mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51090 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1070 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the LoopInfo class that is used to identify natural loops
 | 
						|
// and determine the loop depth of various nodes of the CFG.  Note that natural
 | 
						|
// loops may actually be several loops that share the same header node.
 | 
						|
//
 | 
						|
// This analysis calculates the nesting structure of loops in a function.  For
 | 
						|
// each natural loop identified, this analysis identifies natural loops
 | 
						|
// contained entirely within the loop and the basic blocks the make up the loop.
 | 
						|
//
 | 
						|
// It can calculate on the fly various bits of information, for example:
 | 
						|
//
 | 
						|
//  * whether there is a preheader for the loop
 | 
						|
//  * the number of back edges to the header
 | 
						|
//  * whether or not a particular block branches out of the loop
 | 
						|
//  * the successor blocks of the loop
 | 
						|
//  * the loop depth
 | 
						|
//  * the trip count
 | 
						|
//  * etc...
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_LOOP_INFO_H
 | 
						|
#define LLVM_ANALYSIS_LOOP_INFO_H
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <ostream>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void RemoveFromVector(std::vector<T*> &V, T *N) {
 | 
						|
  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
 | 
						|
  assert(I != V.end() && "N is not in this list!");
 | 
						|
  V.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
class DominatorTree;
 | 
						|
class LoopInfo;
 | 
						|
class PHINode;
 | 
						|
class Instruction;
 | 
						|
template<class N> class LoopInfoBase;
 | 
						|
template<class N> class LoopBase;
 | 
						|
 | 
						|
typedef LoopBase<BasicBlock> Loop;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// LoopBase class - Instances of this class are used to represent loops that
 | 
						|
/// are detected in the flow graph
 | 
						|
///
 | 
						|
template<class BlockT>
 | 
						|
class LoopBase {
 | 
						|
  LoopBase<BlockT> *ParentLoop;
 | 
						|
  // SubLoops - Loops contained entirely within this one.
 | 
						|
  std::vector<LoopBase<BlockT>*> SubLoops;
 | 
						|
 | 
						|
  // Blocks - The list of blocks in this loop.  First entry is the header node.
 | 
						|
  std::vector<BlockT*> Blocks;
 | 
						|
 | 
						|
  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
 | 
						|
  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  /// Loop ctor - This creates an empty loop.
 | 
						|
  LoopBase() : ParentLoop(0) {}
 | 
						|
  ~LoopBase() {
 | 
						|
    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
 | 
						|
      delete SubLoops[i];
 | 
						|
  }
 | 
						|
 | 
						|
  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
 | 
						|
  /// loop has depth 1, for consistency with loop depth values used for basic
 | 
						|
  /// blocks, where depth 0 is used for blocks not inside any loops.
 | 
						|
  unsigned getLoopDepth() const {
 | 
						|
    unsigned D = 1;
 | 
						|
    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
 | 
						|
         CurLoop = CurLoop->ParentLoop)
 | 
						|
      ++D;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
  BlockT *getHeader() const { return Blocks.front(); }
 | 
						|
  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
 | 
						|
 | 
						|
  /// contains - Return true if the specified basic block is in this loop
 | 
						|
  ///
 | 
						|
  bool contains(const BlockT *BB) const {
 | 
						|
    return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// iterator/begin/end - Return the loops contained entirely within this loop.
 | 
						|
  ///
 | 
						|
  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
 | 
						|
  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
 | 
						|
  iterator begin() const { return SubLoops.begin(); }
 | 
						|
  iterator end() const { return SubLoops.end(); }
 | 
						|
  bool empty() const { return SubLoops.empty(); }
 | 
						|
 | 
						|
  /// getBlocks - Get a list of the basic blocks which make up this loop.
 | 
						|
  ///
 | 
						|
  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
 | 
						|
  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
 | 
						|
  block_iterator block_begin() const { return Blocks.begin(); }
 | 
						|
  block_iterator block_end() const { return Blocks.end(); }
 | 
						|
 | 
						|
  /// isLoopExit - True if terminator in the block can branch to another block
 | 
						|
  /// that is outside of the current loop.
 | 
						|
  ///
 | 
						|
  bool isLoopExit(const BlockT *BB) const {
 | 
						|
    typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
    for (typename BlockTraits::ChildIteratorType SI =
 | 
						|
         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
 | 
						|
         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
 | 
						|
      if (!contains(*SI))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getNumBackEdges - Calculate the number of back edges to the loop header
 | 
						|
  ///
 | 
						|
  unsigned getNumBackEdges() const {
 | 
						|
    unsigned NumBackEdges = 0;
 | 
						|
    BlockT *H = getHeader();
 | 
						|
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    for (typename InvBlockTraits::ChildIteratorType I =
 | 
						|
         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
 | 
						|
         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
 | 
						|
      if (contains(*I))
 | 
						|
        ++NumBackEdges;
 | 
						|
 | 
						|
    return NumBackEdges;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isLoopInvariant - Return true if the specified value is loop invariant
 | 
						|
  ///
 | 
						|
  inline bool isLoopInvariant(Value *V) const {
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
      return !contains(I->getParent());
 | 
						|
    return true;  // All non-instructions are loop invariant
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // APIs for simple analysis of the loop.
 | 
						|
  //
 | 
						|
  // Note that all of these methods can fail on general loops (ie, there may not
 | 
						|
  // be a preheader, etc).  For best success, the loop simplification and
 | 
						|
  // induction variable canonicalization pass should be used to normalize loops
 | 
						|
  // for easy analysis.  These methods assume canonical loops.
 | 
						|
 | 
						|
  /// getExitingBlocks - Return all blocks inside the loop that have successors
 | 
						|
  /// outside of the loop.  These are the blocks _inside of the current loop_
 | 
						|
  /// which branch out.  The returned list is always unique.
 | 
						|
  ///
 | 
						|
  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
 | 
						|
    // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
    // lookups.
 | 
						|
    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | 
						|
    std::sort(LoopBBs.begin(), LoopBBs.end());
 | 
						|
 | 
						|
    typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
 | 
						|
         BE = Blocks.end(); BI != BE; ++BI)
 | 
						|
      for (typename BlockTraits::ChildIteratorType I =
 | 
						|
          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
          I != E; ++I)
 | 
						|
        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
 | 
						|
          // Not in current loop? It must be an exit block.
 | 
						|
          ExitingBlocks.push_back(*BI);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  /// getExitBlocks - Return all of the successor blocks of this loop.  These
 | 
						|
  /// are the blocks _outside of the current loop_ which are branched to.
 | 
						|
  ///
 | 
						|
  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
 | 
						|
    // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
    // lookups.
 | 
						|
    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | 
						|
    std::sort(LoopBBs.begin(), LoopBBs.end());
 | 
						|
 | 
						|
    typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
 | 
						|
         BE = Blocks.end(); BI != BE; ++BI)
 | 
						|
      for (typename BlockTraits::ChildIteratorType I =
 | 
						|
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
           I != E; ++I)
 | 
						|
        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | 
						|
          // Not in current loop? It must be an exit block.
 | 
						|
          ExitBlocks.push_back(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 
 | 
						|
  /// These are the blocks _outside of the current loop_ which are branched to.
 | 
						|
  /// This assumes that loop is in canonical form.
 | 
						|
  ///
 | 
						|
  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
 | 
						|
    // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
    // lookups.
 | 
						|
    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | 
						|
    std::sort(LoopBBs.begin(), LoopBBs.end());
 | 
						|
 | 
						|
    std::vector<BlockT*> switchExitBlocks;  
 | 
						|
 | 
						|
    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
 | 
						|
         BE = Blocks.end(); BI != BE; ++BI) {
 | 
						|
 | 
						|
      BlockT *current = *BI;
 | 
						|
      switchExitBlocks.clear();
 | 
						|
 | 
						|
      typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
      for (typename BlockTraits::ChildIteratorType I =
 | 
						|
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
           I != E; ++I) {
 | 
						|
        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | 
						|
      // If block is inside the loop then it is not a exit block.
 | 
						|
          continue;
 | 
						|
      
 | 
						|
        typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
                                                InvBlockTraits::child_begin(*I);
 | 
						|
        BlockT *firstPred = *PI;
 | 
						|
 | 
						|
        // If current basic block is this exit block's first predecessor
 | 
						|
        // then only insert exit block in to the output ExitBlocks vector.
 | 
						|
        // This ensures that same exit block is not inserted twice into
 | 
						|
        // ExitBlocks vector.
 | 
						|
        if (current != firstPred) 
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If a terminator has more then two successors, for example SwitchInst,
 | 
						|
        // then it is possible that there are multiple edges from current block 
 | 
						|
        // to one exit block. 
 | 
						|
        if (std::distance(BlockTraits::child_begin(current),
 | 
						|
                          BlockTraits::child_end(current)) <= 2) {
 | 
						|
          ExitBlocks.push_back(*I);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // In case of multiple edges from current block to exit block, collect
 | 
						|
        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | 
						|
        // duplicate edges.
 | 
						|
        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 
 | 
						|
            == switchExitBlocks.end()) {
 | 
						|
          switchExitBlocks.push_back(*I);
 | 
						|
          ExitBlocks.push_back(*I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
 | 
						|
  /// loop has a preheader if there is only one edge to the header of the loop
 | 
						|
  /// from outside of the loop.  If this is the case, the block branching to the
 | 
						|
  /// header of the loop is the preheader node.
 | 
						|
  ///
 | 
						|
  /// This method returns null if there is no preheader for the loop.
 | 
						|
  ///
 | 
						|
  BlockT *getLoopPreheader() const {
 | 
						|
    // Keep track of nodes outside the loop branching to the header...
 | 
						|
    BlockT *Out = 0;
 | 
						|
 | 
						|
    // Loop over the predecessors of the header node...
 | 
						|
    BlockT *Header = getHeader();
 | 
						|
    typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    for (typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
         InvBlockTraits::child_begin(Header),
 | 
						|
         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
 | 
						|
      if (!contains(*PI)) {     // If the block is not in the loop...
 | 
						|
        if (Out && Out != *PI)
 | 
						|
          return 0;             // Multiple predecessors outside the loop
 | 
						|
        Out = *PI;
 | 
						|
      }
 | 
						|
 | 
						|
    // Make sure there is only one exit out of the preheader.
 | 
						|
    assert(Out && "Header of loop has no predecessors from outside loop?");
 | 
						|
    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
 | 
						|
    ++SI;
 | 
						|
    if (SI != BlockTraits::child_end(Out))
 | 
						|
      return 0;  // Multiple exits from the block, must not be a preheader.
 | 
						|
 | 
						|
    // If there is exactly one preheader, return it.  If there was zero, then
 | 
						|
    // Out is still null.
 | 
						|
    return Out;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getLoopLatch - If there is a latch block for this loop, return it.  A
 | 
						|
  /// latch block is the canonical backedge for a loop.  A loop header in normal
 | 
						|
  /// form has two edges into it: one from a preheader and one from a latch
 | 
						|
  /// block.
 | 
						|
  BlockT *getLoopLatch() const {
 | 
						|
    BlockT *Header = getHeader();
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
                                            InvBlockTraits::child_begin(Header);
 | 
						|
    typename InvBlockTraits::ChildIteratorType PE =
 | 
						|
                                              InvBlockTraits::child_end(Header);
 | 
						|
    if (PI == PE) return 0;  // no preds?
 | 
						|
 | 
						|
    BlockT *Latch = 0;
 | 
						|
    if (contains(*PI))
 | 
						|
      Latch = *PI;
 | 
						|
    ++PI;
 | 
						|
    if (PI == PE) return 0;  // only one pred?
 | 
						|
 | 
						|
    if (contains(*PI)) {
 | 
						|
      if (Latch) return 0;  // multiple backedges
 | 
						|
      Latch = *PI;
 | 
						|
    }
 | 
						|
    ++PI;
 | 
						|
    if (PI != PE) return 0;  // more than two preds
 | 
						|
 | 
						|
    return Latch;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | 
						|
  /// induction variable: an integer recurrence that starts at 0 and increments
 | 
						|
  /// by one each time through the loop.  If so, return the phi node that
 | 
						|
  /// corresponds to it.
 | 
						|
  ///
 | 
						|
  inline PHINode *getCanonicalInductionVariable() const {
 | 
						|
    BlockT *H = getHeader();
 | 
						|
 | 
						|
    BlockT *Incoming = 0, *Backedge = 0;
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
                                                 InvBlockTraits::child_begin(H);
 | 
						|
    assert(PI != InvBlockTraits::child_end(H) &&
 | 
						|
           "Loop must have at least one backedge!");
 | 
						|
    Backedge = *PI++;
 | 
						|
    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
 | 
						|
    Incoming = *PI++;
 | 
						|
    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
 | 
						|
 | 
						|
    if (contains(Incoming)) {
 | 
						|
      if (contains(Backedge))
 | 
						|
        return 0;
 | 
						|
      std::swap(Incoming, Backedge);
 | 
						|
    } else if (!contains(Backedge))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Loop over all of the PHI nodes, looking for a canonical indvar.
 | 
						|
    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
      if (ConstantInt *CI =
 | 
						|
          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | 
						|
        if (CI->isNullValue())
 | 
						|
          if (Instruction *Inc =
 | 
						|
              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | 
						|
            if (Inc->getOpcode() == Instruction::Add &&
 | 
						|
                Inc->getOperand(0) == PN)
 | 
						|
              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | 
						|
                if (CI->equalsInt(1))
 | 
						|
                  return PN;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
 | 
						|
  /// the canonical induction variable value for the "next" iteration of the
 | 
						|
  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
 | 
						|
  ///
 | 
						|
  inline Instruction *getCanonicalInductionVariableIncrement() const {
 | 
						|
    if (PHINode *PN = getCanonicalInductionVariable()) {
 | 
						|
      bool P1InLoop = contains(PN->getIncomingBlock(1));
 | 
						|
      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
 | 
						|
  /// times the loop will be executed.  Note that this means that the backedge
 | 
						|
  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
 | 
						|
  /// this returns null.
 | 
						|
  ///
 | 
						|
  inline Value *getTripCount() const {
 | 
						|
    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
 | 
						|
    // canonical induction variable and V is the trip count of the loop.
 | 
						|
    Instruction *Inc = getCanonicalInductionVariableIncrement();
 | 
						|
    if (Inc == 0) return 0;
 | 
						|
    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
 | 
						|
 | 
						|
    BlockT *BackedgeBlock =
 | 
						|
            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
 | 
						|
      if (BI->isConditional()) {
 | 
						|
        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
 | 
						|
          if (ICI->getOperand(0) == Inc) {
 | 
						|
            if (BI->getSuccessor(0) == getHeader()) {
 | 
						|
              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
                return ICI->getOperand(1);
 | 
						|
            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
 | 
						|
              return ICI->getOperand(1);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getSmallConstantTripCount - Returns the trip count of this loop as a
 | 
						|
  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
 | 
						|
  /// of not constant. Will also return 0 if the trip count is very large 
 | 
						|
  /// (>= 2^32)
 | 
						|
  inline unsigned getSmallConstantTripCount() const {
 | 
						|
    Value* TripCount = this->getTripCount();
 | 
						|
    if (TripCount) {
 | 
						|
      if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
 | 
						|
        // Guard against huge trip counts.
 | 
						|
        if (TripCountC->getValue().getActiveBits() <= 32) {
 | 
						|
          return (unsigned)TripCountC->getZExtValue();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
 | 
						|
  /// trip count of this loop as a normal unsigned value, if possible. This
 | 
						|
  /// means that the actual trip count is always a multiple of the returned
 | 
						|
  /// value (don't forget the trip count could very well be zero as well!).
 | 
						|
  ///
 | 
						|
  /// Returns 1 if the trip count is unknown or not guaranteed to be the
 | 
						|
  /// multiple of a constant (which is also the case if the trip count is simply
 | 
						|
  /// constant, use getSmallConstantTripCount for that case), Will also return 1
 | 
						|
  /// if the trip count is very large (>= 2^32).
 | 
						|
  inline unsigned getSmallConstantTripMultiple() const {
 | 
						|
    Value* TripCount = this->getTripCount();
 | 
						|
    // This will hold the ConstantInt result, if any
 | 
						|
    ConstantInt *Result = NULL;
 | 
						|
    if (TripCount) {
 | 
						|
      // See if the trip count is constant itself
 | 
						|
      Result = dyn_cast<ConstantInt>(TripCount);
 | 
						|
      // if not, see if it is a multiplication
 | 
						|
      if (!Result)
 | 
						|
        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
 | 
						|
          switch (BO->getOpcode()) {
 | 
						|
          case BinaryOperator::Mul:
 | 
						|
            Result = dyn_cast<ConstantInt>(BO->getOperand(1));
 | 
						|
            break;
 | 
						|
          default: 
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // Guard against huge trip counts.
 | 
						|
    if (Result && Result->getValue().getActiveBits() <= 32) {
 | 
						|
      return (unsigned)Result->getZExtValue();
 | 
						|
    } else {
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// isLCSSAForm - Return true if the Loop is in LCSSA form
 | 
						|
  inline bool isLCSSAForm() const {
 | 
						|
    // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
    // lookups.
 | 
						|
    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
 | 
						|
 | 
						|
    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
 | 
						|
      BlockT *BB = *BI;
 | 
						|
      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
 | 
						|
        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
             ++UI) {
 | 
						|
          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
 | 
						|
            unsigned OperandNo = UI.getOperandNo();
 | 
						|
            UserBB = P->getIncomingBlock(OperandNo/2);
 | 
						|
          }
 | 
						|
 | 
						|
          // Check the current block, as a fast-path.  Most values are used in
 | 
						|
          // the same block they are defined in.
 | 
						|
          if (UserBB != BB && !LoopBBs.count(UserBB))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // APIs for updating loop information after changing the CFG
 | 
						|
  //
 | 
						|
 | 
						|
  /// addBasicBlockToLoop - This method is used by other analyses to update loop
 | 
						|
  /// information.  NewBB is set to be a new member of the current loop.
 | 
						|
  /// Because of this, it is added as a member of all parent loops, and is added
 | 
						|
  /// to the specified LoopInfo object as being in the current basic block.  It
 | 
						|
  /// is not valid to replace the loop header with this method.
 | 
						|
  ///
 | 
						|
  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
 | 
						|
 | 
						|
  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
 | 
						|
  /// the OldChild entry in our children list with NewChild, and updates the
 | 
						|
  /// parent pointer of OldChild to be null and the NewChild to be this loop.
 | 
						|
  /// This updates the loop depth of the new child.
 | 
						|
  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
 | 
						|
                            LoopBase<BlockT> *NewChild) {
 | 
						|
    assert(OldChild->ParentLoop == this && "This loop is already broken!");
 | 
						|
    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | 
						|
    typename std::vector<LoopBase<BlockT>*>::iterator I =
 | 
						|
                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
 | 
						|
    assert(I != SubLoops.end() && "OldChild not in loop!");
 | 
						|
    *I = NewChild;
 | 
						|
    OldChild->ParentLoop = 0;
 | 
						|
    NewChild->ParentLoop = this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// addChildLoop - Add the specified loop to be a child of this loop.  This
 | 
						|
  /// updates the loop depth of the new child.
 | 
						|
  ///
 | 
						|
  void addChildLoop(LoopBase<BlockT> *NewChild) {
 | 
						|
    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | 
						|
    NewChild->ParentLoop = this;
 | 
						|
    SubLoops.push_back(NewChild);
 | 
						|
  }
 | 
						|
 | 
						|
  /// removeChildLoop - This removes the specified child from being a subloop of
 | 
						|
  /// this loop.  The loop is not deleted, as it will presumably be inserted
 | 
						|
  /// into another loop.
 | 
						|
  LoopBase<BlockT> *removeChildLoop(iterator I) {
 | 
						|
    assert(I != SubLoops.end() && "Cannot remove end iterator!");
 | 
						|
    LoopBase<BlockT> *Child = *I;
 | 
						|
    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
 | 
						|
    SubLoops.erase(SubLoops.begin()+(I-begin()));
 | 
						|
    Child->ParentLoop = 0;
 | 
						|
    return Child;
 | 
						|
  }
 | 
						|
 | 
						|
  /// addBlockEntry - This adds a basic block directly to the basic block list.
 | 
						|
  /// This should only be used by transformations that create new loops.  Other
 | 
						|
  /// transformations should use addBasicBlockToLoop.
 | 
						|
  void addBlockEntry(BlockT *BB) {
 | 
						|
    Blocks.push_back(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// moveToHeader - This method is used to move BB (which must be part of this
 | 
						|
  /// loop) to be the loop header of the loop (the block that dominates all
 | 
						|
  /// others).
 | 
						|
  void moveToHeader(BlockT *BB) {
 | 
						|
    if (Blocks[0] == BB) return;
 | 
						|
    for (unsigned i = 0; ; ++i) {
 | 
						|
      assert(i != Blocks.size() && "Loop does not contain BB!");
 | 
						|
      if (Blocks[i] == BB) {
 | 
						|
        Blocks[i] = Blocks[0];
 | 
						|
        Blocks[0] = BB;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// removeBlockFromLoop - This removes the specified basic block from the
 | 
						|
  /// current loop, updating the Blocks as appropriate.  This does not update
 | 
						|
  /// the mapping in the LoopInfo class.
 | 
						|
  void removeBlockFromLoop(BlockT *BB) {
 | 
						|
    RemoveFromVector(Blocks, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// verifyLoop - Verify loop structure
 | 
						|
  void verifyLoop() const {
 | 
						|
#ifndef NDEBUG
 | 
						|
    assert (getHeader() && "Loop header is missing");
 | 
						|
    assert (getLoopPreheader() && "Loop preheader is missing");
 | 
						|
    assert (getLoopLatch() && "Loop latch is missing");
 | 
						|
    for (typename std::vector<LoopBase<BlockT>*>::const_iterator I =
 | 
						|
         SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
 | 
						|
      (*I)->verifyLoop();
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  void print(std::ostream &OS, unsigned Depth = 0) const {
 | 
						|
    OS << std::string(Depth*2, ' ') << "Loop Containing: ";
 | 
						|
 | 
						|
    for (unsigned i = 0; i < getBlocks().size(); ++i) {
 | 
						|
      if (i) OS << ",";
 | 
						|
      WriteAsOperand(OS, getBlocks()[i], false);
 | 
						|
    }
 | 
						|
    OS << "\n";
 | 
						|
 | 
						|
    for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
      (*I)->print(OS, Depth+2);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void print(std::ostream *O, unsigned Depth = 0) const {
 | 
						|
    if (O) print(*O, Depth);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void dump() const {
 | 
						|
    print(cerr);
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  friend class LoopInfoBase<BlockT>;
 | 
						|
  LoopBase(BlockT *BB) : ParentLoop(0) {
 | 
						|
    Blocks.push_back(BB);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// LoopInfo - This class builds and contains all of the top level loop
 | 
						|
/// structures in the specified function.
 | 
						|
///
 | 
						|
 | 
						|
template<class BlockT>
 | 
						|
class LoopInfoBase {
 | 
						|
  // BBMap - Mapping of basic blocks to the inner most loop they occur in
 | 
						|
  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
 | 
						|
  std::vector<LoopBase<BlockT>*> TopLevelLoops;
 | 
						|
  friend class LoopBase<BlockT>;
 | 
						|
  
 | 
						|
public:
 | 
						|
  LoopInfoBase() { }
 | 
						|
  ~LoopInfoBase() { releaseMemory(); }
 | 
						|
  
 | 
						|
  void releaseMemory() {
 | 
						|
    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
 | 
						|
         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
 | 
						|
      delete *I;   // Delete all of the loops...
 | 
						|
 | 
						|
    BBMap.clear();                           // Reset internal state of analysis
 | 
						|
    TopLevelLoops.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// iterator/begin/end - The interface to the top-level loops in the current
 | 
						|
  /// function.
 | 
						|
  ///
 | 
						|
  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
 | 
						|
  iterator begin() const { return TopLevelLoops.begin(); }
 | 
						|
  iterator end() const { return TopLevelLoops.end(); }
 | 
						|
  
 | 
						|
  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
 | 
						|
  /// block is in no loop (for example the entry node), null is returned.
 | 
						|
  ///
 | 
						|
  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
 | 
						|
    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
 | 
						|
      BBMap.find(const_cast<BlockT*>(BB));
 | 
						|
    return I != BBMap.end() ? I->second : 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// operator[] - same as getLoopFor...
 | 
						|
  ///
 | 
						|
  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
 | 
						|
    return getLoopFor(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getLoopDepth - Return the loop nesting level of the specified block.  A
 | 
						|
  /// depth of 0 means the block is not inside any loop.
 | 
						|
  ///
 | 
						|
  unsigned getLoopDepth(const BlockT *BB) const {
 | 
						|
    const LoopBase<BlockT> *L = getLoopFor(BB);
 | 
						|
    return L ? L->getLoopDepth() : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // isLoopHeader - True if the block is a loop header node
 | 
						|
  bool isLoopHeader(BlockT *BB) const {
 | 
						|
    const LoopBase<BlockT> *L = getLoopFor(BB);
 | 
						|
    return L && L->getHeader() == BB;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// removeLoop - This removes the specified top-level loop from this loop info
 | 
						|
  /// object.  The loop is not deleted, as it will presumably be inserted into
 | 
						|
  /// another loop.
 | 
						|
  LoopBase<BlockT> *removeLoop(iterator I) {
 | 
						|
    assert(I != end() && "Cannot remove end iterator!");
 | 
						|
    LoopBase<BlockT> *L = *I;
 | 
						|
    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
 | 
						|
    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
 | 
						|
    return L;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// changeLoopFor - Change the top-level loop that contains BB to the
 | 
						|
  /// specified loop.  This should be used by transformations that restructure
 | 
						|
  /// the loop hierarchy tree.
 | 
						|
  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
 | 
						|
    LoopBase<BlockT> *&OldLoop = BBMap[BB];
 | 
						|
    assert(OldLoop && "Block not in a loop yet!");
 | 
						|
    OldLoop = L;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
 | 
						|
  /// list with the indicated loop.
 | 
						|
  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
 | 
						|
                          LoopBase<BlockT> *NewLoop) {
 | 
						|
    typename std::vector<LoopBase<BlockT>*>::iterator I =
 | 
						|
                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
 | 
						|
    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
 | 
						|
    *I = NewLoop;
 | 
						|
    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
 | 
						|
           "Loops already embedded into a subloop!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// addTopLevelLoop - This adds the specified loop to the collection of
 | 
						|
  /// top-level loops.
 | 
						|
  void addTopLevelLoop(LoopBase<BlockT> *New) {
 | 
						|
    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
 | 
						|
    TopLevelLoops.push_back(New);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// removeBlock - This method completely removes BB from all data structures,
 | 
						|
  /// including all of the Loop objects it is nested in and our mapping from
 | 
						|
  /// BasicBlocks to loops.
 | 
						|
  void removeBlock(BlockT *BB) {
 | 
						|
    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
 | 
						|
    if (I != BBMap.end()) {
 | 
						|
      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
 | 
						|
        L->removeBlockFromLoop(BB);
 | 
						|
 | 
						|
      BBMap.erase(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Internals
 | 
						|
  
 | 
						|
  static bool isNotAlreadyContainedIn(LoopBase<BlockT> *SubLoop,
 | 
						|
                                      LoopBase<BlockT> *ParentLoop) {
 | 
						|
    if (SubLoop == 0) return true;
 | 
						|
    if (SubLoop == ParentLoop) return false;
 | 
						|
    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void Calculate(DominatorTreeBase<BlockT> &DT) {
 | 
						|
    BlockT *RootNode = DT.getRootNode()->getBlock();
 | 
						|
 | 
						|
    for (df_iterator<BlockT*> NI = df_begin(RootNode),
 | 
						|
           NE = df_end(RootNode); NI != NE; ++NI)
 | 
						|
      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
 | 
						|
        TopLevelLoops.push_back(L);
 | 
						|
  }
 | 
						|
  
 | 
						|
  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
 | 
						|
    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
 | 
						|
 | 
						|
    std::vector<BlockT *> TodoStack;
 | 
						|
 | 
						|
    // Scan the predecessors of BB, checking to see if BB dominates any of
 | 
						|
    // them.  This identifies backedges which target this node...
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    for (typename InvBlockTraits::ChildIteratorType I =
 | 
						|
         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
 | 
						|
         I != E; ++I)
 | 
						|
      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
 | 
						|
        TodoStack.push_back(*I);
 | 
						|
 | 
						|
    if (TodoStack.empty()) return 0;  // No backedges to this block...
 | 
						|
 | 
						|
    // Create a new loop to represent this basic block...
 | 
						|
    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
 | 
						|
    BBMap[BB] = L;
 | 
						|
 | 
						|
    BlockT *EntryBlock = BB->getParent()->begin();
 | 
						|
 | 
						|
    while (!TodoStack.empty()) {  // Process all the nodes in the loop
 | 
						|
      BlockT *X = TodoStack.back();
 | 
						|
      TodoStack.pop_back();
 | 
						|
 | 
						|
      if (!L->contains(X) &&         // As of yet unprocessed??
 | 
						|
          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
 | 
						|
        // Check to see if this block already belongs to a loop.  If this occurs
 | 
						|
        // then we have a case where a loop that is supposed to be a child of
 | 
						|
        // the current loop was processed before the current loop.  When this
 | 
						|
        // occurs, this child loop gets added to a part of the current loop,
 | 
						|
        // making it a sibling to the current loop.  We have to reparent this
 | 
						|
        // loop.
 | 
						|
        if (LoopBase<BlockT> *SubLoop =
 | 
						|
            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
 | 
						|
          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
 | 
						|
            // Remove the subloop from it's current parent...
 | 
						|
            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
 | 
						|
            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
 | 
						|
            typename std::vector<LoopBase<BlockT>*>::iterator I =
 | 
						|
              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
 | 
						|
            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
 | 
						|
            SLP->SubLoops.erase(I);   // Remove from parent...
 | 
						|
 | 
						|
            // Add the subloop to THIS loop...
 | 
						|
            SubLoop->ParentLoop = L;
 | 
						|
            L->SubLoops.push_back(SubLoop);
 | 
						|
          }
 | 
						|
 | 
						|
        // Normal case, add the block to our loop...
 | 
						|
        L->Blocks.push_back(X);
 | 
						|
        
 | 
						|
        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
        
 | 
						|
        // Add all of the predecessors of X to the end of the work stack...
 | 
						|
        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
 | 
						|
                         InvBlockTraits::child_end(X));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are any loops nested within this loop, create them now!
 | 
						|
    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
 | 
						|
         E = L->Blocks.end(); I != E; ++I)
 | 
						|
      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
 | 
						|
        L->SubLoops.push_back(NewLoop);
 | 
						|
        NewLoop->ParentLoop = L;
 | 
						|
      }
 | 
						|
 | 
						|
    // Add the basic blocks that comprise this loop to the BBMap so that this
 | 
						|
    // loop can be found for them.
 | 
						|
    //
 | 
						|
    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
 | 
						|
           E = L->Blocks.end(); I != E; ++I) {
 | 
						|
      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
 | 
						|
                                                          BBMap.lower_bound(*I);
 | 
						|
      if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet...
 | 
						|
        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have a list of all of the child loops of this loop, check to
 | 
						|
    // see if any of them should actually be nested inside of each other.  We
 | 
						|
    // can accidentally pull loops our of their parents, so we must make sure to
 | 
						|
    // organize the loop nests correctly now.
 | 
						|
    {
 | 
						|
      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
 | 
						|
      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
 | 
						|
        LoopBase<BlockT> *Child = L->SubLoops[i];
 | 
						|
        assert(Child->getParentLoop() == L && "Not proper child loop?");
 | 
						|
 | 
						|
        if (LoopBase<BlockT> *ContainingLoop =
 | 
						|
                                          ContainingLoops[Child->getHeader()]) {
 | 
						|
          // If there is already a loop which contains this loop, move this loop
 | 
						|
          // into the containing loop.
 | 
						|
          MoveSiblingLoopInto(Child, ContainingLoop);
 | 
						|
          --i;  // The loop got removed from the SubLoops list.
 | 
						|
        } else {
 | 
						|
          // This is currently considered to be a top-level loop.  Check to see
 | 
						|
          // if any of the contained blocks are loop headers for subloops we
 | 
						|
          // have already processed.
 | 
						|
          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
 | 
						|
            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
 | 
						|
            if (BlockLoop == 0) {   // Child block not processed yet...
 | 
						|
              BlockLoop = Child;
 | 
						|
            } else if (BlockLoop != Child) {
 | 
						|
              LoopBase<BlockT> *SubLoop = BlockLoop;
 | 
						|
              // Reparent all of the blocks which used to belong to BlockLoops
 | 
						|
              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
 | 
						|
                ContainingLoops[SubLoop->Blocks[j]] = Child;
 | 
						|
 | 
						|
              // There is already a loop which contains this block, that means
 | 
						|
              // that we should reparent the loop which the block is currently
 | 
						|
              // considered to belong to to be a child of this loop.
 | 
						|
              MoveSiblingLoopInto(SubLoop, Child);
 | 
						|
              --i;  // We just shrunk the SubLoops list.
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return L;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
 | 
						|
  /// of the NewParent Loop, instead of being a sibling of it.
 | 
						|
  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
 | 
						|
                           LoopBase<BlockT> *NewParent) {
 | 
						|
    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
 | 
						|
    assert(OldParent && OldParent == NewParent->getParentLoop() &&
 | 
						|
           NewChild != NewParent && "Not sibling loops!");
 | 
						|
 | 
						|
    // Remove NewChild from being a child of OldParent
 | 
						|
    typename std::vector<LoopBase<BlockT>*>::iterator I =
 | 
						|
      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
 | 
						|
                NewChild);
 | 
						|
    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
 | 
						|
    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
 | 
						|
    NewChild->ParentLoop = 0;
 | 
						|
 | 
						|
    InsertLoopInto(NewChild, NewParent);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
 | 
						|
  /// the parent loop contains a loop which should contain L, the loop gets
 | 
						|
  /// inserted into L instead.
 | 
						|
  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
 | 
						|
    BlockT *LHeader = L->getHeader();
 | 
						|
    assert(Parent->contains(LHeader) &&
 | 
						|
           "This loop should not be inserted here!");
 | 
						|
 | 
						|
    // Check to see if it belongs in a child loop...
 | 
						|
    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
 | 
						|
         i != e; ++i)
 | 
						|
      if (Parent->SubLoops[i]->contains(LHeader)) {
 | 
						|
        InsertLoopInto(L, Parent->SubLoops[i]);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
    // If not, insert it here!
 | 
						|
    Parent->SubLoops.push_back(L);
 | 
						|
    L->ParentLoop = Parent;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Debugging
 | 
						|
  
 | 
						|
  void print(std::ostream &OS, const Module* ) const {
 | 
						|
    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
 | 
						|
      TopLevelLoops[i]->print(OS);
 | 
						|
  #if 0
 | 
						|
    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
 | 
						|
           E = BBMap.end(); I != E; ++I)
 | 
						|
      OS << "BB '" << I->first->getName() << "' level = "
 | 
						|
         << I->second->getLoopDepth() << "\n";
 | 
						|
  #endif
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class LoopInfo : public FunctionPass {
 | 
						|
  LoopInfoBase<BasicBlock>* LI;
 | 
						|
  friend class LoopBase<BasicBlock>;
 | 
						|
  
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  LoopInfo() : FunctionPass(intptr_t(&ID)) {
 | 
						|
    LI = new LoopInfoBase<BasicBlock>();
 | 
						|
  }
 | 
						|
  
 | 
						|
  ~LoopInfo() { delete LI; }
 | 
						|
 | 
						|
  LoopInfoBase<BasicBlock>& getBase() { return *LI; }
 | 
						|
 | 
						|
  /// iterator/begin/end - The interface to the top-level loops in the current
 | 
						|
  /// function.
 | 
						|
  ///
 | 
						|
  typedef std::vector<Loop*>::const_iterator iterator;
 | 
						|
  inline iterator begin() const { return LI->begin(); }
 | 
						|
  inline iterator end() const { return LI->end(); }
 | 
						|
 | 
						|
  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
 | 
						|
  /// block is in no loop (for example the entry node), null is returned.
 | 
						|
  ///
 | 
						|
  inline Loop *getLoopFor(const BasicBlock *BB) const {
 | 
						|
    return LI->getLoopFor(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// operator[] - same as getLoopFor...
 | 
						|
  ///
 | 
						|
  inline const Loop *operator[](const BasicBlock *BB) const {
 | 
						|
    return LI->getLoopFor(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getLoopDepth - Return the loop nesting level of the specified block.  A
 | 
						|
  /// depth of 0 means the block is not inside any loop.
 | 
						|
  ///
 | 
						|
  inline unsigned getLoopDepth(const BasicBlock *BB) const {
 | 
						|
    return LI->getLoopDepth(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  // isLoopHeader - True if the block is a loop header node
 | 
						|
  inline bool isLoopHeader(BasicBlock *BB) const {
 | 
						|
    return LI->isLoopHeader(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// runOnFunction - Calculate the natural loop information.
 | 
						|
  ///
 | 
						|
  virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  virtual void releaseMemory() { LI->releaseMemory(); }
 | 
						|
 | 
						|
  virtual void print(std::ostream &O, const Module* M = 0) const {
 | 
						|
    if (O) LI->print(O, M);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
 | 
						|
  /// removeLoop - This removes the specified top-level loop from this loop info
 | 
						|
  /// object.  The loop is not deleted, as it will presumably be inserted into
 | 
						|
  /// another loop.
 | 
						|
  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
 | 
						|
 | 
						|
  /// changeLoopFor - Change the top-level loop that contains BB to the
 | 
						|
  /// specified loop.  This should be used by transformations that restructure
 | 
						|
  /// the loop hierarchy tree.
 | 
						|
  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
 | 
						|
    LI->changeLoopFor(BB, L);
 | 
						|
  }
 | 
						|
 | 
						|
  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
 | 
						|
  /// list with the indicated loop.
 | 
						|
  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
 | 
						|
    LI->changeTopLevelLoop(OldLoop, NewLoop);
 | 
						|
  }
 | 
						|
 | 
						|
  /// addTopLevelLoop - This adds the specified loop to the collection of
 | 
						|
  /// top-level loops.
 | 
						|
  inline void addTopLevelLoop(Loop *New) {
 | 
						|
    LI->addTopLevelLoop(New);
 | 
						|
  }
 | 
						|
 | 
						|
  /// removeBlock - This method completely removes BB from all data structures,
 | 
						|
  /// including all of the Loop objects it is nested in and our mapping from
 | 
						|
  /// BasicBlocks to loops.
 | 
						|
  void removeBlock(BasicBlock *BB) {
 | 
						|
    LI->removeBlock(BB);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Allow clients to walk the list of nested loops...
 | 
						|
template <> struct GraphTraits<const Loop*> {
 | 
						|
  typedef const Loop NodeType;
 | 
						|
  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
 | 
						|
 | 
						|
  static NodeType *getEntryNode(const Loop *L) { return L; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return N->begin();
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return N->end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<Loop*> {
 | 
						|
  typedef Loop NodeType;
 | 
						|
  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
 | 
						|
 | 
						|
  static NodeType *getEntryNode(Loop *L) { return L; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return N->begin();
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return N->end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<class BlockT>
 | 
						|
void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
 | 
						|
                                           LoopInfoBase<BlockT> &LIB) {
 | 
						|
  assert((Blocks.empty() || LIB[getHeader()] == this) &&
 | 
						|
         "Incorrect LI specified for this loop!");
 | 
						|
  assert(NewBB && "Cannot add a null basic block to the loop!");
 | 
						|
  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
 | 
						|
 | 
						|
  // Add the loop mapping to the LoopInfo object...
 | 
						|
  LIB.BBMap[NewBB] = this;
 | 
						|
 | 
						|
  // Add the basic block to this loop and all parent loops...
 | 
						|
  LoopBase<BlockT> *L = this;
 | 
						|
  while (L) {
 | 
						|
    L->Blocks.push_back(NewBB);
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |