRRegClassID
 | 
						|
         && OpInfo[1].RegClass == ARM::GPRRegClassID
 | 
						|
         && OpInfo[2].RegClass == ARM::GPRRegClassID
 | 
						|
         && "Expect three register operands");
 | 
						|
 | 
						|
  // Instructions with two destination registers have RdLo{15-12} first.
 | 
						|
  if (NumDefs == 2) {
 | 
						|
    assert(NumOps >= 4 && OpInfo[3].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Expect 4th register operand");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // The destination register: RdHi{19-16} or Rd{19-16}.
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
 | 
						|
  // The two src regsiters: Rn{3-0}, then Rm{11-8}.
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRm(insn))));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRs(insn))));
 | 
						|
  OpIdx += 3;
 | 
						|
 | 
						|
  // Many multiply instructions (e.g., MLA) have three src registers.
 | 
						|
  // The third register operand is Ra{15-12}.
 | 
						|
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Helper routines for disassembly of coprocessor instructions.
 | 
						|
 | 
						|
static bool LdStCopOpcode(unsigned Opcode) {
 | 
						|
  if ((Opcode >= ARM::LDC2L_OFFSET && Opcode <= ARM::LDC_PRE) ||
 | 
						|
      (Opcode >= ARM::STC2L_OFFSET && Opcode <= ARM::STC_PRE))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
static bool CoprocessorOpcode(unsigned Opcode) {
 | 
						|
  if (LdStCopOpcode(Opcode))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ARM::CDP:  case ARM::CDP2:
 | 
						|
  case ARM::MCR:  case ARM::MCR2:  case ARM::MRC:  case ARM::MRC2:
 | 
						|
  case ARM::MCRR: case ARM::MCRR2: case ARM::MRRC: case ARM::MRRC2:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
static inline unsigned GetCoprocessor(uint32_t insn) {
 | 
						|
  return slice(insn, 11, 8);
 | 
						|
}
 | 
						|
static inline unsigned GetCopOpc1(uint32_t insn, bool CDP) {
 | 
						|
  return CDP ? slice(insn, 23, 20) : slice(insn, 23, 21);
 | 
						|
}
 | 
						|
static inline unsigned GetCopOpc2(uint32_t insn) {
 | 
						|
  return slice(insn, 7, 5);
 | 
						|
}
 | 
						|
static inline unsigned GetCopOpc(uint32_t insn) {
 | 
						|
  return slice(insn, 7, 4);
 | 
						|
}
 | 
						|
// Most of the operands are in immediate forms, except Rd and Rn, which are ARM
 | 
						|
// core registers.
 | 
						|
//
 | 
						|
// CDP, CDP2:                cop opc1 CRd CRn CRm opc2
 | 
						|
//
 | 
						|
// MCR, MCR2, MRC, MRC2:     cop opc1 Rd CRn CRm opc2
 | 
						|
//
 | 
						|
// MCRR, MCRR2, MRRC, MRRc2: cop opc Rd Rn CRm
 | 
						|
//
 | 
						|
// LDC_OFFSET, LDC_PRE, LDC_POST: cop CRd Rn R0 [+/-]imm8:00
 | 
						|
// and friends
 | 
						|
// STC_OFFSET, STC_PRE, STC_POST: cop CRd Rn R0 [+/-]imm8:00
 | 
						|
// and friends
 | 
						|
//                                        <-- addrmode2 -->
 | 
						|
//
 | 
						|
// LDC_OPTION:                    cop CRd Rn imm8
 | 
						|
// and friends
 | 
						|
// STC_OPTION:                    cop CRd Rn imm8
 | 
						|
// and friends
 | 
						|
//
 | 
						|
static bool DisassembleCoprocessor(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 5 && "Num of operands >= 5 for coprocessor instr");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
  bool OneCopOpc = (Opcode == ARM::MCRR || Opcode == ARM::MCRR2 ||
 | 
						|
                    Opcode == ARM::MRRC || Opcode == ARM::MRRC2);
 | 
						|
  // CDP/CDP2 has no GPR operand; the opc1 operand is also wider (Inst{23-20}).
 | 
						|
  bool NoGPR = (Opcode == ARM::CDP || Opcode == ARM::CDP2);
 | 
						|
  bool LdStCop = LdStCopOpcode(Opcode);
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateImm(GetCoprocessor(insn)));
 | 
						|
 | 
						|
  if (LdStCop) {
 | 
						|
    // Unindex if P:W = 0b00 --> _OPTION variant
 | 
						|
    unsigned PW = getPBit(insn) << 1 | getWBit(insn);
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateImm(decodeRd(insn)));
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
 | 
						|
    if (PW) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
      ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
 | 
						|
      unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, slice(insn, 7, 0) << 2,
 | 
						|
                                          ARM_AM::no_shift);
 | 
						|
      MI.addOperand(MCOperand::CreateImm(Offset));
 | 
						|
      OpIdx = 5;
 | 
						|
    } else {
 | 
						|
      MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 0)));
 | 
						|
      OpIdx = 4;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    MI.addOperand(MCOperand::CreateImm(OneCopOpc ? GetCopOpc(insn)
 | 
						|
                                                 : GetCopOpc1(insn, NoGPR)));
 | 
						|
 | 
						|
    MI.addOperand(NoGPR ? MCOperand::CreateImm(decodeRd(insn))
 | 
						|
                        : MCOperand::CreateReg(
 | 
						|
                            getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                            decodeRd(insn))));
 | 
						|
 | 
						|
    MI.addOperand(OneCopOpc ? MCOperand::CreateReg(
 | 
						|
                                getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                decodeRn(insn)))
 | 
						|
                            : MCOperand::CreateImm(decodeRn(insn)));
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateImm(decodeRm(insn)));
 | 
						|
 | 
						|
    OpIdx = 5;
 | 
						|
 | 
						|
    if (!OneCopOpc) {
 | 
						|
      MI.addOperand(MCOperand::CreateImm(GetCopOpc2(insn)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Branch Instructions.
 | 
						|
// BLr9: SignExtend(Imm24:'00', 32)
 | 
						|
// Bcc, BLr9_pred: SignExtend(Imm24:'00', 32) Pred0 Pred1
 | 
						|
// SMC: ZeroExtend(imm4, 32)
 | 
						|
// SVC: ZeroExtend(Imm24, 32)
 | 
						|
//
 | 
						|
// Various coprocessor instructions are assigned BrFrm arbitrarily.
 | 
						|
// Delegates to DisassembleCoprocessor() helper function.
 | 
						|
//
 | 
						|
// MRS/MRSsys: Rd
 | 
						|
// MSR/MSRsys: Rm mask=Inst{19-16}
 | 
						|
// BXJ:        Rm
 | 
						|
// MSRi/MSRsysi: so_imm
 | 
						|
// SRSW/SRS: addrmode4:$addr mode_imm
 | 
						|
// RFEW/RFE: addrmode4:$addr Rn
 | 
						|
static bool DisassembleBrFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  if (CoprocessorOpcode(Opcode))
 | 
						|
    return DisassembleCoprocessor(MI, Opcode, insn, NumOps, NumOpsAdded, B);
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  // MRS and MRSsys take one GPR reg Rd.
 | 
						|
  if (Opcode == ARM::MRS || Opcode == ARM::MRSsys) {
 | 
						|
    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn))));
 | 
						|
    NumOpsAdded = 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // BXJ takes one GPR reg Rm.
 | 
						|
  if (Opcode == ARM::BXJ) {
 | 
						|
    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    NumOpsAdded = 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // MSR and MSRsys take one GPR reg Rm, followed by the mask.
 | 
						|
  if (Opcode == ARM::MSR || Opcode == ARM::MSRsys) {
 | 
						|
    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
 | 
						|
    NumOpsAdded = 2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // MSRi and MSRsysi take one so_imm operand, followed by the mask.
 | 
						|
  if (Opcode == ARM::MSRi || Opcode == ARM::MSRsysi) {
 | 
						|
    // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
 | 
						|
    // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
 | 
						|
    // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
 | 
						|
    unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
 | 
						|
    unsigned Imm = insn & 0xFF;
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
 | 
						|
    NumOpsAdded = 2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // SRSW and SRS requires addrmode4:$addr for ${addr:submode}, followed by the
 | 
						|
  // mode immediate (Inst{4-0}).
 | 
						|
  if (Opcode == ARM::SRSW || Opcode == ARM::SRS ||
 | 
						|
      Opcode == ARM::RFEW || Opcode == ARM::RFE) {
 | 
						|
    // ARMInstPrinter::printAddrMode4Operand() prints special mode string
 | 
						|
    // if the base register is SP; so don't set ARM::SP.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode)));
 | 
						|
 | 
						|
    if (Opcode == ARM::SRSW || Opcode == ARM::SRS)
 | 
						|
      MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
 | 
						|
    else
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                         decodeRn(insn))));
 | 
						|
    NumOpsAdded = 3;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((Opcode == ARM::Bcc || Opcode == ARM::BLr9 || Opcode == ARM::BLr9_pred
 | 
						|
          || Opcode == ARM::SMC || Opcode == ARM::SVC) &&
 | 
						|
         "Unexpected Opcode");
 | 
						|
 | 
						|
  assert(NumOps >= 1 && OpInfo[0].RegClass == 0 && "Reg operand expected");
 | 
						|
 | 
						|
  int Imm32 = 0;
 | 
						|
  if (Opcode == ARM::SMC) {
 | 
						|
    // ZeroExtend(imm4, 32) where imm24 = Inst{3-0}.
 | 
						|
    Imm32 = slice(insn, 3, 0);
 | 
						|
  } else if (Opcode == ARM::SVC) {
 | 
						|
    // ZeroExtend(imm24, 32) where imm24 = Inst{23-0}.
 | 
						|
    Imm32 = slice(insn, 23, 0);
 | 
						|
  } else {
 | 
						|
    // SignExtend(imm24:'00', 32) where imm24 = Inst{23-0}.
 | 
						|
    unsigned Imm26 = slice(insn, 23, 0) << 2;
 | 
						|
    //Imm32 = signextend<signed int, 26>(Imm26);
 | 
						|
    Imm32 = SignExtend32<26>(Imm26);
 | 
						|
 | 
						|
    // When executing an ARM instruction, PC reads as the address of the current
 | 
						|
    // instruction plus 8.  The assembler subtracts 8 from the difference
 | 
						|
    // between the branch instruction and the target address, disassembler has
 | 
						|
    // to add 8 to compensate.
 | 
						|
    Imm32 += 8;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateImm(Imm32));
 | 
						|
  NumOpsAdded = 1;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Misc. Branch Instructions.
 | 
						|
// BR_JTadd, BR_JTr, BR_JTm
 | 
						|
// BLXr9, BXr9
 | 
						|
// BRIND, BX_RET
 | 
						|
static bool DisassembleBrMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  // BX_RET has only two predicate operands, do an early return.
 | 
						|
  if (Opcode == ARM::BX_RET)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // BLXr9 and BRIND take one GPR reg.
 | 
						|
  if (Opcode == ARM::BLXr9 || Opcode == ARM::BRIND) {
 | 
						|
    assert(NumOps >= 1 && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    OpIdx = 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // BR_JTadd is an ADD with Rd = PC, (Rn, Rm) as the target and index regs.
 | 
						|
  if (Opcode == ARM::BR_JTadd) {
 | 
						|
    // InOperandList with GPR:$target and GPR:$idx regs.
 | 
						|
 | 
						|
    assert(NumOps == 4 && "Expect 4 operands");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
 | 
						|
    // Fill in the two remaining imm operands to signify build completion.
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0));
 | 
						|
 | 
						|
    OpIdx = 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // BR_JTr is a MOV with Rd = PC, and Rm as the source register.
 | 
						|
  if (Opcode == ARM::BR_JTr) {
 | 
						|
    // InOperandList with GPR::$target reg.
 | 
						|
 | 
						|
    assert(NumOps == 3 && "Expect 3 operands");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
 | 
						|
    // Fill in the two remaining imm operands to signify build completion.
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0));
 | 
						|
 | 
						|
    OpIdx = 3;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // BR_JTm is an LDR with Rt = PC.
 | 
						|
  if (Opcode == ARM::BR_JTm) {
 | 
						|
    // This is the reg/reg form, with base reg followed by +/- reg shop imm.
 | 
						|
    // See also ARMAddressingModes.h (Addressing Mode #2).
 | 
						|
 | 
						|
    assert(NumOps == 5 && getIBit(insn) == 1 && "Expect 5 operands && I-bit=1");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
 | 
						|
    ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
 | 
						|
 | 
						|
    // Disassemble the offset reg (Rm), shift type, and immediate shift length.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    // Inst{6-5} encodes the shift opcode.
 | 
						|
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
 | 
						|
    // Inst{11-7} encodes the imm5 shift amount.
 | 
						|
    unsigned ShImm = slice(insn, 11, 7);
 | 
						|
 | 
						|
    // A8.4.1.  Possible rrx or shift amount of 32...
 | 
						|
    getImmShiftSE(ShOp, ShImm);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(
 | 
						|
                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
 | 
						|
 | 
						|
    // Fill in the two remaining imm operands to signify build completion.
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0));
 | 
						|
 | 
						|
    OpIdx = 5;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(0 && "Unexpected BrMiscFrm Opcode");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool getBFCInvMask(uint32_t insn, uint32_t &mask) {
 | 
						|
  uint32_t lsb = slice(insn, 11, 7);
 | 
						|
  uint32_t msb = slice(insn, 20, 16);
 | 
						|
  uint32_t Val = 0;
 | 
						|
  if (msb < lsb) {
 | 
						|
    DEBUG(errs() << "Encoding error: msb < lsb\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (uint32_t i = lsb; i <= msb; ++i)
 | 
						|
    Val |= (1 << i);
 | 
						|
  mask = ~Val;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool SaturateOpcode(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case ARM::SSATlsl: case ARM::SSATasr: case ARM::SSAT16:
 | 
						|
  case ARM::USATlsl: case ARM::USATasr: case ARM::USAT16:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned decodeSaturatePos(unsigned Opcode, uint32_t insn) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case ARM::SSATlsl:
 | 
						|
  case ARM::SSATasr:
 | 
						|
    return slice(insn, 20, 16) + 1;
 | 
						|
  case ARM::SSAT16:
 | 
						|
    return slice(insn, 19, 16) + 1;
 | 
						|
  case ARM::USATlsl:
 | 
						|
  case ARM::USATasr:
 | 
						|
    return slice(insn, 20, 16);
 | 
						|
  case ARM::USAT16:
 | 
						|
    return slice(insn, 19, 16);
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid opcode passed in");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A major complication is the fact that some of the saturating add/subtract
 | 
						|
// operations have Rd Rm Rn, instead of the "normal" Rd Rn Rm.
 | 
						|
// They are QADD, QDADD, QDSUB, and QSUB.
 | 
						|
static bool DisassembleDPFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  unsigned short NumDefs = TID.getNumDefs();
 | 
						|
  bool isUnary = isUnaryDP(TID.TSFlags);
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  // Disassemble register def if there is one.
 | 
						|
  if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now disassemble the src operands.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // SSAT/SSAT16/USAT/USAT16 has imm operand after Rd.
 | 
						|
  if (SaturateOpcode(Opcode)) {
 | 
						|
    MI.addOperand(MCOperand::CreateImm(decodeSaturatePos(Opcode, insn)));
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
 | 
						|
    if (Opcode == ARM::SSAT16 || Opcode == ARM::USAT16) {
 | 
						|
      OpIdx += 2;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // For SSAT operand reg (Rm) has been disassembled above.
 | 
						|
    // Now disassemble the shift amount.
 | 
						|
 | 
						|
    // Inst{11-7} encodes the imm5 shift amount.
 | 
						|
    unsigned ShAmt = slice(insn, 11, 7);
 | 
						|
 | 
						|
    // A8.6.183.  Possible ASR shift amount of 32...
 | 
						|
    if (Opcode == ARM::SSATasr && ShAmt == 0)
 | 
						|
      ShAmt = 32;
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ShAmt));
 | 
						|
 | 
						|
    OpIdx += 3;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special-case handling of BFC/BFI/SBFX/UBFX.
 | 
						|
  if (Opcode == ARM::BFC || Opcode == ARM::BFI) {
 | 
						|
    // TIED_TO operand skipped for BFC and Inst{3-0} (Reg) for BFI.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(Opcode == ARM::BFC ? 0
 | 
						|
                                       : getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                         decodeRm(insn))));
 | 
						|
    uint32_t mask = 0;
 | 
						|
    if (!getBFCInvMask(insn, mask))
 | 
						|
      return false;
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateImm(mask));
 | 
						|
    OpIdx += 2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (Opcode == ARM::SBFX || Opcode == ARM::UBFX) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 7)));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn, 20, 16) + 1));
 | 
						|
    OpIdx += 3;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool RmRn = (Opcode == ARM::QADD || Opcode == ARM::QDADD ||
 | 
						|
               Opcode == ARM::QDSUB || Opcode == ARM::QSUB);
 | 
						|
 | 
						|
  // BinaryDP has an Rn operand.
 | 
						|
  if (!isUnary) {
 | 
						|
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(
 | 
						|
                    getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                    RmRn ? decodeRm(insn) : decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a two-address operand, skip it, e.g., MOVCCr operand 1.
 | 
						|
  if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now disassemble operand 2.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
 | 
						|
    // We have a reg/reg form.
 | 
						|
    // Assert disabled because saturating operations, e.g., A8.6.127 QASX, are
 | 
						|
    // routed here as well.
 | 
						|
    // assert(getIBit(insn) == 0 && "I_Bit != '0' reg/reg form");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(
 | 
						|
                    getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                    RmRn? decodeRn(insn) : decodeRm(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  } else if (Opcode == ARM::MOVi16 || Opcode == ARM::MOVTi16) {
 | 
						|
    // We have an imm16 = imm4:imm12 (imm4=Inst{19:16}, imm12 = Inst{11:0}).
 | 
						|
    assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
 | 
						|
    unsigned Imm16 = slice(insn, 19, 16) << 12 | slice(insn, 11, 0);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Imm16));
 | 
						|
    ++OpIdx;
 | 
						|
  } else {
 | 
						|
    // We have a reg/imm form.
 | 
						|
    // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
 | 
						|
    // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
 | 
						|
    // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
 | 
						|
    assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
 | 
						|
    unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
 | 
						|
    unsigned Imm = insn & 0xFF;
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleDPSoRegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  unsigned short NumDefs = TID.getNumDefs();
 | 
						|
  bool isUnary = isUnaryDP(TID.TSFlags);
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  // Disassemble register def if there is one.
 | 
						|
  if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Disassemble the src operands.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // BinaryDP has an Rn operand.
 | 
						|
  if (!isUnary) {
 | 
						|
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a two-address operand, skip it, e.g., MOVCCs operand 1.
 | 
						|
  if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Disassemble operand 2, which consists of three components.
 | 
						|
  if (OpIdx + 2 >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
 | 
						|
         (OpInfo[OpIdx+1].RegClass == ARM::GPRRegClassID) &&
 | 
						|
         (OpInfo[OpIdx+2].RegClass == 0) &&
 | 
						|
         "Expect 3 reg operands");
 | 
						|
 | 
						|
  // Register-controlled shifts have Inst{7} = 0 and Inst{4} = 1.
 | 
						|
  unsigned Rs = slice(insn, 4, 4);
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRm(insn))));
 | 
						|
  if (Rs) {
 | 
						|
    // Register-controlled shifts: [Rm, Rs, shift].
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRs(insn))));
 | 
						|
    // Inst{6-5} encodes the shift opcode.
 | 
						|
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, 0)));
 | 
						|
  } else {
 | 
						|
    // Constant shifts: [Rm, reg0, shift_imm].
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0)); // NoRegister
 | 
						|
    // Inst{6-5} encodes the shift opcode.
 | 
						|
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
 | 
						|
    // Inst{11-7} encodes the imm5 shift amount.
 | 
						|
    unsigned ShImm = slice(insn, 11, 7);
 | 
						|
 | 
						|
    // A8.4.1.  Possible rrx or shift amount of 32...
 | 
						|
    getImmShiftSE(ShOp, ShImm);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShImm)));
 | 
						|
  }
 | 
						|
  OpIdx += 3;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, bool isStore, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  bool isPrePost = isPrePostLdSt(TID.TSFlags);
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  assert(((!isStore && TID.getNumDefs() > 0) ||
 | 
						|
          (isStore && (TID.getNumDefs() == 0 || isPrePost)))
 | 
						|
         && "Invalid arguments");
 | 
						|
 | 
						|
  // Operand 0 of a pre- and post-indexed store is the address base writeback.
 | 
						|
  if (isPrePost && isStore) {
 | 
						|
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Disassemble the dst/src operand.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
         "Reg operand expected");
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // After dst of a pre- and post-indexed load is the address base writeback.
 | 
						|
  if (isPrePost && !isStore) {
 | 
						|
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Disassemble the base operand.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
         "Reg operand expected");
 | 
						|
  assert((!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1))
 | 
						|
         && "Index mode or tied_to operand expected");
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // For reg/reg form, base reg is followed by +/- reg shop imm.
 | 
						|
  // For immediate form, it is followed by +/- imm12.
 | 
						|
  // See also ARMAddressingModes.h (Addressing Mode #2).
 | 
						|
  if (OpIdx + 1 >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
 | 
						|
         (OpInfo[OpIdx+1].RegClass == 0) &&
 | 
						|
         "Expect 1 reg operand followed by 1 imm operand");
 | 
						|
 | 
						|
  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  if (getIBit(insn) == 0) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
 | 
						|
    // Disassemble the 12-bit immediate offset.
 | 
						|
    unsigned Imm12 = slice(insn, 11, 0);
 | 
						|
    unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, Imm12, ARM_AM::no_shift);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Offset));
 | 
						|
  } else {
 | 
						|
    // Disassemble the offset reg (Rm), shift type, and immediate shift length.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    // Inst{6-5} encodes the shift opcode.
 | 
						|
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
 | 
						|
    // Inst{11-7} encodes the imm5 shift amount.
 | 
						|
    unsigned ShImm = slice(insn, 11, 7);
 | 
						|
 | 
						|
    // A8.4.1.  Possible rrx or shift amount of 32...
 | 
						|
    getImmShiftSE(ShOp, ShImm);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(
 | 
						|
                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
 | 
						|
  }
 | 
						|
  OpIdx += 2;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleLdFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
  return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false, B);
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
  return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true, B);
 | 
						|
}
 | 
						|
 | 
						|
static bool HasDualReg(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST:
 | 
						|
  case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST:
 | 
						|
    return true;
 | 
						|
  }  
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleLdStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, bool isStore, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  bool isPrePost = isPrePostLdSt(TID.TSFlags);
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  assert(((!isStore && TID.getNumDefs() > 0) ||
 | 
						|
          (isStore && (TID.getNumDefs() == 0 || isPrePost)))
 | 
						|
         && "Invalid arguments");
 | 
						|
 | 
						|
  // Operand 0 of a pre- and post-indexed store is the address base writeback.
 | 
						|
  if (isPrePost && isStore) {
 | 
						|
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  bool DualReg = HasDualReg(Opcode);
 | 
						|
 | 
						|
  // Disassemble the dst/src operand.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
         "Reg operand expected");
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Fill in LDRD and STRD's second operand.
 | 
						|
  if (DualReg) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn) + 1)));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // After dst of a pre- and post-indexed load is the address base writeback.
 | 
						|
  if (isPrePost && !isStore) {
 | 
						|
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Disassemble the base operand.
 | 
						|
  if (OpIdx >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
         "Reg operand expected");
 | 
						|
  assert((!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1))
 | 
						|
         && "Index mode or tied_to operand expected");
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // For reg/reg form, base reg is followed by +/- reg.
 | 
						|
  // For immediate form, it is followed by +/- imm8.
 | 
						|
  // See also ARMAddressingModes.h (Addressing Mode #3).
 | 
						|
  if (OpIdx + 1 >= NumOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
 | 
						|
         (OpInfo[OpIdx+1].RegClass == 0) &&
 | 
						|
         "Expect 1 reg operand followed by 1 imm operand");
 | 
						|
 | 
						|
  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  if (getAM3IBit(insn) == 1) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
 | 
						|
    // Disassemble the 8-bit immediate offset.
 | 
						|
    unsigned Imm4H = (insn >> ARMII::ImmHiShift) & 0xF;
 | 
						|
    unsigned Imm4L = insn & 0xF;
 | 
						|
    unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, (Imm4H << 4) | Imm4L);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Offset));
 | 
						|
  } else {
 | 
						|
    // Disassemble the offset reg (Rm).
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, 0);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Offset));
 | 
						|
  }
 | 
						|
  OpIdx += 2;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleLdMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
  return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false,
 | 
						|
                                B);
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
  return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true, B);
 | 
						|
}
 | 
						|
 | 
						|
// The algorithm for disassembly of LdStMulFrm is different from others because
 | 
						|
// it explicitly populates the two predicate operands after operand 0 (the base)
 | 
						|
// and operand 1 (the AM4 mode imm).  After operand 3, we need to populate the
 | 
						|
// reglist with each affected register encoded as an MCOperand.
 | 
						|
static bool DisassembleLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 5 && "LdStMulFrm expects NumOps >= 5");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn));
 | 
						|
 | 
						|
  // Writeback to base, if necessary.
 | 
						|
  if (Opcode == ARM::LDM_UPD || Opcode == ARM::STM_UPD) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(Base));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(Base));
 | 
						|
 | 
						|
  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
 | 
						|
  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode)));
 | 
						|
 | 
						|
  // Handling the two predicate operands before the reglist.
 | 
						|
  int64_t CondVal = insn >> ARMII::CondShift;
 | 
						|
  MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
 | 
						|
 | 
						|
  OpIdx += 4;
 | 
						|
 | 
						|
  // Fill the variadic part of reglist.
 | 
						|
  unsigned RegListBits = insn & ((1 << 16) - 1);
 | 
						|
  for (unsigned i = 0; i < 16; ++i) {
 | 
						|
    if ((RegListBits >> i) & 1) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                         i)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// LDREX, LDREXB, LDREXH: Rd Rn
 | 
						|
// LDREXD:                Rd Rd+1 Rn
 | 
						|
// STREX, STREXB, STREXH: Rd Rm Rn
 | 
						|
// STREXD:                Rd Rm Rm+1 Rn
 | 
						|
//
 | 
						|
// SWP, SWPB:             Rd Rm Rn
 | 
						|
static bool DisassembleLdStExFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  assert(NumOps >= 2
 | 
						|
         && OpInfo[0].RegClass == ARM::GPRRegClassID
 | 
						|
         && OpInfo[1].RegClass == ARM::GPRRegClassID
 | 
						|
         && "Expect 2 reg operands");
 | 
						|
 | 
						|
  bool isStore = slice(insn, 20, 20) == 0;
 | 
						|
  bool isDW = (Opcode == ARM::LDREXD || Opcode == ARM::STREXD);
 | 
						|
 | 
						|
  // Add the destination operand.
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Store register Exclusive needs a source operand.
 | 
						|
  if (isStore) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
    if (isDW) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                         decodeRm(insn)+1)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
  } else if (isDW) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRd(insn)+1)));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally add the pointer operand.
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Misc. Arithmetic Instructions.
 | 
						|
// CLZ: Rd Rm
 | 
						|
// PKHBT, PKHTB: Rd Rn Rm , LSL/ASR #imm5
 | 
						|
// RBIT, REV, REV16, REVSH: Rd Rm
 | 
						|
static bool DisassembleArithMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  assert(NumOps >= 2
 | 
						|
         && OpInfo[0].RegClass == ARM::GPRRegClassID
 | 
						|
         && OpInfo[1].RegClass == ARM::GPRRegClassID
 | 
						|
         && "Expect 2 reg operands");
 | 
						|
 | 
						|
  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  if (ThreeReg) {
 | 
						|
    assert(NumOps >= 4 && "Expect >= 4 operands");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRm(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // If there is still an operand info left which is an immediate operand, add
 | 
						|
  // an additional imm5 LSL/ASR operand.
 | 
						|
  if (ThreeReg && OpInfo[OpIdx].RegClass == 0
 | 
						|
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
    // Extract the 5-bit immediate field Inst{11-7}.
 | 
						|
    unsigned ShiftAmt = (insn >> ARMII::ShiftShift) & 0x1F;
 | 
						|
    MI.addOperand(MCOperand::CreateImm(ShiftAmt));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Extend instructions.
 | 
						|
// SXT* and UXT*: Rd [Rn] Rm [rot_imm].
 | 
						|
// The 2nd operand register is Rn and the 3rd operand regsiter is Rm for the
 | 
						|
// three register operand form.  Otherwise, Rn=0b1111 and only Rm is used.
 | 
						|
static bool DisassembleExtFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  assert(NumOps >= 2
 | 
						|
         && OpInfo[0].RegClass == ARM::GPRRegClassID
 | 
						|
         && OpInfo[1].RegClass == ARM::GPRRegClassID
 | 
						|
         && "Expect 2 reg operands");
 | 
						|
 | 
						|
  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  if (ThreeReg) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRn(insn))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRm(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // If there is still an operand info left which is an immediate operand, add
 | 
						|
  // an additional rotate immediate operand.
 | 
						|
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
 | 
						|
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
    // Extract the 2-bit rotate field Inst{11-10}.
 | 
						|
    unsigned rot = (insn >> ARMII::ExtRotImmShift) & 3;
 | 
						|
    // Rotation by 8, 16, or 24 bits.
 | 
						|
    MI.addOperand(MCOperand::CreateImm(rot << 3));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/////////////////////////////////////
 | 
						|
//                                 //
 | 
						|
//    Utility Functions For VFP    //
 | 
						|
//                                 //
 | 
						|
/////////////////////////////////////
 | 
						|
 | 
						|
// Extract/Decode Dd/Sd:
 | 
						|
//
 | 
						|
// SP => d = UInt(Vd:D)
 | 
						|
// DP => d = UInt(D:Vd)
 | 
						|
static unsigned decodeVFPRd(uint32_t insn, bool isSPVFP) {
 | 
						|
  return isSPVFP ? (decodeRd(insn) << 1 | getDBit(insn))
 | 
						|
                 : (decodeRd(insn) | getDBit(insn) << 4);
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode Dn/Sn:
 | 
						|
//
 | 
						|
// SP => n = UInt(Vn:N)
 | 
						|
// DP => n = UInt(N:Vn)
 | 
						|
static unsigned decodeVFPRn(uint32_t insn, bool isSPVFP) {
 | 
						|
  return isSPVFP ? (decodeRn(insn) << 1 | getNBit(insn))
 | 
						|
                 : (decodeRn(insn) | getNBit(insn) << 4);
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode Dm/Sm:
 | 
						|
//
 | 
						|
// SP => m = UInt(Vm:M)
 | 
						|
// DP => m = UInt(M:Vm)
 | 
						|
static unsigned decodeVFPRm(uint32_t insn, bool isSPVFP) {
 | 
						|
  return isSPVFP ? (decodeRm(insn) << 1 | getMBit(insn))
 | 
						|
                 : (decodeRm(insn) | getMBit(insn) << 4);
 | 
						|
}
 | 
						|
 | 
						|
// A7.5.1
 | 
						|
#if 0
 | 
						|
static uint64_t VFPExpandImm(unsigned char byte, unsigned N) {
 | 
						|
  assert(N == 32 || N == 64);
 | 
						|
 | 
						|
  uint64_t Result;
 | 
						|
  unsigned bit6 = slice(byte, 6, 6);
 | 
						|
  if (N == 32) {
 | 
						|
    Result = slice(byte, 7, 7) << 31 | slice(byte, 5, 0) << 19;
 | 
						|
    if (bit6)
 | 
						|
      Result |= 0x1f << 25;
 | 
						|
    else
 | 
						|
      Result |= 0x1 << 30;
 | 
						|
  } else {
 | 
						|
    Result = (uint64_t)slice(byte, 7, 7) << 63 |
 | 
						|
             (uint64_t)slice(byte, 5, 0) << 48;
 | 
						|
    if (bit6)
 | 
						|
      Result |= 0xffL << 54;
 | 
						|
    else
 | 
						|
      Result |= 0x1L << 62;
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// VFP Unary Format Instructions:
 | 
						|
//
 | 
						|
// VCMP[E]ZD, VCMP[E]ZS: compares one floating-point register with zero
 | 
						|
// VCVTDS, VCVTSD: converts between double-precision and single-precision
 | 
						|
// The rest of the instructions have homogeneous [VFP]Rd and [VFP]Rm registers.
 | 
						|
static bool DisassembleVFPUnaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 1 && "VFPUnaryFrm expects NumOps >= 1");
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  unsigned RegClass = OpInfo[OpIdx].RegClass;
 | 
						|
  assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) &&
 | 
						|
         "Reg operand expected");
 | 
						|
  bool isSP = (RegClass == ARM::SPRRegClassID);
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, RegClass, decodeVFPRd(insn, isSP))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Early return for compare with zero instructions.
 | 
						|
  if (Opcode == ARM::VCMPEZD || Opcode == ARM::VCMPEZS
 | 
						|
      || Opcode == ARM::VCMPZD || Opcode == ARM::VCMPZS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  RegClass = OpInfo[OpIdx].RegClass;
 | 
						|
  assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) &&
 | 
						|
         "Reg operand expected");
 | 
						|
  isSP = (RegClass == ARM::SPRRegClassID);
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, RegClass, decodeVFPRm(insn, isSP))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// All the instructions have homogeneous [VFP]Rd, [VFP]Rn, and [VFP]Rm regs.
 | 
						|
// Some of them have operand constraints which tie the first operand in the
 | 
						|
// InOperandList to that of the dst.  As far as asm printing is concerned, this
 | 
						|
// tied_to operand is simply skipped.
 | 
						|
static bool DisassembleVFPBinaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 3 && "VFPBinaryFrm expects NumOps >= 3");
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  unsigned RegClass = OpInfo[OpIdx].RegClass;
 | 
						|
  assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) &&
 | 
						|
         "Reg operand expected");
 | 
						|
  bool isSP = (RegClass == ARM::SPRRegClassID);
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, RegClass, decodeVFPRd(insn, isSP))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Skip tied_to operand constraint.
 | 
						|
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
 | 
						|
    assert(NumOps >= 4 && "Expect >=4 operands");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, RegClass, decodeVFPRn(insn, isSP))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, RegClass, decodeVFPRm(insn, isSP))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.295 vcvt (floating-point <-> integer)
 | 
						|
// Int to FP: VSITOD, VSITOS, VUITOD, VUITOS
 | 
						|
// FP to Int: VTOSI[Z|R]D, VTOSI[Z|R]S, VTOUI[Z|R]D, VTOUI[Z|R]S
 | 
						|
// 
 | 
						|
// A8.6.297 vcvt (floating-point and fixed-point)
 | 
						|
// Dd|Sd Dd|Sd(TIED_TO) #fbits(= 16|32 - UInt(imm4:i))
 | 
						|
static bool DisassembleVFPConv1Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 2 && "VFPConv1Frm expects NumOps >= 2");
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  bool SP = slice(insn, 8, 8) == 0; // A8.6.295 & A8.6.297
 | 
						|
  bool fixed_point = slice(insn, 17, 17) == 1; // A8.6.297
 | 
						|
  unsigned RegClassID = SP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
 | 
						|
 | 
						|
  if (fixed_point) {
 | 
						|
    // A8.6.297
 | 
						|
    assert(NumOps >= 3 && "Expect >= 3 operands");
 | 
						|
    int size = slice(insn, 7, 7) == 0 ? 16 : 32;
 | 
						|
    int fbits = size - (slice(insn,3,0) << 1 | slice(insn,5,5));
 | 
						|
    MI.addOperand(MCOperand::CreateReg(
 | 
						|
                    getRegisterEnum(B, RegClassID,
 | 
						|
                                    decodeVFPRd(insn, SP))));
 | 
						|
 | 
						|
    assert(TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
 | 
						|
           "Tied to operand expected");
 | 
						|
    MI.addOperand(MI.getOperand(0));
 | 
						|
 | 
						|
    assert(OpInfo[2].RegClass == 0 && !OpInfo[2].isPredicate() &&
 | 
						|
           !OpInfo[2].isOptionalDef() && "Imm operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateImm(fbits));
 | 
						|
 | 
						|
    NumOpsAdded = 3;
 | 
						|
  } else {
 | 
						|
    // A8.6.295
 | 
						|
    // The Rd (destination) and Rm (source) bits have different interpretations
 | 
						|
    // depending on their single-precisonness.
 | 
						|
    unsigned d, m;
 | 
						|
    if (slice(insn, 18, 18) == 1) { // to_integer operation
 | 
						|
      d = decodeVFPRd(insn, true /* Is Single Precision */);
 | 
						|
      MI.addOperand(MCOperand::CreateReg(
 | 
						|
                      getRegisterEnum(B, ARM::SPRRegClassID, d)));
 | 
						|
      m = decodeVFPRm(insn, SP);
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, m)));
 | 
						|
    } else {
 | 
						|
      d = decodeVFPRd(insn, SP);
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, d)));
 | 
						|
      m = decodeVFPRm(insn, true /* Is Single Precision */);
 | 
						|
      MI.addOperand(MCOperand::CreateReg(
 | 
						|
                      getRegisterEnum(B, ARM::SPRRegClassID, m)));
 | 
						|
    }
 | 
						|
    NumOpsAdded = 2;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// VMOVRS - A8.6.330
 | 
						|
// Rt => Rd; Sn => UInt(Vn:N)
 | 
						|
static bool DisassembleVFPConv2Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 2 && "VFPConv2Frm expects NumOps >= 2");
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
 | 
						|
                                                     decodeVFPRn(insn, true))));
 | 
						|
  NumOpsAdded = 2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// VMOVRRD - A8.6.332
 | 
						|
// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
 | 
						|
//
 | 
						|
// VMOVRRS - A8.6.331
 | 
						|
// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
 | 
						|
static bool DisassembleVFPConv3Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 3 && "VFPConv3Frm expects NumOps >= 3");
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
  OpIdx = 2;
 | 
						|
 | 
						|
  if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
 | 
						|
    unsigned Sm = decodeVFPRm(insn, true);
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
 | 
						|
                                                       Sm)));
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
 | 
						|
                                                       Sm+1)));
 | 
						|
    OpIdx += 2;
 | 
						|
  } else {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(
 | 
						|
                    getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                    decodeVFPRm(insn, false))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// VMOVSR - A8.6.330
 | 
						|
// Rt => Rd; Sn => UInt(Vn:N)
 | 
						|
static bool DisassembleVFPConv4Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 2 && "VFPConv4Frm expects NumOps >= 2");
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
 | 
						|
                                                     decodeVFPRn(insn, true))));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  NumOpsAdded = 2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// VMOVDRR - A8.6.332
 | 
						|
// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
 | 
						|
//
 | 
						|
// VMOVRRS - A8.6.331
 | 
						|
// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
 | 
						|
static bool DisassembleVFPConv5Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 3 && "VFPConv5Frm expects NumOps >= 3");
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
 | 
						|
    unsigned Sm = decodeVFPRm(insn, true);
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
 | 
						|
                                                       Sm)));
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
 | 
						|
                                                       Sm+1)));
 | 
						|
    OpIdx += 2;
 | 
						|
  } else {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(
 | 
						|
                    getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                    decodeVFPRm(insn, false))));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
  OpIdx += 2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// VFP Load/Store Instructions.
 | 
						|
// VLDRD, VLDRS, VSTRD, VSTRS
 | 
						|
static bool DisassembleVFPLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 3 && "VFPLdStFrm expects NumOps >= 3");
 | 
						|
 | 
						|
  bool isSPVFP = (Opcode == ARM::VLDRS || Opcode == ARM::VSTRS) ? true : false;
 | 
						|
  unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
 | 
						|
 | 
						|
  // Extract Dd/Sd for operand 0.
 | 
						|
  unsigned RegD = decodeVFPRd(insn, isSPVFP);
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, RegD)));
 | 
						|
 | 
						|
  unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(Base));
 | 
						|
 | 
						|
  // Next comes the AM5 Opcode.
 | 
						|
  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  unsigned char Imm8 = insn & 0xFF;
 | 
						|
  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(AddrOpcode, Imm8)));
 | 
						|
 | 
						|
  NumOpsAdded = 3;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// VFP Load/Store Multiple Instructions.
 | 
						|
// This is similar to the algorithm for LDM/STM in that operand 0 (the base) and
 | 
						|
// operand 1 (the AM5 mode imm) is followed by two predicate operands.  It is
 | 
						|
// followed by a reglist of either DPR(s) or SPR(s).
 | 
						|
//
 | 
						|
// VLDMD[_UPD], VLDMS[_UPD], VSTMD[_UPD], VSTMS[_UPD]
 | 
						|
static bool DisassembleVFPLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  assert(NumOps >= 5 && "VFPLdStMulFrm expects NumOps >= 5");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn));
 | 
						|
 | 
						|
  // Writeback to base, if necessary.
 | 
						|
  if (Opcode == ARM::VLDMD_UPD || Opcode == ARM::VLDMS_UPD ||
 | 
						|
      Opcode == ARM::VSTMD_UPD || Opcode == ARM::VSTMS_UPD) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(Base));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(Base));
 | 
						|
 | 
						|
  // Next comes the AM5 Opcode.
 | 
						|
  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
 | 
						|
  // Must be either "ia" or "db" submode.
 | 
						|
  if (SubMode != ARM_AM::ia && SubMode != ARM_AM::db) {
 | 
						|
    DEBUG(errs() << "Illegal addressing mode 5 sub-mode!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned char Imm8 = insn & 0xFF;
 | 
						|
  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(SubMode, Imm8)));
 | 
						|
 | 
						|
  // Handling the two predicate operands before the reglist.
 | 
						|
  int64_t CondVal = insn >> ARMII::CondShift;
 | 
						|
  MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
 | 
						|
  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
 | 
						|
 | 
						|
  OpIdx += 4;
 | 
						|
 | 
						|
  bool isSPVFP = (Opcode == ARM::VLDMS || Opcode == ARM::VLDMS_UPD ||
 | 
						|
     Opcode == ARM::VSTMS || Opcode == ARM::VSTMS_UPD) ? true : false;
 | 
						|
  unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
 | 
						|
 | 
						|
  // Extract Dd/Sd.
 | 
						|
  unsigned RegD = decodeVFPRd(insn, isSPVFP);
 | 
						|
 | 
						|
  // Fill the variadic part of reglist.
 | 
						|
  unsigned Regs = isSPVFP ? Imm8 : Imm8/2;
 | 
						|
  for (unsigned i = 0; i < Regs; ++i) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID,
 | 
						|
                                                       RegD + i)));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Misc. VFP Instructions.
 | 
						|
// FMSTAT (vmrs with Rt=0b1111, i.e., to apsr_nzcv and no register operand)
 | 
						|
// FCONSTD (DPR and a VFPf64Imm operand)
 | 
						|
// FCONSTS (SPR and a VFPf32Imm operand)
 | 
						|
// VMRS/VMSR (GPR operand)
 | 
						|
static bool DisassembleVFPMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  if (Opcode == ARM::FMSTAT)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(NumOps >= 2 && "VFPMiscFrm expects >=2 operands");
 | 
						|
 | 
						|
  unsigned RegEnum = 0;
 | 
						|
  switch (OpInfo[0].RegClass) {
 | 
						|
  case ARM::DPRRegClassID:
 | 
						|
    RegEnum = getRegisterEnum(B, ARM::DPRRegClassID, decodeVFPRd(insn, false));
 | 
						|
    break;
 | 
						|
  case ARM::SPRRegClassID:
 | 
						|
    RegEnum = getRegisterEnum(B, ARM::SPRRegClassID, decodeVFPRd(insn, true));
 | 
						|
    break;
 | 
						|
  case ARM::GPRRegClassID:
 | 
						|
    RegEnum = getRegisterEnum(B, ARM::GPRRegClassID, decodeRd(insn));
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid reg class id");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(RegEnum));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Extract/decode the f64/f32 immediate.
 | 
						|
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
 | 
						|
        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
    // The asm syntax specifies the before-expanded <imm>.
 | 
						|
    // Not VFPExpandImm(slice(insn,19,16) << 4 | slice(insn, 3, 0),
 | 
						|
    //                  Opcode == ARM::FCONSTD ? 64 : 32)
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn,19,16)<<4 | slice(insn,3,0)));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// DisassembleThumbFrm() is defined in ThumbDisassemblerCore.h file.
 | 
						|
#include "ThumbDisassemblerCore.h"
 | 
						|
 | 
						|
/////////////////////////////////////////////////////
 | 
						|
//                                                 //
 | 
						|
//     Utility Functions For ARM Advanced SIMD     //
 | 
						|
//                                                 //
 | 
						|
/////////////////////////////////////////////////////
 | 
						|
 | 
						|
// The following NEON namings are based on A8.6.266 VABA, VABAL.  Notice that
 | 
						|
// A8.6.303 VDUP (ARM core register)'s D/Vd pair is the N/Vn pair of VABA/VABAL.
 | 
						|
 | 
						|
// A7.3 Register encoding
 | 
						|
 | 
						|
// Extract/Decode NEON D/Vd:
 | 
						|
//
 | 
						|
// Note that for quadword, Qd = UInt(D:Vd<3:1>) = Inst{22:15-13}, whereas for
 | 
						|
// doubleword, Dd = UInt(D:Vd).  We compensate for this difference by
 | 
						|
// handling it in the getRegisterEnum() utility function.
 | 
						|
// D = Inst{22}, Vd = Inst{15-12}
 | 
						|
static unsigned decodeNEONRd(uint32_t insn) {
 | 
						|
  return ((insn >> ARMII::NEON_D_BitShift) & 1) << 4
 | 
						|
    | ((insn >> ARMII::NEON_RegRdShift) & ARMII::NEONRegMask);
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode NEON N/Vn:
 | 
						|
//
 | 
						|
// Note that for quadword, Qn = UInt(N:Vn<3:1>) = Inst{7:19-17}, whereas for
 | 
						|
// doubleword, Dn = UInt(N:Vn).  We compensate for this difference by
 | 
						|
// handling it in the getRegisterEnum() utility function.
 | 
						|
// N = Inst{7}, Vn = Inst{19-16}
 | 
						|
static unsigned decodeNEONRn(uint32_t insn) {
 | 
						|
  return ((insn >> ARMII::NEON_N_BitShift) & 1) << 4
 | 
						|
    | ((insn >> ARMII::NEON_RegRnShift) & ARMII::NEONRegMask);
 | 
						|
}
 | 
						|
 | 
						|
// Extract/Decode NEON M/Vm:
 | 
						|
//
 | 
						|
// Note that for quadword, Qm = UInt(M:Vm<3:1>) = Inst{5:3-1}, whereas for
 | 
						|
// doubleword, Dm = UInt(M:Vm).  We compensate for this difference by
 | 
						|
// handling it in the getRegisterEnum() utility function.
 | 
						|
// M = Inst{5}, Vm = Inst{3-0}
 | 
						|
static unsigned decodeNEONRm(uint32_t insn) {
 | 
						|
  return ((insn >> ARMII::NEON_M_BitShift) & 1) << 4
 | 
						|
    | ((insn >> ARMII::NEON_RegRmShift) & ARMII::NEONRegMask);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum ElemSize {
 | 
						|
  ESizeNA = 0,
 | 
						|
  ESize8 = 8,
 | 
						|
  ESize16 = 16,
 | 
						|
  ESize32 = 32,
 | 
						|
  ESize64 = 64
 | 
						|
};
 | 
						|
} // End of unnamed namespace
 | 
						|
 | 
						|
// size        field -> Inst{11-10}
 | 
						|
// index_align field -> Inst{7-4}
 | 
						|
//
 | 
						|
// The Lane Index interpretation depends on the Data Size:
 | 
						|
//   8  (encoded as size = 0b00) -> Index = index_align[3:1]
 | 
						|
//   16 (encoded as size = 0b01) -> Index = index_align[3:2]
 | 
						|
//   32 (encoded as size = 0b10) -> Index = index_align[3]
 | 
						|
//
 | 
						|
// Ref: A8.6.317 VLD4 (single 4-element structure to one lane).
 | 
						|
static unsigned decodeLaneIndex(uint32_t insn) {
 | 
						|
  unsigned size = insn >> 10 & 3;
 | 
						|
  assert((size == 0 || size == 1 || size == 2) &&
 | 
						|
         "Encoding error: size should be either 0, 1, or 2");
 | 
						|
 | 
						|
  unsigned index_align = insn >> 4 & 0xF;
 | 
						|
  return (index_align >> 1) >> size;
 | 
						|
}
 | 
						|
 | 
						|
// imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4)
 | 
						|
// op = Inst{5}, cmode = Inst{11-8}
 | 
						|
// i = Inst{24} (ARM architecture)
 | 
						|
// imm3 = Inst{18-16}, imm4 = Inst{3-0}
 | 
						|
// Ref: Table A7-15 Modified immediate values for Advanced SIMD instructions.
 | 
						|
static uint64_t decodeN1VImm(uint32_t insn, ElemSize esize) {
 | 
						|
  unsigned char cmode = (insn >> 8) & 0xF;
 | 
						|
  unsigned char Imm8 = ((insn >> 24) & 1) << 7 |
 | 
						|
                       ((insn >> 16) & 7) << 4 |
 | 
						|
                       (insn & 0xF);
 | 
						|
  uint64_t Imm64 = 0;
 | 
						|
 | 
						|
  switch (esize) {
 | 
						|
  case ESize8:
 | 
						|
    Imm64 = Imm8;
 | 
						|
    break;
 | 
						|
  case ESize16:
 | 
						|
    Imm64 = Imm8 << 8*(cmode >> 1 & 1);
 | 
						|
    break;
 | 
						|
  case ESize32: {
 | 
						|
    if (cmode == 12)
 | 
						|
      Imm64 = (Imm8 << 8) | 0xFF;
 | 
						|
    else if (cmode == 13)
 | 
						|
      Imm64 = (Imm8 << 16) | 0xFFFF;
 | 
						|
    else {
 | 
						|
      // Imm8 to be shifted left by how many bytes...
 | 
						|
      Imm64 = Imm8 << 8*(cmode >> 1 & 3);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ESize64: {
 | 
						|
    for (unsigned i = 0; i < 8; ++i)
 | 
						|
      if ((Imm8 >> i) & 1)
 | 
						|
        Imm64 |= (uint64_t)0xFF << 8*i;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    assert(0 && "Unreachable code!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return Imm64;
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.339 VMUL, VMULL (by scalar)
 | 
						|
// ESize16 => m = Inst{2-0} (Vm<2:0>) D0-D7
 | 
						|
// ESize32 => m = Inst{3-0} (Vm<3:0>) D0-D15
 | 
						|
static unsigned decodeRestrictedDm(uint32_t insn, ElemSize esize) {
 | 
						|
  switch (esize) {
 | 
						|
  case ESize16:
 | 
						|
    return insn & 7;
 | 
						|
  case ESize32:
 | 
						|
    return insn & 0xF;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unreachable code!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.339 VMUL, VMULL (by scalar)
 | 
						|
// ESize16 => index = Inst{5:3} (M:Vm<3>) D0-D7
 | 
						|
// ESize32 => index = Inst{5}   (M)       D0-D15
 | 
						|
static unsigned decodeRestrictedDmIndex(uint32_t insn, ElemSize esize) {
 | 
						|
  switch (esize) {
 | 
						|
  case ESize16:
 | 
						|
    return (((insn >> 5) & 1) << 1) | ((insn >> 3) & 1);
 | 
						|
  case ESize32:
 | 
						|
    return (insn >> 5) & 1;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unreachable code!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)
 | 
						|
// (64 - <fbits>) is encoded as imm6, i.e., Inst{21-16}.
 | 
						|
static unsigned decodeVCVTFractionBits(uint32_t insn) {
 | 
						|
  return 64 - ((insn >> 16) & 0x3F);
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.302 VDUP (scalar)
 | 
						|
// ESize8  => index = Inst{19-17}
 | 
						|
// ESize16 => index = Inst{19-18}
 | 
						|
// ESize32 => index = Inst{19}
 | 
						|
static unsigned decodeNVLaneDupIndex(uint32_t insn, ElemSize esize) {
 | 
						|
  switch (esize) {
 | 
						|
  case ESize8:
 | 
						|
    return (insn >> 17) & 7;
 | 
						|
  case ESize16:
 | 
						|
    return (insn >> 18) & 3;
 | 
						|
  case ESize32:
 | 
						|
    return (insn >> 19) & 1;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unspecified element size!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.328 VMOV (ARM core register to scalar)
 | 
						|
// A8.6.329 VMOV (scalar to ARM core register)
 | 
						|
// ESize8  => index = Inst{21:6-5}
 | 
						|
// ESize16 => index = Inst{21:6}
 | 
						|
// ESize32 => index = Inst{21}
 | 
						|
static unsigned decodeNVLaneOpIndex(uint32_t insn, ElemSize esize) {
 | 
						|
  switch (esize) {
 | 
						|
  case ESize8:
 | 
						|
    return ((insn >> 21) & 1) << 2 | ((insn >> 5) & 3);
 | 
						|
  case ESize16:
 | 
						|
    return ((insn >> 21) & 1) << 1 | ((insn >> 6) & 1);
 | 
						|
  case ESize32:
 | 
						|
    return ((insn >> 21) & 1);
 | 
						|
  default:
 | 
						|
    assert(0 && "Unspecified element size!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Imm6 = Inst{21-16}, L = Inst{7}
 | 
						|
//
 | 
						|
// LeftShift == true (A8.6.367 VQSHL, A8.6.387 VSLI):
 | 
						|
// case L:imm6 of
 | 
						|
//   '0001xxx' => esize = 8; shift_amount = imm6 - 8
 | 
						|
//   '001xxxx' => esize = 16; shift_amount = imm6 - 16
 | 
						|
//   '01xxxxx' => esize = 32; shift_amount = imm6 - 32
 | 
						|
//   '1xxxxxx' => esize = 64; shift_amount = imm6
 | 
						|
//
 | 
						|
// LeftShift == false (A8.6.376 VRSHR, A8.6.368 VQSHRN):
 | 
						|
// case L:imm6 of
 | 
						|
//   '0001xxx' => esize = 8; shift_amount = 16 - imm6
 | 
						|
//   '001xxxx' => esize = 16; shift_amount = 32 - imm6
 | 
						|
//   '01xxxxx' => esize = 32; shift_amount = 64 - imm6
 | 
						|
//   '1xxxxxx' => esize = 64; shift_amount = 64 - imm6
 | 
						|
//
 | 
						|
static unsigned decodeNVSAmt(uint32_t insn, bool LeftShift) {
 | 
						|
  ElemSize esize = ESizeNA;
 | 
						|
  unsigned L = (insn >> 7) & 1;
 | 
						|
  unsigned imm6 = (insn >> 16) & 0x3F;
 | 
						|
  if (L == 0) {
 | 
						|
    if (imm6 >> 3 == 1)
 | 
						|
      esize = ESize8;
 | 
						|
    else if (imm6 >> 4 == 1)
 | 
						|
      esize = ESize16;
 | 
						|
    else if (imm6 >> 5 == 1)
 | 
						|
      esize = ESize32;
 | 
						|
    else
 | 
						|
      assert(0 && "Wrong encoding of Inst{7:21-16}!");
 | 
						|
  } else
 | 
						|
    esize = ESize64;
 | 
						|
 | 
						|
  if (LeftShift)
 | 
						|
    return esize == ESize64 ? imm6 : (imm6 - esize);
 | 
						|
  else
 | 
						|
    return esize == ESize64 ? (esize - imm6) : (2*esize - imm6);
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.305 VEXT
 | 
						|
// Imm4 = Inst{11-8}
 | 
						|
static unsigned decodeN3VImm(uint32_t insn) {
 | 
						|
  return (insn >> 8) & 0xF;
 | 
						|
}
 | 
						|
 | 
						|
static bool UseDRegPair(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ARM::VLD1q8_UPD:
 | 
						|
  case ARM::VLD1q16_UPD:
 | 
						|
  case ARM::VLD1q32_UPD:
 | 
						|
  case ARM::VLD1q64_UPD:
 | 
						|
  case ARM::VST1q8_UPD:
 | 
						|
  case ARM::VST1q16_UPD:
 | 
						|
  case ARM::VST1q32_UPD:
 | 
						|
  case ARM::VST1q64_UPD:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// VLD*
 | 
						|
//   D[d] D[d2] ... Rn [TIED_TO Rn] align [Rm]
 | 
						|
// VLD*LN*
 | 
						|
//   D[d] D[d2] ... Rn [TIED_TO Rn] align [Rm] TIED_TO ... imm(idx)
 | 
						|
// VST*
 | 
						|
//   Rn [TIED_TO Rn] align [Rm] D[d] D[d2] ...
 | 
						|
// VST*LN*
 | 
						|
//   Rn [TIED_TO Rn] align [Rm] D[d] D[d2] ... [imm(idx)]
 | 
						|
//
 | 
						|
// Correctly set VLD*/VST*'s TIED_TO GPR, as the asm printer needs it.
 | 
						|
static bool DisassembleNLdSt0(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, bool Store, bool DblSpaced,
 | 
						|
    BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
 | 
						|
  // At least one DPR register plus addressing mode #6.
 | 
						|
  assert(NumOps >= 3 && "Expect >= 3 operands");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  // We have homogeneous NEON registers for Load/Store.
 | 
						|
  unsigned RegClass = 0;
 | 
						|
 | 
						|
  // Double-spaced registers have increments of 2.
 | 
						|
  unsigned Inc = DblSpaced ? 2 : 1;
 | 
						|
 | 
						|
  unsigned Rn = decodeRn(insn);
 | 
						|
  unsigned Rm = decodeRm(insn);
 | 
						|
  unsigned Rd = decodeNEONRd(insn);
 | 
						|
 | 
						|
  // A7.7.1 Advanced SIMD addressing mode.
 | 
						|
  bool WB = Rm != 15;
 | 
						|
 | 
						|
  // LLVM Addressing Mode #6.
 | 
						|
  unsigned RmEnum = 0;
 | 
						|
  if (WB && Rm != 13)
 | 
						|
    RmEnum = getRegisterEnum(B, ARM::GPRRegClassID, Rm);
 | 
						|
 | 
						|
  if (Store) {
 | 
						|
    // Consume possible WB, AddrMode6, possible increment reg, the DPR/QPR's,
 | 
						|
    // then possible lane index.
 | 
						|
    assert(OpIdx < NumOps && OpInfo[0].RegClass == ARM::GPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
 | 
						|
    if (WB) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                         Rn)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    assert((OpIdx+1) < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           OpInfo[OpIdx + 1].RegClass == 0 && "Addrmode #6 Operands expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       Rn)));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
 | 
						|
    OpIdx += 2;
 | 
						|
 | 
						|
    if (WB) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(RmEnum));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(OpIdx < NumOps &&
 | 
						|
           (OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
 | 
						|
            OpInfo[OpIdx].RegClass == ARM::QPRRegClassID) &&
 | 
						|
           "Reg operand expected");
 | 
						|
 | 
						|
    RegClass = OpInfo[OpIdx].RegClass;
 | 
						|
    while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(
 | 
						|
                      getRegisterEnum(B, RegClass, Rd,
 | 
						|
                                      UseDRegPair(Opcode))));
 | 
						|
      Rd += Inc;
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle possible lane index.
 | 
						|
    if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
 | 
						|
        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
      MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Consume the DPR/QPR's, possible WB, AddrMode6, possible incrment reg,
 | 
						|
    // possible TIED_TO DPR/QPR's (ignored), then possible lane index.
 | 
						|
    RegClass = OpInfo[0].RegClass;
 | 
						|
 | 
						|
    while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(
 | 
						|
                      getRegisterEnum(B, RegClass, Rd,
 | 
						|
                                      UseDRegPair(Opcode))));
 | 
						|
      Rd += Inc;
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    if (WB) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                         Rn)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    assert((OpIdx+1) < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
 | 
						|
           OpInfo[OpIdx + 1].RegClass == 0 && "Addrmode #6 Operands expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       Rn)));
 | 
						|
    MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
 | 
						|
    OpIdx += 2;
 | 
						|
 | 
						|
    if (WB) {
 | 
						|
      MI.addOperand(MCOperand::CreateReg(RmEnum));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
 | 
						|
      assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1 &&
 | 
						|
             "Tied to operand expected");
 | 
						|
      MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle possible lane index.
 | 
						|
    if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
 | 
						|
        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
      MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// A7.7
 | 
						|
// If L (Inst{21}) == 0, store instructions.
 | 
						|
// Find out about double-spaced-ness of the Opcode and pass it on to
 | 
						|
// DisassembleNLdSt0().
 | 
						|
static bool DisassembleNLdSt(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const StringRef Name = ARMInsts[Opcode].Name;
 | 
						|
  bool DblSpaced = false;
 | 
						|
 | 
						|
  if (Name.find("LN") != std::string::npos) {
 | 
						|
    // To one lane instructions.
 | 
						|
    // See, for example, 8.6.317 VLD4 (single 4-element structure to one lane).
 | 
						|
 | 
						|
    // <size> == 16 && Inst{5} == 1 --> DblSpaced = true
 | 
						|
    if (Name.endswith("16") || Name.endswith("16_UPD"))
 | 
						|
      DblSpaced = slice(insn, 5, 5) == 1;
 | 
						|
 | 
						|
    // <size> == 32 && Inst{6} == 1 --> DblSpaced = true
 | 
						|
    if (Name.endswith("32") || Name.endswith("32_UPD"))
 | 
						|
      DblSpaced = slice(insn, 6, 6) == 1;
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Multiple n-element structures with type encoded as Inst{11-8}.
 | 
						|
    // See, for example, A8.6.316 VLD4 (multiple 4-element structures).
 | 
						|
 | 
						|
    // n == 2 && type == 0b1001 -> DblSpaced = true
 | 
						|
    if (Name.startswith("VST2") || Name.startswith("VLD2"))
 | 
						|
      DblSpaced = slice(insn, 11, 8) == 9;
 | 
						|
    
 | 
						|
    // n == 3 && type == 0b0101 -> DblSpaced = true
 | 
						|
    if (Name.startswith("VST3") || Name.startswith("VLD3"))
 | 
						|
      DblSpaced = slice(insn, 11, 8) == 5;
 | 
						|
    
 | 
						|
    // n == 4 && type == 0b0001 -> DblSpaced = true
 | 
						|
    if (Name.startswith("VST4") || Name.startswith("VLD4"))
 | 
						|
      DblSpaced = slice(insn, 11, 8) == 1;
 | 
						|
    
 | 
						|
  }
 | 
						|
  return DisassembleNLdSt0(MI, Opcode, insn, NumOps, NumOpsAdded,
 | 
						|
                           slice(insn, 21, 21) == 0, DblSpaced, B);
 | 
						|
}
 | 
						|
 | 
						|
// VMOV (immediate)
 | 
						|
//   Qd/Dd imm
 | 
						|
static bool DisassembleN1RegModImmFrm(MCInst &MI, unsigned Opcode,
 | 
						|
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
 | 
						|
  assert(NumOps >= 2 &&
 | 
						|
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         (OpInfo[1].RegClass == 0) &&
 | 
						|
         "Expect 1 reg operand followed by 1 imm operand");
 | 
						|
 | 
						|
  // Qd/Dd = Inst{22:15-12} => NEON Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[0].RegClass,
 | 
						|
                                                     decodeNEONRd(insn))));
 | 
						|
 | 
						|
  ElemSize esize = ESizeNA;
 | 
						|
  switch (Opcode) {
 | 
						|
  case ARM::VMOVv8i8:
 | 
						|
  case ARM::VMOVv16i8:
 | 
						|
    esize = ESize8;
 | 
						|
    break;
 | 
						|
  case ARM::VMOVv4i16:
 | 
						|
  case ARM::VMOVv8i16:
 | 
						|
    esize = ESize16;
 | 
						|
    break;
 | 
						|
  case ARM::VMOVv2i32:
 | 
						|
  case ARM::VMOVv4i32:
 | 
						|
    esize = ESize32;
 | 
						|
    break;
 | 
						|
  case ARM::VMOVv1i64:
 | 
						|
  case ARM::VMOVv2i64:
 | 
						|
    esize = ESize64;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unreachable code!");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // One register and a modified immediate value.
 | 
						|
  // Add the imm operand.
 | 
						|
  MI.addOperand(MCOperand::CreateImm(decodeN1VImm(insn, esize)));
 | 
						|
 | 
						|
  NumOpsAdded = 2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum N2VFlag {
 | 
						|
  N2V_None,
 | 
						|
  N2V_VectorDupLane,
 | 
						|
  N2V_VectorConvert_Between_Float_Fixed
 | 
						|
};
 | 
						|
} // End of unnamed namespace
 | 
						|
 | 
						|
// Vector Convert [between floating-point and fixed-point]
 | 
						|
//   Qd/Dd Qm/Dm [fbits]
 | 
						|
//
 | 
						|
// Vector Duplicate Lane (from scalar to all elements) Instructions.
 | 
						|
// VDUPLN16d, VDUPLN16q, VDUPLN32d, VDUPLN32q, VDUPLN8d, VDUPLN8q:
 | 
						|
//   Qd/Dd Dm index
 | 
						|
//
 | 
						|
// Vector Move Long:
 | 
						|
//   Qd Dm
 | 
						|
// 
 | 
						|
// Vector Move Narrow:
 | 
						|
//   Dd Qm
 | 
						|
//
 | 
						|
// Others
 | 
						|
static bool DisassembleNVdVmOptImm(MCInst &MI, unsigned Opc, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, N2VFlag Flag, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opc];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
 | 
						|
  assert(NumOps >= 2 &&
 | 
						|
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         "Expect >= 2 operands and first 2 as reg operands");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  ElemSize esize = ESizeNA;
 | 
						|
  if (Flag == N2V_VectorDupLane) {
 | 
						|
    // VDUPLN has its index embedded.  Its size can be inferred from the Opcode.
 | 
						|
    assert(Opc >= ARM::VDUPLN16d && Opc <= ARM::VDUPLN8q &&
 | 
						|
           "Unexpected Opcode");
 | 
						|
    esize = (Opc == ARM::VDUPLN8d || Opc == ARM::VDUPLN8q) ? ESize8
 | 
						|
       : ((Opc == ARM::VDUPLN16d || Opc == ARM::VDUPLN16q) ? ESize16
 | 
						|
                                                           : ESize32);
 | 
						|
  }
 | 
						|
 | 
						|
  // Qd/Dd = Inst{22:15-12} => NEON Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
 | 
						|
                                                     decodeNEONRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // VPADAL...
 | 
						|
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
 | 
						|
    // TIED_TO operand.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Dm = Inst{5:3-0} => NEON Rm
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
 | 
						|
                                                     decodeNEONRm(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // VZIP and others have two TIED_TO reg operands.
 | 
						|
  int Idx;
 | 
						|
  while (OpIdx < NumOps &&
 | 
						|
         (Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
 | 
						|
    // Add TIED_TO operand.
 | 
						|
    MI.addOperand(MI.getOperand(Idx));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the imm operand, if required.
 | 
						|
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
 | 
						|
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
 | 
						|
    unsigned imm = 0xFFFFFFFF;
 | 
						|
 | 
						|
    if (Flag == N2V_VectorDupLane)
 | 
						|
      imm = decodeNVLaneDupIndex(insn, esize);
 | 
						|
    if (Flag == N2V_VectorConvert_Between_Float_Fixed)
 | 
						|
      imm = decodeVCVTFractionBits(insn);
 | 
						|
 | 
						|
    assert(imm != 0xFFFFFFFF && "Internal error");
 | 
						|
    MI.addOperand(MCOperand::CreateImm(imm));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleN2RegFrm(MCInst &MI, unsigned Opc, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded,
 | 
						|
                                N2V_None, B);
 | 
						|
}
 | 
						|
static bool DisassembleNVCVTFrm(MCInst &MI, unsigned Opc, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded,
 | 
						|
                                N2V_VectorConvert_Between_Float_Fixed, B);
 | 
						|
}
 | 
						|
static bool DisassembleNVecDupLnFrm(MCInst &MI, unsigned Opc, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded,
 | 
						|
                                N2V_VectorDupLane, B);
 | 
						|
}
 | 
						|
 | 
						|
// Vector Shift [Accumulate] Instructions.
 | 
						|
// Qd/Dd [Qd/Dd (TIED_TO)] Qm/Dm ShiftAmt
 | 
						|
//
 | 
						|
// Vector Shift Left Long (with maximum shift count) Instructions.
 | 
						|
// VSHLLi16, VSHLLi32, VSHLLi8: Qd Dm imm (== size)
 | 
						|
//
 | 
						|
static bool DisassembleNVectorShift(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, bool LeftShift, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
 | 
						|
  assert(NumOps >= 3 &&
 | 
						|
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         "Expect >= 3 operands and first 2 as reg operands");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  // Qd/Dd = Inst{22:15-12} => NEON Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
 | 
						|
                                                     decodeNEONRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
 | 
						|
    // TIED_TO operand.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[OpIdx].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         "Reg operand expected");
 | 
						|
 | 
						|
  // Qm/Dm = Inst{5:3-0} => NEON Rm
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
 | 
						|
                                                     decodeNEONRm(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  assert(OpInfo[OpIdx].RegClass == 0 && "Imm operand expected");
 | 
						|
 | 
						|
  // Add the imm operand.
 | 
						|
  
 | 
						|
  // VSHLL has maximum shift count as the imm, inferred from its size.
 | 
						|
  unsigned Imm;
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    Imm = decodeNVSAmt(insn, LeftShift);
 | 
						|
    break;
 | 
						|
  case ARM::VSHLLi8:
 | 
						|
    Imm = 8;
 | 
						|
    break;
 | 
						|
  case ARM::VSHLLi16:
 | 
						|
    Imm = 16;
 | 
						|
    break;
 | 
						|
  case ARM::VSHLLi32:
 | 
						|
    Imm = 32;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  MI.addOperand(MCOperand::CreateImm(Imm));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Left shift instructions.
 | 
						|
static bool DisassembleN2RegVecShLFrm(MCInst &MI, unsigned Opcode,
 | 
						|
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVectorShift(MI, Opcode, insn, NumOps, NumOpsAdded, true,
 | 
						|
                                 B);
 | 
						|
}
 | 
						|
// Right shift instructions have different shift amount interpretation.
 | 
						|
static bool DisassembleN2RegVecShRFrm(MCInst &MI, unsigned Opcode,
 | 
						|
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVectorShift(MI, Opcode, insn, NumOps, NumOpsAdded, false,
 | 
						|
                                 B);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum N3VFlag {
 | 
						|
  N3V_None,
 | 
						|
  N3V_VectorExtract,
 | 
						|
  N3V_VectorShift,
 | 
						|
  N3V_Multiply_By_Scalar
 | 
						|
};
 | 
						|
} // End of unnamed namespace
 | 
						|
 | 
						|
// NEON Three Register Instructions with Optional Immediate Operand
 | 
						|
//
 | 
						|
// Vector Extract Instructions.
 | 
						|
// Qd/Dd Qn/Dn Qm/Dm imm4
 | 
						|
//
 | 
						|
// Vector Shift (Register) Instructions.
 | 
						|
// Qd/Dd Qm/Dm Qn/Dn (notice the order of m, n)
 | 
						|
//
 | 
						|
// Vector Multiply [Accumulate/Subtract] [Long] By Scalar Instructions.
 | 
						|
// Qd/Dd Qn/Dn RestrictedDm index
 | 
						|
//
 | 
						|
// Others
 | 
						|
static bool DisassembleNVdVnVmOptImm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, N3VFlag Flag, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
 | 
						|
  // No checking for OpInfo[2] because of MOVDneon/MOVQ with only two regs.
 | 
						|
  assert(NumOps >= 3 &&
 | 
						|
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         "Expect >= 3 operands and first 2 as reg operands");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  bool VdVnVm = Flag == N3V_VectorShift ? false : true;
 | 
						|
  bool IsImm4 = Flag == N3V_VectorExtract ? true : false;
 | 
						|
  bool IsDmRestricted = Flag == N3V_Multiply_By_Scalar ? true : false;
 | 
						|
  ElemSize esize = ESizeNA;
 | 
						|
  if (Flag == N3V_Multiply_By_Scalar) {
 | 
						|
    unsigned size = (insn >> 20) & 3;
 | 
						|
    if (size == 1) esize = ESize16;
 | 
						|
    if (size == 2) esize = ESize32;
 | 
						|
    assert (esize == ESize16 || esize == ESize32);
 | 
						|
  }
 | 
						|
 | 
						|
  // Qd/Dd = Inst{22:15-12} => NEON Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
 | 
						|
                                                     decodeNEONRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // VABA, VABAL, VBSLd, VBSLq, ...
 | 
						|
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
 | 
						|
    // TIED_TO operand.
 | 
						|
    MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Dn = Inst{7:19-16} => NEON Rn
 | 
						|
  // or
 | 
						|
  // Dm = Inst{5:3-0} => NEON Rm
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, OpInfo[OpIdx].RegClass,
 | 
						|
                                  VdVnVm ? decodeNEONRn(insn)
 | 
						|
                                         : decodeNEONRm(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Special case handling for VMOVDneon and VMOVQ because they are marked as
 | 
						|
  // N3RegFrm.
 | 
						|
  if (Opcode == ARM::VMOVDneon || Opcode == ARM::VMOVQ)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Dm = Inst{5:3-0} => NEON Rm
 | 
						|
  // or
 | 
						|
  // Dm is restricted to D0-D7 if size is 16, D0-D15 otherwise
 | 
						|
  // or
 | 
						|
  // Dn = Inst{7:19-16} => NEON Rn
 | 
						|
  unsigned m = VdVnVm ? (IsDmRestricted ? decodeRestrictedDm(insn, esize)
 | 
						|
                                        : decodeNEONRm(insn))
 | 
						|
                      : decodeNEONRn(insn);
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(
 | 
						|
                  getRegisterEnum(B, OpInfo[OpIdx].RegClass, m)));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
 | 
						|
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
    // Add the imm operand.
 | 
						|
    unsigned Imm = 0;
 | 
						|
    if (IsImm4)
 | 
						|
      Imm = decodeN3VImm(insn);
 | 
						|
    else if (IsDmRestricted)
 | 
						|
      Imm = decodeRestrictedDmIndex(insn, esize);
 | 
						|
    else {
 | 
						|
      assert(0 && "Internal error: unreachable code!");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Imm));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleN3RegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
 | 
						|
                                  N3V_None, B);
 | 
						|
}
 | 
						|
static bool DisassembleN3RegVecShFrm(MCInst &MI, unsigned Opcode,
 | 
						|
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
 | 
						|
                                  N3V_VectorShift, B);
 | 
						|
}
 | 
						|
static bool DisassembleNVecExtractFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
 | 
						|
                                  N3V_VectorExtract, B);
 | 
						|
}
 | 
						|
static bool DisassembleNVecMulScalarFrm(MCInst &MI, unsigned Opcode,
 | 
						|
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
 | 
						|
                                  N3V_Multiply_By_Scalar, B);
 | 
						|
}
 | 
						|
 | 
						|
// Vector Table Lookup
 | 
						|
//
 | 
						|
// VTBL1, VTBX1: Dd [Dd(TIED_TO)] Dn Dm
 | 
						|
// VTBL2, VTBX2: Dd [Dd(TIED_TO)] Dn Dn+1 Dm
 | 
						|
// VTBL3, VTBX3: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dm
 | 
						|
// VTBL4, VTBX4: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dn+3 Dm
 | 
						|
static bool DisassembleNVTBLFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  assert(NumOps >= 3 &&
 | 
						|
         OpInfo[0].RegClass == ARM::DPRRegClassID &&
 | 
						|
         OpInfo[1].RegClass == ARM::DPRRegClassID &&
 | 
						|
         OpInfo[2].RegClass == ARM::DPRRegClassID &&
 | 
						|
         "Expect >= 3 operands and first 3 as reg operands");
 | 
						|
 | 
						|
  unsigned &OpIdx = NumOpsAdded;
 | 
						|
 | 
						|
  OpIdx = 0;
 | 
						|
 | 
						|
  unsigned Rn = decodeNEONRn(insn);
 | 
						|
 | 
						|
  // {Dn} encoded as len = 0b00
 | 
						|
  // {Dn Dn+1} encoded as len = 0b01
 | 
						|
  // {Dn Dn+1 Dn+2 } encoded as len = 0b10
 | 
						|
  // {Dn Dn+1 Dn+2 Dn+3} encoded as len = 0b11
 | 
						|
  unsigned Len = slice(insn, 9, 8) + 1;
 | 
						|
 | 
						|
  // Dd (the destination vector)
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                                     decodeNEONRd(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  // Process tied_to operand constraint.
 | 
						|
  int Idx;
 | 
						|
  if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
 | 
						|
    MI.addOperand(MI.getOperand(Idx));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the <list> now.
 | 
						|
  for (unsigned i = 0; i < Len; ++i) {
 | 
						|
    assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID &&
 | 
						|
           "Reg operand expected");
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                                       Rn + i)));
 | 
						|
    ++OpIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Dm (the index vector)
 | 
						|
  assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID &&
 | 
						|
         "Reg operand (index vector) expected");
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                                     decodeNEONRm(insn))));
 | 
						|
  ++OpIdx;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleNEONFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO) {
 | 
						|
  assert(0 && "Unreachable code!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Vector Get Lane (move scalar to ARM core register) Instructions.
 | 
						|
// VGETLNi32, VGETLNs16, VGETLNs8, VGETLNu16, VGETLNu8: Rt Dn index
 | 
						|
static bool DisassembleNEONGetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  assert(TID.getNumDefs() == 1 && NumOps >= 3 &&
 | 
						|
         OpInfo[0].RegClass == ARM::GPRRegClassID &&
 | 
						|
         OpInfo[1].RegClass == ARM::DPRRegClassID &&
 | 
						|
         OpInfo[2].RegClass == 0 &&
 | 
						|
         "Expect >= 3 operands with one dst operand");
 | 
						|
 | 
						|
  ElemSize esize =
 | 
						|
    Opcode == ARM::VGETLNi32 ? ESize32
 | 
						|
      : ((Opcode == ARM::VGETLNs16 || Opcode == ARM::VGETLNu16) ? ESize16
 | 
						|
                                                                : ESize32);
 | 
						|
 | 
						|
  // Rt = Inst{15-12} => ARM Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
 | 
						|
  // Dn = Inst{7:19-16} => NEON Rn
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                                     decodeNEONRn(insn))));
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
 | 
						|
 | 
						|
  NumOpsAdded = 3;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Vector Set Lane (move ARM core register to scalar) Instructions.
 | 
						|
// VSETLNi16, VSETLNi32, VSETLNi8: Dd Dd (TIED_TO) Rt index
 | 
						|
static bool DisassembleNEONSetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = ARMInsts[Opcode];
 | 
						|
  const TargetOperandInfo *OpInfo = TID.OpInfo;
 | 
						|
  if (!OpInfo) return false;
 | 
						|
 | 
						|
  assert(TID.getNumDefs() == 1 && NumOps >= 3 &&
 | 
						|
         OpInfo[0].RegClass == ARM::DPRRegClassID &&
 | 
						|
         OpInfo[1].RegClass == ARM::DPRRegClassID &&
 | 
						|
         TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
 | 
						|
         OpInfo[2].RegClass == ARM::GPRRegClassID &&
 | 
						|
         OpInfo[3].RegClass == 0 &&
 | 
						|
         "Expect >= 3 operands with one dst operand");
 | 
						|
 | 
						|
  ElemSize esize =
 | 
						|
    Opcode == ARM::VSETLNi8 ? ESize8
 | 
						|
                            : (Opcode == ARM::VSETLNi16 ? ESize16
 | 
						|
                                                        : ESize32);
 | 
						|
 | 
						|
  // Dd = Inst{7:19-16} => NEON Rn
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
 | 
						|
                                                     decodeNEONRn(insn))));
 | 
						|
 | 
						|
  // TIED_TO operand.
 | 
						|
  MI.addOperand(MCOperand::CreateReg(0));
 | 
						|
 | 
						|
  // Rt = Inst{15-12} => ARM Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
 | 
						|
 | 
						|
  NumOpsAdded = 4;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Vector Duplicate Instructions (from ARM core register to all elements).
 | 
						|
// VDUP8d, VDUP16d, VDUP32d, VDUP8q, VDUP16q, VDUP32q: Qd/Dd Rt
 | 
						|
static bool DisassembleNEONDupFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
 | 
						|
  assert(NumOps >= 2 &&
 | 
						|
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
 | 
						|
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
 | 
						|
         OpInfo[1].RegClass == ARM::GPRRegClassID &&
 | 
						|
         "Expect >= 2 operands and first 2 as reg operand");
 | 
						|
 | 
						|
  unsigned RegClass = OpInfo[0].RegClass;
 | 
						|
 | 
						|
  // Qd/Dd = Inst{7:19-16} => NEON Rn
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClass,
 | 
						|
                                                     decodeNEONRn(insn))));
 | 
						|
 | 
						|
  // Rt = Inst{15-12} => ARM Rd
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRd(insn))));
 | 
						|
 | 
						|
  NumOpsAdded = 2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// A8.6.41 DMB
 | 
						|
// A8.6.42 DSB
 | 
						|
// A8.6.49 ISB
 | 
						|
static inline bool MemBarrierInstr(uint32_t insn) {
 | 
						|
  unsigned op7_4 = slice(insn, 7, 4);
 | 
						|
  if (slice(insn, 31, 20) == 0xf57 && (op7_4 >= 4 && op7_4 <= 6))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool PreLoadOpcode(unsigned Opcode) {
 | 
						|
  switch(Opcode) {
 | 
						|
  case ARM::PLDi:  case ARM::PLDr:
 | 
						|
  case ARM::PLDWi: case ARM::PLDWr:
 | 
						|
  case ARM::PLIi:  case ARM::PLIr:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassemblePreLoadFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  // Preload Data/Instruction requires either 2 or 4 operands.
 | 
						|
  // PLDi, PLDWi, PLIi:                Rn [+/-]imm12 add = (U == '1')
 | 
						|
  // PLDr[a|m], PLDWr[a|m], PLIr[a|m]: Rn Rm addrmode2_opc
 | 
						|
 | 
						|
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                     decodeRn(insn))));
 | 
						|
 | 
						|
  if (Opcode == ARM::PLDi || Opcode == ARM::PLDWi || Opcode == ARM::PLIi) {
 | 
						|
    unsigned Imm12 = slice(insn, 11, 0);
 | 
						|
    bool Negative = getUBit(insn) == 0;
 | 
						|
    int Offset = Negative ? -1 - Imm12 : 1 * Imm12;
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Offset));
 | 
						|
    NumOpsAdded = 2;
 | 
						|
  } else {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
 | 
						|
                                                       decodeRm(insn))));
 | 
						|
 | 
						|
    ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
 | 
						|
 | 
						|
    // Inst{6-5} encodes the shift opcode.
 | 
						|
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
 | 
						|
    // Inst{11-7} encodes the imm5 shift amount.
 | 
						|
    unsigned ShImm = slice(insn, 11, 7);
 | 
						|
 | 
						|
    // A8.4.1.  Possible rrx or shift amount of 32...
 | 
						|
    getImmShiftSE(ShOp, ShImm);
 | 
						|
    MI.addOperand(MCOperand::CreateImm(
 | 
						|
                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
 | 
						|
    NumOpsAdded = 3;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
 | 
						|
 | 
						|
  if (MemBarrierInstr(insn))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  case ARM::CLREX:
 | 
						|
  case ARM::NOP:
 | 
						|
  case ARM::TRAP:
 | 
						|
  case ARM::YIELD:
 | 
						|
  case ARM::WFE:
 | 
						|
  case ARM::WFI:
 | 
						|
  case ARM::SEV:
 | 
						|
  case ARM::SETENDBE:
 | 
						|
  case ARM::SETENDLE:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // CPS has a singleton $opt operand that contains the following information:
 | 
						|
  // opt{4-0} = mode from Inst{4-0}
 | 
						|
  // opt{5} = changemode from Inst{17}
 | 
						|
  // opt{8-6} = AIF from Inst{8-6}
 | 
						|
  // opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable
 | 
						|
  if (Opcode == ARM::CPS) {
 | 
						|
    unsigned Option = slice(insn, 4, 0) | slice(insn, 17, 17) << 5 |
 | 
						|
      slice(insn, 8, 6) << 6 | slice(insn, 19, 18) << 9;
 | 
						|
    MI.addOperand(MCOperand::CreateImm(Option));
 | 
						|
    NumOpsAdded = 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // DBG has its option specified in Inst{3-0}.
 | 
						|
  if (Opcode == ARM::DBG) {
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
 | 
						|
    NumOpsAdded = 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // BKPT takes an imm32 val equal to ZeroExtend(Inst{19-8:3-0}).
 | 
						|
  if (Opcode == ARM::BKPT) {
 | 
						|
    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 8) << 4 |
 | 
						|
                                       slice(insn, 3, 0)));
 | 
						|
    NumOpsAdded = 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PreLoadOpcode(Opcode))
 | 
						|
    return DisassemblePreLoadFrm(MI, Opcode, insn, NumOps, NumOpsAdded, B);
 | 
						|
 | 
						|
  assert(0 && "Unexpected misc instruction!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool DisassembleThumbMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
 | 
						|
    unsigned short NumOps, unsigned &NumOpsAdded, BO) {
 | 
						|
 | 
						|
  assert(0 && "Unexpected thumb misc. instruction!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FuncPtrs - FuncPtrs maps ARMFormat to its corresponding DisassembleFP.
 | 
						|
/// We divide the disassembly task into different categories, with each one
 | 
						|
/// corresponding to a specific instruction encoding format.  There could be
 | 
						|
/// exceptions when handling a specific format, and that is why the Opcode is
 | 
						|
/// also present in the function prototype.
 | 
						|
static const DisassembleFP FuncPtrs[] = {
 | 
						|
  &DisassemblePseudo,
 | 
						|
  &DisassembleMulFrm,
 | 
						|
  &DisassembleBrFrm,
 | 
						|
  &DisassembleBrMiscFrm,
 | 
						|
  &DisassembleDPFrm,
 | 
						|
  &DisassembleDPSoRegFrm,
 | 
						|
  &DisassembleLdFrm,
 | 
						|
  &DisassembleStFrm,
 | 
						|
  &DisassembleLdMiscFrm,
 | 
						|
  &DisassembleStMiscFrm,
 | 
						|
  &DisassembleLdStMulFrm,
 | 
						|
  &DisassembleLdStExFrm,
 | 
						|
  &DisassembleArithMiscFrm,
 | 
						|
  &DisassembleExtFrm,
 | 
						|
  &DisassembleVFPUnaryFrm,
 | 
						|
  &DisassembleVFPBinaryFrm,
 | 
						|
  &DisassembleVFPConv1Frm,
 | 
						|
  &DisassembleVFPConv2Frm,
 | 
						|
  &DisassembleVFPConv3Frm,
 | 
						|
  &DisassembleVFPConv4Frm,
 | 
						|
  &DisassembleVFPConv5Frm,
 | 
						|
  &DisassembleVFPLdStFrm,
 | 
						|
  &DisassembleVFPLdStMulFrm,
 | 
						|
  &DisassembleVFPMiscFrm,
 | 
						|
  &DisassembleThumbFrm,
 | 
						|
  &DisassembleNEONFrm,
 | 
						|
  &DisassembleNEONGetLnFrm,
 | 
						|
  &DisassembleNEONSetLnFrm,
 | 
						|
  &DisassembleNEONDupFrm,
 | 
						|
  &DisassembleMiscFrm,
 | 
						|
  &DisassembleThumbMiscFrm,
 | 
						|
 | 
						|
  // VLD and VST (including one lane) Instructions.
 | 
						|
  &DisassembleNLdSt,
 | 
						|
 | 
						|
  // A7.4.6 One register and a modified immediate value
 | 
						|
  // 1-Register Instructions with imm.
 | 
						|
  // LLVM only defines VMOVv instructions.
 | 
						|
  &DisassembleN1RegModImmFrm,
 | 
						|
 | 
						|
  // 2-Register Instructions with no imm.
 | 
						|
  &DisassembleN2RegFrm,
 | 
						|
 | 
						|
  // 2-Register Instructions with imm (vector convert float/fixed point).
 | 
						|
  &DisassembleNVCVTFrm,
 | 
						|
 | 
						|
  // 2-Register Instructions with imm (vector dup lane).
 | 
						|
  &DisassembleNVecDupLnFrm,
 | 
						|
 | 
						|
  // Vector Shift Left Instructions.
 | 
						|
  &DisassembleN2RegVecShLFrm,
 | 
						|
 | 
						|
  // Vector Shift Righ Instructions, which has different interpretation of the
 | 
						|
  // shift amount from the imm6 field.
 | 
						|
  &DisassembleN2RegVecShRFrm,
 | 
						|
 | 
						|
  // 3-Register Data-Processing Instructions.
 | 
						|
  &DisassembleN3RegFrm,
 | 
						|
 | 
						|
  // Vector Shift (Register) Instructions.
 | 
						|
  // D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
 | 
						|
  &DisassembleN3RegVecShFrm,
 | 
						|
 | 
						|
  // Vector Extract Instructions.
 | 
						|
  &DisassembleNVecExtractFrm,
 | 
						|
 | 
						|
  // Vector [Saturating Rounding Doubling] Multiply [Accumulate/Subtract] [Long]
 | 
						|
  // By Scalar Instructions.
 | 
						|
  &DisassembleNVecMulScalarFrm,
 | 
						|
 | 
						|
  // Vector Table Lookup uses byte indexes in a control vector to look up byte
 | 
						|
  // values in a table and generate a new vector.
 | 
						|
  &DisassembleNVTBLFrm,
 | 
						|
 | 
						|
  NULL
 | 
						|
};
 | 
						|
 | 
						|
/// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
 | 
						|
/// The general idea is to set the Opcode for the MCInst, followed by adding
 | 
						|
/// the appropriate MCOperands to the MCInst.  ARM Basic MC Builder delegates
 | 
						|
/// to the Format-specific disassemble function for disassembly, followed by
 | 
						|
/// TryPredicateAndSBitModifier() to do PredicateOperand and OptionalDefOperand
 | 
						|
/// which follow the Dst/Src Operands.
 | 
						|
bool ARMBasicMCBuilder::BuildIt(MCInst &MI, uint32_t insn) {
 | 
						|
  // Stage 1 sets the Opcode.
 | 
						|
  MI.setOpcode(Opcode);
 | 
						|
  // If the number of operands is zero, we're done!
 | 
						|
  if (NumOps == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Stage 2 calls the format-specific disassemble function to build the operand
 | 
						|
  // list.
 | 
						|
  if (Disasm == NULL)
 | 
						|
    return false;
 | 
						|
  unsigned NumOpsAdded = 0;
 | 
						|
  bool OK = (*Disasm)(MI, Opcode, insn, NumOps, NumOpsAdded, this);
 | 
						|
 | 
						|
  if (!OK || this->Err != 0) return false;
 | 
						|
  if (NumOpsAdded >= NumOps)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Stage 3 deals with operands unaccounted for after stage 2 is finished.
 | 
						|
  // FIXME: Should this be done selectively?
 | 
						|
  return TryPredicateAndSBitModifier(MI, Opcode, insn, NumOps - NumOpsAdded);
 | 
						|
}
 | 
						|
 | 
						|
// A8.3 Conditional execution
 | 
						|
// A8.3.1 Pseudocode details of conditional execution
 | 
						|
// Condition bits '111x' indicate the instruction is always executed.
 | 
						|
static uint32_t CondCode(uint32_t CondField) {
 | 
						|
  if (CondField == 0xF)
 | 
						|
    return ARMCC::AL;
 | 
						|
  return CondField;
 | 
						|
}
 | 
						|
 | 
						|
/// DoPredicateOperands - DoPredicateOperands process the predicate operands
 | 
						|
/// of some Thumb instructions which come before the reglist operands.  It
 | 
						|
/// returns true if the two predicate operands have been processed.
 | 
						|
bool ARMBasicMCBuilder::DoPredicateOperands(MCInst& MI, unsigned Opcode,
 | 
						|
    uint32_t /* insn */, unsigned short NumOpsRemaining) {
 | 
						|
 | 
						|
  assert(NumOpsRemaining > 0 && "Invalid argument");
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  unsigned Idx = MI.getNumOperands();
 | 
						|
 | 
						|
  // First, we check whether this instr specifies the PredicateOperand through
 | 
						|
  // a pair of TargetOperandInfos with isPredicate() property.
 | 
						|
  if (NumOpsRemaining >= 2 &&
 | 
						|
      OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
 | 
						|
      OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
 | 
						|
  {
 | 
						|
    // If we are inside an IT block, get the IT condition bits maintained via
 | 
						|
    // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
 | 
						|
    // See also A2.5.2.
 | 
						|
    if (InITBlock())
 | 
						|
      MI.addOperand(MCOperand::CreateImm(GetITCond()));
 | 
						|
    else
 | 
						|
      MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
 | 
						|
    MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
  
 | 
						|
/// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process
 | 
						|
/// the possible Predicate and SBitModifier, to build the remaining MCOperand
 | 
						|
/// constituents.
 | 
						|
bool ARMBasicMCBuilder::TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
 | 
						|
    uint32_t insn, unsigned short NumOpsRemaining) {
 | 
						|
 | 
						|
  assert(NumOpsRemaining > 0 && "Invalid argument");
 | 
						|
 | 
						|
  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
 | 
						|
  const std::string &Name = ARMInsts[Opcode].Name;
 | 
						|
  unsigned Idx = MI.getNumOperands();
 | 
						|
 | 
						|
  // First, we check whether this instr specifies the PredicateOperand through
 | 
						|
  // a pair of TargetOperandInfos with isPredicate() property.
 | 
						|
  if (NumOpsRemaining >= 2 &&
 | 
						|
      OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
 | 
						|
      OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
 | 
						|
  {
 | 
						|
    // If we are inside an IT block, get the IT condition bits maintained via
 | 
						|
    // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
 | 
						|
    // See also A2.5.2.
 | 
						|
    if (InITBlock())
 | 
						|
      MI.addOperand(MCOperand::CreateImm(GetITCond()));
 | 
						|
    else {
 | 
						|
      if (Name.length() > 1 && Name[0] == 't') {
 | 
						|
        // Thumb conditional branch instructions have their cond field embedded,
 | 
						|
        // like ARM.
 | 
						|
        //
 | 
						|
        // A8.6.16 B
 | 
						|
        if (Name == "t2Bcc")
 | 
						|
          MI.addOperand(MCOperand::CreateImm(CondCode(slice(insn, 25, 22))));
 | 
						|
        else if (Name == "tBcc")
 | 
						|
          MI.addOperand(MCOperand::CreateImm(CondCode(slice(insn, 11, 8))));
 | 
						|
        else
 | 
						|
          MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
 | 
						|
      } else {
 | 
						|
        // ARM instructions get their condition field from Inst{31-28}.
 | 
						|
        MI.addOperand(MCOperand::CreateImm(CondCode(getCondField(insn))));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
 | 
						|
    Idx += 2;
 | 
						|
    NumOpsRemaining -= 2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumOpsRemaining == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Next, if OptionalDefOperand exists, we check whether the 'S' bit is set.
 | 
						|
  if (OpInfo[Idx].isOptionalDef() && OpInfo[Idx].RegClass==ARM::CCRRegClassID) {
 | 
						|
    MI.addOperand(MCOperand::CreateReg(getSBit(insn) == 1 ? ARM::CPSR : 0));
 | 
						|
    --NumOpsRemaining;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumOpsRemaining == 0)
 | 
						|
    return true;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
 | 
						|
/// after BuildIt is finished.
 | 
						|
bool ARMBasicMCBuilder::RunBuildAfterHook(bool Status, MCInst &MI,
 | 
						|
    uint32_t insn) {
 | 
						|
 | 
						|
  if (!SP) return Status;
 | 
						|
 | 
						|
  if (Opcode == ARM::t2IT)
 | 
						|
    Status = SP->InitIT(slice(insn, 7, 0)) ? Status : false;
 | 
						|
  else if (InITBlock())
 | 
						|
    SP->UpdateIT();
 | 
						|
 | 
						|
  return Status;
 | 
						|
}
 | 
						|
 | 
						|
/// Opcode, Format, and NumOperands make up an ARM Basic MCBuilder.
 | 
						|
ARMBasicMCBuilder::ARMBasicMCBuilder(unsigned opc, ARMFormat format,
 | 
						|
                                     unsigned short num)
 | 
						|
  : Opcode(opc), Format(format), NumOps(num), SP(0), Err(0) {
 | 
						|
  unsigned Idx = (unsigned)format;
 | 
						|
  assert(Idx < (array_lengthof(FuncPtrs) - 1) && "Unknown format");
 | 
						|
  Disasm = FuncPtrs[Idx];
 | 
						|
}
 | 
						|
 | 
						|
/// CreateMCBuilder - Return an ARMBasicMCBuilder that can build up the MC
 | 
						|
/// infrastructure of an MCInst given the Opcode and Format of the instr.
 | 
						|
/// Return NULL if it fails to create/return a proper builder.  API clients
 | 
						|
/// are responsible for freeing up of the allocated memory.  Cacheing can be
 | 
						|
/// performed by the API clients to improve performance.
 | 
						|
ARMBasicMCBuilder *llvm::CreateMCBuilder(unsigned Opcode, ARMFormat Format) {
 | 
						|
  // For "Unknown format", fail by returning a NULL pointer.
 | 
						|
  if ((unsigned)Format >= (array_lengthof(FuncPtrs) - 1)) {
 | 
						|
    DEBUG(errs() << "Unknown format\n");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return new ARMBasicMCBuilder(Opcode, Format,
 | 
						|
                               ARMInsts[Opcode].getNumOperands());
 | 
						|
}
 |