mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133962 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1545 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1545 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a linear scan register allocator.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "LiveDebugVariables.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "VirtRegRewriter.h"
 | |
| #include "RegisterClassInfo.h"
 | |
| #include "Spiller.h"
 | |
| #include "RegisterCoalescer.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <queue>
 | |
| #include <memory>
 | |
| #include <cmath>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumIters     , "Number of iterations performed");
 | |
| STATISTIC(NumBacktracks, "Number of times we had to backtrack");
 | |
| STATISTIC(NumCoalesce,   "Number of copies coalesced");
 | |
| STATISTIC(NumDowngrade,  "Number of registers downgraded");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NewHeuristic("new-spilling-heuristic",
 | |
|              cl::desc("Use new spilling heuristic"),
 | |
|              cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| TrivCoalesceEnds("trivial-coalesce-ends",
 | |
|                   cl::desc("Attempt trivial coalescing of interval ends"),
 | |
|                   cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AvoidWAWHazard("avoid-waw-hazard",
 | |
|                cl::desc("Avoid write-write hazards for some register classes"),
 | |
|                cl::init(false), cl::Hidden);
 | |
| 
 | |
| static RegisterRegAlloc
 | |
| linearscanRegAlloc("linearscan", "linear scan register allocator",
 | |
|                    createLinearScanRegisterAllocator);
 | |
| 
 | |
| namespace {
 | |
|   // When we allocate a register, add it to a fixed-size queue of
 | |
|   // registers to skip in subsequent allocations. This trades a small
 | |
|   // amount of register pressure and increased spills for flexibility in
 | |
|   // the post-pass scheduler.
 | |
|   //
 | |
|   // Note that in a the number of registers used for reloading spills
 | |
|   // will be one greater than the value of this option.
 | |
|   //
 | |
|   // One big limitation of this is that it doesn't differentiate between
 | |
|   // different register classes. So on x86-64, if there is xmm register
 | |
|   // pressure, it can caused fewer GPRs to be held in the queue.
 | |
|   static cl::opt<unsigned>
 | |
|   NumRecentlyUsedRegs("linearscan-skip-count",
 | |
|                       cl::desc("Number of registers for linearscan to remember"
 | |
|                                "to skip."),
 | |
|                       cl::init(0),
 | |
|                       cl::Hidden);
 | |
| 
 | |
|   struct RALinScan : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     RALinScan() : MachineFunctionPass(ID) {
 | |
|       initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
 | |
|       initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|       initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|       initializeRegisterCoalescerPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|       initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | |
|       initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|       initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|       initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | |
|       initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|       initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|       
 | |
|       // Initialize the queue to record recently-used registers.
 | |
|       if (NumRecentlyUsedRegs > 0)
 | |
|         RecentRegs.resize(NumRecentlyUsedRegs, 0);
 | |
|       RecentNext = RecentRegs.begin();
 | |
|       avoidWAW_ = 0;
 | |
|     }
 | |
| 
 | |
|     typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
 | |
|     typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
 | |
|   private:
 | |
|     /// RelatedRegClasses - This structure is built the first time a function is
 | |
|     /// compiled, and keeps track of which register classes have registers that
 | |
|     /// belong to multiple classes or have aliases that are in other classes.
 | |
|     EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
 | |
|     DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
 | |
| 
 | |
|     // NextReloadMap - For each register in the map, it maps to the another
 | |
|     // register which is defined by a reload from the same stack slot and
 | |
|     // both reloads are in the same basic block.
 | |
|     DenseMap<unsigned, unsigned> NextReloadMap;
 | |
| 
 | |
|     // DowngradedRegs - A set of registers which are being "downgraded", i.e.
 | |
|     // un-favored for allocation.
 | |
|     SmallSet<unsigned, 8> DowngradedRegs;
 | |
| 
 | |
|     // DowngradeMap - A map from virtual registers to physical registers being
 | |
|     // downgraded for the virtual registers.
 | |
|     DenseMap<unsigned, unsigned> DowngradeMap;
 | |
| 
 | |
|     MachineFunction* mf_;
 | |
|     MachineRegisterInfo* mri_;
 | |
|     const TargetMachine* tm_;
 | |
|     const TargetRegisterInfo* tri_;
 | |
|     const TargetInstrInfo* tii_;
 | |
|     BitVector allocatableRegs_;
 | |
|     BitVector reservedRegs_;
 | |
|     LiveIntervals* li_;
 | |
|     MachineLoopInfo *loopInfo;
 | |
|     RegisterClassInfo RegClassInfo;
 | |
| 
 | |
|     /// handled_ - Intervals are added to the handled_ set in the order of their
 | |
|     /// start value.  This is uses for backtracking.
 | |
|     std::vector<LiveInterval*> handled_;
 | |
| 
 | |
|     /// fixed_ - Intervals that correspond to machine registers.
 | |
|     ///
 | |
|     IntervalPtrs fixed_;
 | |
| 
 | |
|     /// active_ - Intervals that are currently being processed, and which have a
 | |
|     /// live range active for the current point.
 | |
|     IntervalPtrs active_;
 | |
| 
 | |
|     /// inactive_ - Intervals that are currently being processed, but which have
 | |
|     /// a hold at the current point.
 | |
|     IntervalPtrs inactive_;
 | |
| 
 | |
|     typedef std::priority_queue<LiveInterval*,
 | |
|                                 SmallVector<LiveInterval*, 64>,
 | |
|                                 greater_ptr<LiveInterval> > IntervalHeap;
 | |
|     IntervalHeap unhandled_;
 | |
| 
 | |
|     /// regUse_ - Tracks register usage.
 | |
|     SmallVector<unsigned, 32> regUse_;
 | |
|     SmallVector<unsigned, 32> regUseBackUp_;
 | |
| 
 | |
|     /// vrm_ - Tracks register assignments.
 | |
|     VirtRegMap* vrm_;
 | |
| 
 | |
|     std::auto_ptr<VirtRegRewriter> rewriter_;
 | |
| 
 | |
|     std::auto_ptr<Spiller> spiller_;
 | |
| 
 | |
|     // The queue of recently-used registers.
 | |
|     SmallVector<unsigned, 4> RecentRegs;
 | |
|     SmallVector<unsigned, 4>::iterator RecentNext;
 | |
| 
 | |
|     // Last write-after-write register written.
 | |
|     unsigned avoidWAW_;
 | |
| 
 | |
|     // Record that we just picked this register.
 | |
|     void recordRecentlyUsed(unsigned reg) {
 | |
|       assert(reg != 0 && "Recently used register is NOREG!");
 | |
|       if (!RecentRegs.empty()) {
 | |
|         *RecentNext++ = reg;
 | |
|         if (RecentNext == RecentRegs.end())
 | |
|           RecentNext = RecentRegs.begin();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     virtual const char* getPassName() const {
 | |
|       return "Linear Scan Register Allocator";
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addRequired<LiveIntervals>();
 | |
|       AU.addPreserved<SlotIndexes>();
 | |
|       if (StrongPHIElim)
 | |
|         AU.addRequiredID(StrongPHIEliminationID);
 | |
|       // Make sure PassManager knows which analyses to make available
 | |
|       // to coalescing and which analyses coalescing invalidates.
 | |
|       AU.addRequiredTransitive<RegisterCoalescer>();
 | |
|       AU.addRequired<CalculateSpillWeights>();
 | |
|       AU.addRequiredID(LiveStacksID);
 | |
|       AU.addPreservedID(LiveStacksID);
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       AU.addRequired<VirtRegMap>();
 | |
|       AU.addPreserved<VirtRegMap>();
 | |
|       AU.addRequired<LiveDebugVariables>();
 | |
|       AU.addPreserved<LiveDebugVariables>();
 | |
|       AU.addRequiredID(MachineDominatorsID);
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     /// runOnMachineFunction - register allocate the whole function
 | |
|     bool runOnMachineFunction(MachineFunction&);
 | |
| 
 | |
|     // Determine if we skip this register due to its being recently used.
 | |
|     bool isRecentlyUsed(unsigned reg) const {
 | |
|       return reg == avoidWAW_ ||
 | |
|        std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// linearScan - the linear scan algorithm
 | |
|     void linearScan();
 | |
| 
 | |
|     /// initIntervalSets - initialize the interval sets.
 | |
|     ///
 | |
|     void initIntervalSets();
 | |
| 
 | |
|     /// processActiveIntervals - expire old intervals and move non-overlapping
 | |
|     /// ones to the inactive list.
 | |
|     void processActiveIntervals(SlotIndex CurPoint);
 | |
| 
 | |
|     /// processInactiveIntervals - expire old intervals and move overlapping
 | |
|     /// ones to the active list.
 | |
|     void processInactiveIntervals(SlotIndex CurPoint);
 | |
| 
 | |
|     /// hasNextReloadInterval - Return the next liveinterval that's being
 | |
|     /// defined by a reload from the same SS as the specified one.
 | |
|     LiveInterval *hasNextReloadInterval(LiveInterval *cur);
 | |
| 
 | |
|     /// DowngradeRegister - Downgrade a register for allocation.
 | |
|     void DowngradeRegister(LiveInterval *li, unsigned Reg);
 | |
| 
 | |
|     /// UpgradeRegister - Upgrade a register for allocation.
 | |
|     void UpgradeRegister(unsigned Reg);
 | |
| 
 | |
|     /// assignRegOrStackSlotAtInterval - assign a register if one
 | |
|     /// is available, or spill.
 | |
|     void assignRegOrStackSlotAtInterval(LiveInterval* cur);
 | |
| 
 | |
|     void updateSpillWeights(std::vector<float> &Weights,
 | |
|                             unsigned reg, float weight,
 | |
|                             const TargetRegisterClass *RC);
 | |
| 
 | |
|     /// findIntervalsToSpill - Determine the intervals to spill for the
 | |
|     /// specified interval. It's passed the physical registers whose spill
 | |
|     /// weight is the lowest among all the registers whose live intervals
 | |
|     /// conflict with the interval.
 | |
|     void findIntervalsToSpill(LiveInterval *cur,
 | |
|                             std::vector<std::pair<unsigned,float> > &Candidates,
 | |
|                             unsigned NumCands,
 | |
|                             SmallVector<LiveInterval*, 8> &SpillIntervals);
 | |
| 
 | |
|     /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
 | |
|     /// try to allocate the definition to the same register as the source,
 | |
|     /// if the register is not defined during the life time of the interval.
 | |
|     /// This eliminates a copy, and is used to coalesce copies which were not
 | |
|     /// coalesced away before allocation either due to dest and src being in
 | |
|     /// different register classes or because the coalescer was overly
 | |
|     /// conservative.
 | |
|     unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
 | |
| 
 | |
|     ///
 | |
|     /// Register usage / availability tracking helpers.
 | |
|     ///
 | |
| 
 | |
|     void initRegUses() {
 | |
|       regUse_.resize(tri_->getNumRegs(), 0);
 | |
|       regUseBackUp_.resize(tri_->getNumRegs(), 0);
 | |
|     }
 | |
| 
 | |
|     void finalizeRegUses() {
 | |
| #ifndef NDEBUG
 | |
|       // Verify all the registers are "freed".
 | |
|       bool Error = false;
 | |
|       for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
 | |
|         if (regUse_[i] != 0) {
 | |
|           dbgs() << tri_->getName(i) << " is still in use!\n";
 | |
|           Error = true;
 | |
|         }
 | |
|       }
 | |
|       if (Error)
 | |
|         llvm_unreachable(0);
 | |
| #endif
 | |
|       regUse_.clear();
 | |
|       regUseBackUp_.clear();
 | |
|     }
 | |
| 
 | |
|     void addRegUse(unsigned physReg) {
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
 | |
|              "should be physical register!");
 | |
|       ++regUse_[physReg];
 | |
|       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
 | |
|         ++regUse_[*as];
 | |
|     }
 | |
| 
 | |
|     void delRegUse(unsigned physReg) {
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
 | |
|              "should be physical register!");
 | |
|       assert(regUse_[physReg] != 0);
 | |
|       --regUse_[physReg];
 | |
|       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
 | |
|         assert(regUse_[*as] != 0);
 | |
|         --regUse_[*as];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool isRegAvail(unsigned physReg) const {
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
 | |
|              "should be physical register!");
 | |
|       return regUse_[physReg] == 0;
 | |
|     }
 | |
| 
 | |
|     void backUpRegUses() {
 | |
|       regUseBackUp_ = regUse_;
 | |
|     }
 | |
| 
 | |
|     void restoreRegUses() {
 | |
|       regUse_ = regUseBackUp_;
 | |
|     }
 | |
| 
 | |
|     ///
 | |
|     /// Register handling helpers.
 | |
|     ///
 | |
| 
 | |
|     /// getFreePhysReg - return a free physical register for this virtual
 | |
|     /// register interval if we have one, otherwise return 0.
 | |
|     unsigned getFreePhysReg(LiveInterval* cur);
 | |
|     unsigned getFreePhysReg(LiveInterval* cur,
 | |
|                             const TargetRegisterClass *RC,
 | |
|                             unsigned MaxInactiveCount,
 | |
|                             SmallVector<unsigned, 256> &inactiveCounts,
 | |
|                             bool SkipDGRegs);
 | |
| 
 | |
|     /// getFirstNonReservedPhysReg - return the first non-reserved physical
 | |
|     /// register in the register class.
 | |
|     unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
 | |
|       ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
 | |
|       assert(!O.empty() && "All registers reserved?!");
 | |
|       return O.front();
 | |
|     }
 | |
| 
 | |
|     void ComputeRelatedRegClasses();
 | |
| 
 | |
|     template <typename ItTy>
 | |
|     void printIntervals(const char* const str, ItTy i, ItTy e) const {
 | |
|       DEBUG({
 | |
|           if (str)
 | |
|             dbgs() << str << " intervals:\n";
 | |
| 
 | |
|           for (; i != e; ++i) {
 | |
|             dbgs() << '\t' << *i->first << " -> ";
 | |
| 
 | |
|             unsigned reg = i->first->reg;
 | |
|             if (TargetRegisterInfo::isVirtualRegister(reg))
 | |
|               reg = vrm_->getPhys(reg);
 | |
| 
 | |
|             dbgs() << tri_->getName(reg) << '\n';
 | |
|           }
 | |
|         });
 | |
|     }
 | |
|   };
 | |
|   char RALinScan::ID = 0;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
 | |
|                       "Linear Scan Register Allocator", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
 | |
| INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveStacks)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
 | |
| INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
 | |
|                     "Linear Scan Register Allocator", false, false)
 | |
| 
 | |
| void RALinScan::ComputeRelatedRegClasses() {
 | |
|   // First pass, add all reg classes to the union, and determine at least one
 | |
|   // reg class that each register is in.
 | |
|   bool HasAliases = false;
 | |
|   for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
 | |
|        E = tri_->regclass_end(); RCI != E; ++RCI) {
 | |
|     RelatedRegClasses.insert(*RCI);
 | |
|     for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
 | |
|          I != E; ++I) {
 | |
|       HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
 | |
| 
 | |
|       const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
 | |
|       if (PRC) {
 | |
|         // Already processed this register.  Just make sure we know that
 | |
|         // multiple register classes share a register.
 | |
|         RelatedRegClasses.unionSets(PRC, *RCI);
 | |
|       } else {
 | |
|         PRC = *RCI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Second pass, now that we know conservatively what register classes each reg
 | |
|   // belongs to, add info about aliases.  We don't need to do this for targets
 | |
|   // without register aliases.
 | |
|   if (HasAliases)
 | |
|     for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
 | |
|          I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
 | |
|          I != E; ++I)
 | |
|       for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
 | |
|         const TargetRegisterClass *AliasClass = 
 | |
|           OneClassForEachPhysReg.lookup(*AS);
 | |
|         if (AliasClass)
 | |
|           RelatedRegClasses.unionSets(I->second, AliasClass);
 | |
|       }
 | |
| }
 | |
| 
 | |
| /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
 | |
| /// allocate the definition the same register as the source register if the
 | |
| /// register is not defined during live time of the interval. If the interval is
 | |
| /// killed by a copy, try to use the destination register. This eliminates a
 | |
| /// copy. This is used to coalesce copies which were not coalesced away before
 | |
| /// allocation either due to dest and src being in different register classes or
 | |
| /// because the coalescer was overly conservative.
 | |
| unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
 | |
|   unsigned Preference = vrm_->getRegAllocPref(cur.reg);
 | |
|   if ((Preference && Preference == Reg) || !cur.containsOneValue())
 | |
|     return Reg;
 | |
| 
 | |
|   // We cannot handle complicated live ranges. Simple linear stuff only.
 | |
|   if (cur.ranges.size() != 1)
 | |
|     return Reg;
 | |
| 
 | |
|   const LiveRange &range = cur.ranges.front();
 | |
| 
 | |
|   VNInfo *vni = range.valno;
 | |
|   if (vni->isUnused() || !vni->def.isValid())
 | |
|     return Reg;
 | |
| 
 | |
|   unsigned CandReg;
 | |
|   {
 | |
|     MachineInstr *CopyMI;
 | |
|     if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
 | |
|       // Defined by a copy, try to extend SrcReg forward
 | |
|       CandReg = CopyMI->getOperand(1).getReg();
 | |
|     else if (TrivCoalesceEnds &&
 | |
|             (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
 | |
|              CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
 | |
|       // Only used by a copy, try to extend DstReg backwards
 | |
|       CandReg = CopyMI->getOperand(0).getReg();
 | |
|     else
 | |
|       return Reg;
 | |
| 
 | |
|     // If the target of the copy is a sub-register then don't coalesce.
 | |
|     if(CopyMI->getOperand(0).getSubReg())
 | |
|       return Reg;
 | |
|   }
 | |
| 
 | |
|   if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
 | |
|     if (!vrm_->isAssignedReg(CandReg))
 | |
|       return Reg;
 | |
|     CandReg = vrm_->getPhys(CandReg);
 | |
|   }
 | |
|   if (Reg == CandReg)
 | |
|     return Reg;
 | |
| 
 | |
|   const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
 | |
|   if (!RC->contains(CandReg))
 | |
|     return Reg;
 | |
| 
 | |
|   if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
 | |
|     return Reg;
 | |
| 
 | |
|   // Try to coalesce.
 | |
|   DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
 | |
|         << '\n');
 | |
|   vrm_->clearVirt(cur.reg);
 | |
|   vrm_->assignVirt2Phys(cur.reg, CandReg);
 | |
| 
 | |
|   ++NumCoalesce;
 | |
|   return CandReg;
 | |
| }
 | |
| 
 | |
| bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   mri_ = &fn.getRegInfo();
 | |
|   tm_ = &fn.getTarget();
 | |
|   tri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   allocatableRegs_ = tri_->getAllocatableSet(fn);
 | |
|   reservedRegs_ = tri_->getReservedRegs(fn);
 | |
|   li_ = &getAnalysis<LiveIntervals>();
 | |
|   loopInfo = &getAnalysis<MachineLoopInfo>();
 | |
|   RegClassInfo.runOnMachineFunction(fn);
 | |
| 
 | |
|   // We don't run the coalescer here because we have no reason to
 | |
|   // interact with it.  If the coalescer requires interaction, it
 | |
|   // won't do anything.  If it doesn't require interaction, we assume
 | |
|   // it was run as a separate pass.
 | |
| 
 | |
|   // If this is the first function compiled, compute the related reg classes.
 | |
|   if (RelatedRegClasses.empty())
 | |
|     ComputeRelatedRegClasses();
 | |
| 
 | |
|   // Also resize register usage trackers.
 | |
|   initRegUses();
 | |
| 
 | |
|   vrm_ = &getAnalysis<VirtRegMap>();
 | |
|   if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
 | |
| 
 | |
|   spiller_.reset(createSpiller(*this, *mf_, *vrm_));
 | |
| 
 | |
|   initIntervalSets();
 | |
| 
 | |
|   linearScan();
 | |
| 
 | |
|   // Rewrite spill code and update the PhysRegsUsed set.
 | |
|   rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
 | |
| 
 | |
|   // Write out new DBG_VALUE instructions.
 | |
|   getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
 | |
| 
 | |
|   assert(unhandled_.empty() && "Unhandled live intervals remain!");
 | |
| 
 | |
|   finalizeRegUses();
 | |
| 
 | |
|   fixed_.clear();
 | |
|   active_.clear();
 | |
|   inactive_.clear();
 | |
|   handled_.clear();
 | |
|   NextReloadMap.clear();
 | |
|   DowngradedRegs.clear();
 | |
|   DowngradeMap.clear();
 | |
|   spiller_.reset(0);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// initIntervalSets - initialize the interval sets.
 | |
| ///
 | |
| void RALinScan::initIntervalSets()
 | |
| {
 | |
|   assert(unhandled_.empty() && fixed_.empty() &&
 | |
|          active_.empty() && inactive_.empty() &&
 | |
|          "interval sets should be empty on initialization");
 | |
| 
 | |
|   handled_.reserve(li_->getNumIntervals());
 | |
| 
 | |
|   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
 | |
|       if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
 | |
|         mri_->setPhysRegUsed(i->second->reg);
 | |
|         fixed_.push_back(std::make_pair(i->second, i->second->begin()));
 | |
|       }
 | |
|     } else {
 | |
|       if (i->second->empty()) {
 | |
|         assignRegOrStackSlotAtInterval(i->second);
 | |
|       }
 | |
|       else
 | |
|         unhandled_.push(i->second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RALinScan::linearScan() {
 | |
|   // linear scan algorithm
 | |
|   DEBUG({
 | |
|       dbgs() << "********** LINEAR SCAN **********\n"
 | |
|              << "********** Function: "
 | |
|              << mf_->getFunction()->getName() << '\n';
 | |
|       printIntervals("fixed", fixed_.begin(), fixed_.end());
 | |
|     });
 | |
| 
 | |
|   while (!unhandled_.empty()) {
 | |
|     // pick the interval with the earliest start point
 | |
|     LiveInterval* cur = unhandled_.top();
 | |
|     unhandled_.pop();
 | |
|     ++NumIters;
 | |
|     DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
 | |
| 
 | |
|     assert(!cur->empty() && "Empty interval in unhandled set.");
 | |
| 
 | |
|     processActiveIntervals(cur->beginIndex());
 | |
|     processInactiveIntervals(cur->beginIndex());
 | |
| 
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
| 
 | |
|     // Allocating a virtual register. try to find a free
 | |
|     // physical register or spill an interval (possibly this one) in order to
 | |
|     // assign it one.
 | |
|     assignRegOrStackSlotAtInterval(cur);
 | |
| 
 | |
|     DEBUG({
 | |
|         printIntervals("active", active_.begin(), active_.end());
 | |
|         printIntervals("inactive", inactive_.begin(), inactive_.end());
 | |
|       });
 | |
|   }
 | |
| 
 | |
|   // Expire any remaining active intervals
 | |
|   while (!active_.empty()) {
 | |
|     IntervalPtr &IP = active_.back();
 | |
|     unsigned reg = IP.first->reg;
 | |
|     DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
|     reg = vrm_->getPhys(reg);
 | |
|     delRegUse(reg);
 | |
|     active_.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Expire any remaining inactive intervals
 | |
|   DEBUG({
 | |
|       for (IntervalPtrs::reverse_iterator
 | |
|              i = inactive_.rbegin(); i != inactive_.rend(); ++i)
 | |
|         dbgs() << "\tinterval " << *i->first << " expired\n";
 | |
|     });
 | |
|   inactive_.clear();
 | |
| 
 | |
|   // Add live-ins to every BB except for entry. Also perform trivial coalescing.
 | |
|   MachineFunction::iterator EntryMBB = mf_->begin();
 | |
|   SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
 | |
|   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
 | |
|     LiveInterval &cur = *i->second;
 | |
|     unsigned Reg = 0;
 | |
|     bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
 | |
|     if (isPhys)
 | |
|       Reg = cur.reg;
 | |
|     else if (vrm_->isAssignedReg(cur.reg))
 | |
|       Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     // Ignore splited live intervals.
 | |
|     if (!isPhys && vrm_->getPreSplitReg(cur.reg))
 | |
|       continue;
 | |
| 
 | |
|     for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
 | |
|          I != E; ++I) {
 | |
|       const LiveRange &LR = *I;
 | |
|       if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
 | |
|         for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
 | |
|           if (LiveInMBBs[i] != EntryMBB) {
 | |
|             assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|                    "Adding a virtual register to livein set?");
 | |
|             LiveInMBBs[i]->addLiveIn(Reg);
 | |
|           }
 | |
|         LiveInMBBs.clear();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << *vrm_);
 | |
| 
 | |
|   // Look for physical registers that end up not being allocated even though
 | |
|   // register allocator had to spill other registers in its register class.
 | |
|   if (!vrm_->FindUnusedRegisters(li_))
 | |
|     return;
 | |
| }
 | |
| 
 | |
| /// processActiveIntervals - expire old intervals and move non-overlapping ones
 | |
| /// to the inactive list.
 | |
| void RALinScan::processActiveIntervals(SlotIndex CurPoint)
 | |
| {
 | |
|   DEBUG(dbgs() << "\tprocessing active intervals:\n");
 | |
| 
 | |
|   for (unsigned i = 0, e = active_.size(); i != e; ++i) {
 | |
|     LiveInterval *Interval = active_[i].first;
 | |
|     LiveInterval::iterator IntervalPos = active_[i].second;
 | |
|     unsigned reg = Interval->reg;
 | |
| 
 | |
|     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
 | |
| 
 | |
|     if (IntervalPos == Interval->end()) {     // Remove expired intervals.
 | |
|       DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       delRegUse(reg);
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       active_[i] = active_.back();
 | |
|       active_.pop_back();
 | |
|       --i; --e;
 | |
| 
 | |
|     } else if (IntervalPos->start > CurPoint) {
 | |
|       // Move inactive intervals to inactive list.
 | |
|       DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       delRegUse(reg);
 | |
|       // add to inactive.
 | |
|       inactive_.push_back(std::make_pair(Interval, IntervalPos));
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       active_[i] = active_.back();
 | |
|       active_.pop_back();
 | |
|       --i; --e;
 | |
|     } else {
 | |
|       // Otherwise, just update the iterator position.
 | |
|       active_[i].second = IntervalPos;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// processInactiveIntervals - expire old intervals and move overlapping
 | |
| /// ones to the active list.
 | |
| void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
 | |
| {
 | |
|   DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
 | |
| 
 | |
|   for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
 | |
|     LiveInterval *Interval = inactive_[i].first;
 | |
|     LiveInterval::iterator IntervalPos = inactive_[i].second;
 | |
|     unsigned reg = Interval->reg;
 | |
| 
 | |
|     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
 | |
| 
 | |
|     if (IntervalPos == Interval->end()) {       // remove expired intervals.
 | |
|       DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       inactive_[i] = inactive_.back();
 | |
|       inactive_.pop_back();
 | |
|       --i; --e;
 | |
|     } else if (IntervalPos->start <= CurPoint) {
 | |
|       // move re-activated intervals in active list
 | |
|       DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       addRegUse(reg);
 | |
|       // add to active
 | |
|       active_.push_back(std::make_pair(Interval, IntervalPos));
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       inactive_[i] = inactive_.back();
 | |
|       inactive_.pop_back();
 | |
|       --i; --e;
 | |
|     } else {
 | |
|       // Otherwise, just update the iterator position.
 | |
|       inactive_[i].second = IntervalPos;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// updateSpillWeights - updates the spill weights of the specifed physical
 | |
| /// register and its weight.
 | |
| void RALinScan::updateSpillWeights(std::vector<float> &Weights,
 | |
|                                    unsigned reg, float weight,
 | |
|                                    const TargetRegisterClass *RC) {
 | |
|   SmallSet<unsigned, 4> Processed;
 | |
|   SmallSet<unsigned, 4> SuperAdded;
 | |
|   SmallVector<unsigned, 4> Supers;
 | |
|   Weights[reg] += weight;
 | |
|   Processed.insert(reg);
 | |
|   for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
 | |
|     Weights[*as] += weight;
 | |
|     Processed.insert(*as);
 | |
|     if (tri_->isSubRegister(*as, reg) &&
 | |
|         SuperAdded.insert(*as) &&
 | |
|         RC->contains(*as)) {
 | |
|       Supers.push_back(*as);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the alias is a super-register, and the super-register is in the
 | |
|   // register class we are trying to allocate. Then add the weight to all
 | |
|   // sub-registers of the super-register even if they are not aliases.
 | |
|   // e.g. allocating for GR32, bh is not used, updating bl spill weight.
 | |
|   //      bl should get the same spill weight otherwise it will be chosen
 | |
|   //      as a spill candidate since spilling bh doesn't make ebx available.
 | |
|   for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
 | |
|     for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
 | |
|       if (!Processed.count(*sr))
 | |
|         Weights[*sr] += weight;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static
 | |
| RALinScan::IntervalPtrs::iterator
 | |
| FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
 | |
|   for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
 | |
|        I != E; ++I)
 | |
|     if (I->first == LI) return I;
 | |
|   return IP.end();
 | |
| }
 | |
| 
 | |
| static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
 | |
|                                     SlotIndex Point){
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|     RALinScan::IntervalPtr &IP = V[i];
 | |
|     LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
 | |
|                                                 IP.second, Point);
 | |
|     if (I != IP.first->begin()) --I;
 | |
|     IP.second = I;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getConflictWeight - Return the number of conflicts between cur
 | |
| /// live interval and defs and uses of Reg weighted by loop depthes.
 | |
| static
 | |
| float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
 | |
|                         MachineRegisterInfo *mri_,
 | |
|                         MachineLoopInfo *loopInfo) {
 | |
|   float Conflicts = 0;
 | |
|   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
 | |
|          E = mri_->reg_end(); I != E; ++I) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     if (cur->liveAt(li_->getInstructionIndex(MI))) {
 | |
|       unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
 | |
|       Conflicts += std::pow(10.0f, (float)loopDepth);
 | |
|     }
 | |
|   }
 | |
|   return Conflicts;
 | |
| }
 | |
| 
 | |
| /// findIntervalsToSpill - Determine the intervals to spill for the
 | |
| /// specified interval. It's passed the physical registers whose spill
 | |
| /// weight is the lowest among all the registers whose live intervals
 | |
| /// conflict with the interval.
 | |
| void RALinScan::findIntervalsToSpill(LiveInterval *cur,
 | |
|                             std::vector<std::pair<unsigned,float> > &Candidates,
 | |
|                             unsigned NumCands,
 | |
|                             SmallVector<LiveInterval*, 8> &SpillIntervals) {
 | |
|   // We have figured out the *best* register to spill. But there are other
 | |
|   // registers that are pretty good as well (spill weight within 3%). Spill
 | |
|   // the one that has fewest defs and uses that conflict with cur.
 | |
|   float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
 | |
|   SmallVector<LiveInterval*, 8> SLIs[3];
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "\tConsidering " << NumCands << " candidates: ";
 | |
|       for (unsigned i = 0; i != NumCands; ++i)
 | |
|         dbgs() << tri_->getName(Candidates[i].first) << " ";
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
| 
 | |
|   // Calculate the number of conflicts of each candidate.
 | |
|   for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
 | |
|     unsigned Reg = i->first->reg;
 | |
|     unsigned PhysReg = vrm_->getPhys(Reg);
 | |
|     if (!cur->overlapsFrom(*i->first, i->second))
 | |
|       continue;
 | |
|     for (unsigned j = 0; j < NumCands; ++j) {
 | |
|       unsigned Candidate = Candidates[j].first;
 | |
|       if (tri_->regsOverlap(PhysReg, Candidate)) {
 | |
|         if (NumCands > 1)
 | |
|           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
 | |
|         SLIs[j].push_back(i->first);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
 | |
|     unsigned Reg = i->first->reg;
 | |
|     unsigned PhysReg = vrm_->getPhys(Reg);
 | |
|     if (!cur->overlapsFrom(*i->first, i->second-1))
 | |
|       continue;
 | |
|     for (unsigned j = 0; j < NumCands; ++j) {
 | |
|       unsigned Candidate = Candidates[j].first;
 | |
|       if (tri_->regsOverlap(PhysReg, Candidate)) {
 | |
|         if (NumCands > 1)
 | |
|           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
 | |
|         SLIs[j].push_back(i->first);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Which is the best candidate?
 | |
|   unsigned BestCandidate = 0;
 | |
|   float MinConflicts = Conflicts[0];
 | |
|   for (unsigned i = 1; i != NumCands; ++i) {
 | |
|     if (Conflicts[i] < MinConflicts) {
 | |
|       BestCandidate = i;
 | |
|       MinConflicts = Conflicts[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
 | |
|             std::back_inserter(SpillIntervals));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct WeightCompare {
 | |
|   private:
 | |
|     const RALinScan &Allocator;
 | |
| 
 | |
|   public:
 | |
|     WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
 | |
| 
 | |
|     typedef std::pair<unsigned, float> RegWeightPair;
 | |
|     bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
 | |
|       return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static bool weightsAreClose(float w1, float w2) {
 | |
|   if (!NewHeuristic)
 | |
|     return false;
 | |
| 
 | |
|   float diff = w1 - w2;
 | |
|   if (diff <= 0.02f)  // Within 0.02f
 | |
|     return true;
 | |
|   return (diff / w2) <= 0.05f;  // Within 5%.
 | |
| }
 | |
| 
 | |
| LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
 | |
|   DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
 | |
|   if (I == NextReloadMap.end())
 | |
|     return 0;
 | |
|   return &li_->getInterval(I->second);
 | |
| }
 | |
| 
 | |
| void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
 | |
|   for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
 | |
|     bool isNew = DowngradedRegs.insert(*AS);
 | |
|     (void)isNew; // Silence compiler warning.
 | |
|     assert(isNew && "Multiple reloads holding the same register?");
 | |
|     DowngradeMap.insert(std::make_pair(li->reg, *AS));
 | |
|   }
 | |
|   ++NumDowngrade;
 | |
| }
 | |
| 
 | |
| void RALinScan::UpgradeRegister(unsigned Reg) {
 | |
|   if (Reg) {
 | |
|     DowngradedRegs.erase(Reg);
 | |
|     for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
 | |
|       DowngradedRegs.erase(*AS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct LISorter {
 | |
|     bool operator()(LiveInterval* A, LiveInterval* B) {
 | |
|       return A->beginIndex() < B->beginIndex();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
 | |
| /// spill.
 | |
| void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
 | |
|   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
 | |
|   DEBUG(dbgs() << "\tallocating current interval from "
 | |
|                << RC->getName() << ": ");
 | |
| 
 | |
|   // This is an implicitly defined live interval, just assign any register.
 | |
|   if (cur->empty()) {
 | |
|     unsigned physReg = vrm_->getRegAllocPref(cur->reg);
 | |
|     if (!physReg)
 | |
|       physReg = getFirstNonReservedPhysReg(RC);
 | |
|     DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
 | |
|     // Note the register is not really in use.
 | |
|     vrm_->assignVirt2Phys(cur->reg, physReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   backUpRegUses();
 | |
| 
 | |
|   std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
 | |
|   SlotIndex StartPosition = cur->beginIndex();
 | |
|   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 | |
| 
 | |
|   // If start of this live interval is defined by a move instruction and its
 | |
|   // source is assigned a physical register that is compatible with the target
 | |
|   // register class, then we should try to assign it the same register.
 | |
|   // This can happen when the move is from a larger register class to a smaller
 | |
|   // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
 | |
|   if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
 | |
|     VNInfo *vni = cur->begin()->valno;
 | |
|     if (!vni->isUnused() && vni->def.isValid()) {
 | |
|       MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
 | |
|       if (CopyMI && CopyMI->isCopy()) {
 | |
|         unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
 | |
|         unsigned SrcReg = CopyMI->getOperand(1).getReg();
 | |
|         unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
 | |
|         unsigned Reg = 0;
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | |
|           Reg = SrcReg;
 | |
|         else if (vrm_->isAssignedReg(SrcReg))
 | |
|           Reg = vrm_->getPhys(SrcReg);
 | |
|         if (Reg) {
 | |
|           if (SrcSubReg)
 | |
|             Reg = tri_->getSubReg(Reg, SrcSubReg);
 | |
|           if (DstSubReg)
 | |
|             Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
 | |
|           if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
 | |
|             mri_->setRegAllocationHint(cur->reg, 0, Reg);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For every interval in inactive we overlap with, mark the
 | |
|   // register as not free and update spill weights.
 | |
|   for (IntervalPtrs::const_iterator i = inactive_.begin(),
 | |
|          e = inactive_.end(); i != e; ++i) {
 | |
|     unsigned Reg = i->first->reg;
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
|     const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
 | |
|     // If this is not in a related reg class to the register we're allocating,
 | |
|     // don't check it.
 | |
|     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
 | |
|         cur->overlapsFrom(*i->first, i->second-1)) {
 | |
|       Reg = vrm_->getPhys(Reg);
 | |
|       addRegUse(Reg);
 | |
|       SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Speculatively check to see if we can get a register right now.  If not,
 | |
|   // we know we won't be able to by adding more constraints.  If so, we can
 | |
|   // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
 | |
|   // is very bad (it contains all callee clobbered registers for any functions
 | |
|   // with a call), so we want to avoid doing that if possible.
 | |
|   unsigned physReg = getFreePhysReg(cur);
 | |
|   unsigned BestPhysReg = physReg;
 | |
|   if (physReg) {
 | |
|     // We got a register.  However, if it's in the fixed_ list, we might
 | |
|     // conflict with it.  Check to see if we conflict with it or any of its
 | |
|     // aliases.
 | |
|     SmallSet<unsigned, 8> RegAliases;
 | |
|     for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
 | |
|       RegAliases.insert(*AS);
 | |
| 
 | |
|     bool ConflictsWithFixed = false;
 | |
|     for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | |
|       IntervalPtr &IP = fixed_[i];
 | |
|       if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
 | |
|         // Okay, this reg is on the fixed list.  Check to see if we actually
 | |
|         // conflict.
 | |
|         LiveInterval *I = IP.first;
 | |
|         if (I->endIndex() > StartPosition) {
 | |
|           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
 | |
|           IP.second = II;
 | |
|           if (II != I->begin() && II->start > StartPosition)
 | |
|             --II;
 | |
|           if (cur->overlapsFrom(*I, II)) {
 | |
|             ConflictsWithFixed = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Okay, the register picked by our speculative getFreePhysReg call turned
 | |
|     // out to be in use.  Actually add all of the conflicting fixed registers to
 | |
|     // regUse_ so we can do an accurate query.
 | |
|     if (ConflictsWithFixed) {
 | |
|       // For every interval in fixed we overlap with, mark the register as not
 | |
|       // free and update spill weights.
 | |
|       for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | |
|         IntervalPtr &IP = fixed_[i];
 | |
|         LiveInterval *I = IP.first;
 | |
| 
 | |
|         const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
 | |
|         if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
 | |
|             I->endIndex() > StartPosition) {
 | |
|           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
 | |
|           IP.second = II;
 | |
|           if (II != I->begin() && II->start > StartPosition)
 | |
|             --II;
 | |
|           if (cur->overlapsFrom(*I, II)) {
 | |
|             unsigned reg = I->reg;
 | |
|             addRegUse(reg);
 | |
|             SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Using the newly updated regUse_ object, which includes conflicts in the
 | |
|       // future, see if there are any registers available.
 | |
|       physReg = getFreePhysReg(cur);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Restore the physical register tracker, removing information about the
 | |
|   // future.
 | |
|   restoreRegUses();
 | |
| 
 | |
|   // If we find a free register, we are done: assign this virtual to
 | |
|   // the free physical register and add this interval to the active
 | |
|   // list.
 | |
|   if (physReg) {
 | |
|     DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
 | |
|     assert(RC->contains(physReg) && "Invalid candidate");
 | |
|     vrm_->assignVirt2Phys(cur->reg, physReg);
 | |
|     addRegUse(physReg);
 | |
|     active_.push_back(std::make_pair(cur, cur->begin()));
 | |
|     handled_.push_back(cur);
 | |
| 
 | |
|     // Remember physReg for avoiding a write-after-write hazard in the next
 | |
|     // instruction.
 | |
|     if (AvoidWAWHazard &&
 | |
|         tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
 | |
|       avoidWAW_ = physReg;
 | |
| 
 | |
|     // "Upgrade" the physical register since it has been allocated.
 | |
|     UpgradeRegister(physReg);
 | |
|     if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
 | |
|       // "Downgrade" physReg to try to keep physReg from being allocated until
 | |
|       // the next reload from the same SS is allocated.
 | |
|       mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
 | |
|       DowngradeRegister(cur, physReg);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   DEBUG(dbgs() << "no free registers\n");
 | |
| 
 | |
|   // Compile the spill weights into an array that is better for scanning.
 | |
|   std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
 | |
|   for (std::vector<std::pair<unsigned, float> >::iterator
 | |
|        I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
 | |
|     updateSpillWeights(SpillWeights, I->first, I->second, RC);
 | |
| 
 | |
|   // for each interval in active, update spill weights.
 | |
|   for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
 | |
|        i != e; ++i) {
 | |
|     unsigned reg = i->first->reg;
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
|     reg = vrm_->getPhys(reg);
 | |
|     updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
 | |
| 
 | |
|   // Find a register to spill.
 | |
|   float minWeight = HUGE_VALF;
 | |
|   unsigned minReg = 0;
 | |
| 
 | |
|   bool Found = false;
 | |
|   std::vector<std::pair<unsigned,float> > RegsWeights;
 | |
|   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
 | |
|   if (!minReg || SpillWeights[minReg] == HUGE_VALF)
 | |
|     for (unsigned i = 0; i != Order.size(); ++i) {
 | |
|       unsigned reg = Order[i];
 | |
|       float regWeight = SpillWeights[reg];
 | |
|       // Skip recently allocated registers and reserved registers.
 | |
|       if (minWeight > regWeight && !isRecentlyUsed(reg))
 | |
|         Found = true;
 | |
|       RegsWeights.push_back(std::make_pair(reg, regWeight));
 | |
|     }
 | |
| 
 | |
|   // If we didn't find a register that is spillable, try aliases?
 | |
|   if (!Found) {
 | |
|     for (unsigned i = 0; i != Order.size(); ++i) {
 | |
|       unsigned reg = Order[i];
 | |
|       // No need to worry about if the alias register size < regsize of RC.
 | |
|       // We are going to spill all registers that alias it anyway.
 | |
|       for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
 | |
|         RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort all potential spill candidates by weight.
 | |
|   std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
 | |
|   minReg = RegsWeights[0].first;
 | |
|   minWeight = RegsWeights[0].second;
 | |
|   if (minWeight == HUGE_VALF) {
 | |
|     // All registers must have inf weight. Just grab one!
 | |
|     minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
 | |
|     if (cur->weight == HUGE_VALF ||
 | |
|         li_->getApproximateInstructionCount(*cur) == 0) {
 | |
|       // Spill a physical register around defs and uses.
 | |
|       if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
 | |
|         // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
 | |
|         // in fixed_. Reset them.
 | |
|         for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | |
|           IntervalPtr &IP = fixed_[i];
 | |
|           LiveInterval *I = IP.first;
 | |
|           if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
 | |
|             IP.second = I->advanceTo(I->begin(), StartPosition);
 | |
|         }
 | |
| 
 | |
|         DowngradedRegs.clear();
 | |
|         assignRegOrStackSlotAtInterval(cur);
 | |
|       } else {
 | |
|         assert(false && "Ran out of registers during register allocation!");
 | |
|         report_fatal_error("Ran out of registers during register allocation!");
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Find up to 3 registers to consider as spill candidates.
 | |
|   unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
 | |
|   while (LastCandidate > 1) {
 | |
|     if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
 | |
|       break;
 | |
|     --LastCandidate;
 | |
|   }
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "\t\tregister(s) with min weight(s): ";
 | |
| 
 | |
|       for (unsigned i = 0; i != LastCandidate; ++i)
 | |
|         dbgs() << tri_->getName(RegsWeights[i].first)
 | |
|                << " (" << RegsWeights[i].second << ")\n";
 | |
|     });
 | |
| 
 | |
|   // If the current has the minimum weight, we need to spill it and
 | |
|   // add any added intervals back to unhandled, and restart
 | |
|   // linearscan.
 | |
|   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
 | |
|     DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
 | |
|     SmallVector<LiveInterval*, 8> added;
 | |
|     LiveRangeEdit LRE(*cur, added);
 | |
|     spiller_->spill(LRE);
 | |
| 
 | |
|     std::sort(added.begin(), added.end(), LISorter());
 | |
|     if (added.empty())
 | |
|       return;  // Early exit if all spills were folded.
 | |
| 
 | |
|     // Merge added with unhandled.  Note that we have already sorted
 | |
|     // intervals returned by addIntervalsForSpills by their starting
 | |
|     // point.
 | |
|     // This also update the NextReloadMap. That is, it adds mapping from a
 | |
|     // register defined by a reload from SS to the next reload from SS in the
 | |
|     // same basic block.
 | |
|     MachineBasicBlock *LastReloadMBB = 0;
 | |
|     LiveInterval *LastReload = 0;
 | |
|     int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
 | |
|     for (unsigned i = 0, e = added.size(); i != e; ++i) {
 | |
|       LiveInterval *ReloadLi = added[i];
 | |
|       if (ReloadLi->weight == HUGE_VALF &&
 | |
|           li_->getApproximateInstructionCount(*ReloadLi) == 0) {
 | |
|         SlotIndex ReloadIdx = ReloadLi->beginIndex();
 | |
|         MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
 | |
|         int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
 | |
|         if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
 | |
|           // Last reload of same SS is in the same MBB. We want to try to
 | |
|           // allocate both reloads the same register and make sure the reg
 | |
|           // isn't clobbered in between if at all possible.
 | |
|           assert(LastReload->beginIndex() < ReloadIdx);
 | |
|           NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
 | |
|         }
 | |
|         LastReloadMBB = ReloadMBB;
 | |
|         LastReload = ReloadLi;
 | |
|         LastReloadSS = ReloadSS;
 | |
|       }
 | |
|       unhandled_.push(ReloadLi);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ++NumBacktracks;
 | |
| 
 | |
|   // Push the current interval back to unhandled since we are going
 | |
|   // to re-run at least this iteration. Since we didn't modify it it
 | |
|   // should go back right in the front of the list
 | |
|   unhandled_.push(cur);
 | |
| 
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
 | |
|          "did not choose a register to spill?");
 | |
| 
 | |
|   // We spill all intervals aliasing the register with
 | |
|   // minimum weight, rollback to the interval with the earliest
 | |
|   // start point and let the linear scan algorithm run again
 | |
|   SmallVector<LiveInterval*, 8> spillIs;
 | |
| 
 | |
|   // Determine which intervals have to be spilled.
 | |
|   findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
 | |
| 
 | |
|   // Set of spilled vregs (used later to rollback properly)
 | |
|   SmallSet<unsigned, 8> spilled;
 | |
| 
 | |
|   // The earliest start of a Spilled interval indicates up to where
 | |
|   // in handled we need to roll back
 | |
|   assert(!spillIs.empty() && "No spill intervals?");
 | |
|   SlotIndex earliestStart = spillIs[0]->beginIndex();
 | |
| 
 | |
|   // Spill live intervals of virtual regs mapped to the physical register we
 | |
|   // want to clear (and its aliases).  We only spill those that overlap with the
 | |
|   // current interval as the rest do not affect its allocation. we also keep
 | |
|   // track of the earliest start of all spilled live intervals since this will
 | |
|   // mark our rollback point.
 | |
|   SmallVector<LiveInterval*, 8> added;
 | |
|   while (!spillIs.empty()) {
 | |
|     LiveInterval *sli = spillIs.back();
 | |
|     spillIs.pop_back();
 | |
|     DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
 | |
|     if (sli->beginIndex() < earliestStart)
 | |
|       earliestStart = sli->beginIndex();
 | |
|     LiveRangeEdit LRE(*sli, added, 0, &spillIs);
 | |
|     spiller_->spill(LRE);
 | |
|     spilled.insert(sli->reg);
 | |
|   }
 | |
| 
 | |
|   // Include any added intervals in earliestStart.
 | |
|   for (unsigned i = 0, e = added.size(); i != e; ++i) {
 | |
|     SlotIndex SI = added[i]->beginIndex();
 | |
|     if (SI < earliestStart)
 | |
|       earliestStart = SI;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
 | |
| 
 | |
|   // Scan handled in reverse order up to the earliest start of a
 | |
|   // spilled live interval and undo each one, restoring the state of
 | |
|   // unhandled.
 | |
|   while (!handled_.empty()) {
 | |
|     LiveInterval* i = handled_.back();
 | |
|     // If this interval starts before t we are done.
 | |
|     if (!i->empty() && i->beginIndex() < earliestStart)
 | |
|       break;
 | |
|     DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
 | |
|     handled_.pop_back();
 | |
| 
 | |
|     // When undoing a live interval allocation we must know if it is active or
 | |
|     // inactive to properly update regUse_ and the VirtRegMap.
 | |
|     IntervalPtrs::iterator it;
 | |
|     if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
 | |
|       active_.erase(it);
 | |
|       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
 | |
|       if (!spilled.count(i->reg))
 | |
|         unhandled_.push(i);
 | |
|       delRegUse(vrm_->getPhys(i->reg));
 | |
|       vrm_->clearVirt(i->reg);
 | |
|     } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
 | |
|       inactive_.erase(it);
 | |
|       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
 | |
|       if (!spilled.count(i->reg))
 | |
|         unhandled_.push(i);
 | |
|       vrm_->clearVirt(i->reg);
 | |
|     } else {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       vrm_->clearVirt(i->reg);
 | |
|       unhandled_.push(i);
 | |
|     }
 | |
| 
 | |
|     DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
 | |
|     if (ii == DowngradeMap.end())
 | |
|       // It interval has a preference, it must be defined by a copy. Clear the
 | |
|       // preference now since the source interval allocation may have been
 | |
|       // undone as well.
 | |
|       mri_->setRegAllocationHint(i->reg, 0, 0);
 | |
|     else {
 | |
|       UpgradeRegister(ii->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewind the iterators in the active, inactive, and fixed lists back to the
 | |
|   // point we reverted to.
 | |
|   RevertVectorIteratorsTo(active_, earliestStart);
 | |
|   RevertVectorIteratorsTo(inactive_, earliestStart);
 | |
|   RevertVectorIteratorsTo(fixed_, earliestStart);
 | |
| 
 | |
|   // Scan the rest and undo each interval that expired after t and
 | |
|   // insert it in active (the next iteration of the algorithm will
 | |
|   // put it in inactive if required)
 | |
|   for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
 | |
|     LiveInterval *HI = handled_[i];
 | |
|     if (!HI->expiredAt(earliestStart) &&
 | |
|         HI->expiredAt(cur->beginIndex())) {
 | |
|       DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
 | |
|       active_.push_back(std::make_pair(HI, HI->begin()));
 | |
|       assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
 | |
|       addRegUse(vrm_->getPhys(HI->reg));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge added with unhandled.
 | |
|   // This also update the NextReloadMap. That is, it adds mapping from a
 | |
|   // register defined by a reload from SS to the next reload from SS in the
 | |
|   // same basic block.
 | |
|   MachineBasicBlock *LastReloadMBB = 0;
 | |
|   LiveInterval *LastReload = 0;
 | |
|   int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
 | |
|   std::sort(added.begin(), added.end(), LISorter());
 | |
|   for (unsigned i = 0, e = added.size(); i != e; ++i) {
 | |
|     LiveInterval *ReloadLi = added[i];
 | |
|     if (ReloadLi->weight == HUGE_VALF &&
 | |
|         li_->getApproximateInstructionCount(*ReloadLi) == 0) {
 | |
|       SlotIndex ReloadIdx = ReloadLi->beginIndex();
 | |
|       MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
 | |
|       int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
 | |
|       if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
 | |
|         // Last reload of same SS is in the same MBB. We want to try to
 | |
|         // allocate both reloads the same register and make sure the reg
 | |
|         // isn't clobbered in between if at all possible.
 | |
|         assert(LastReload->beginIndex() < ReloadIdx);
 | |
|         NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
 | |
|       }
 | |
|       LastReloadMBB = ReloadMBB;
 | |
|       LastReload = ReloadLi;
 | |
|       LastReloadSS = ReloadSS;
 | |
|     }
 | |
|     unhandled_.push(ReloadLi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned MaxInactiveCount,
 | |
|                                    SmallVector<unsigned, 256> &inactiveCounts,
 | |
|                                    bool SkipDGRegs) {
 | |
|   unsigned FreeReg = 0;
 | |
|   unsigned FreeRegInactiveCount = 0;
 | |
| 
 | |
|   std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
 | |
|   // Resolve second part of the hint (if possible) given the current allocation.
 | |
|   unsigned physReg = Hint.second;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
 | |
|     physReg = vrm_->getPhys(physReg);
 | |
| 
 | |
|   ArrayRef<unsigned> Order;
 | |
|   if (Hint.first)
 | |
|     Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
 | |
|   else
 | |
|     Order = RegClassInfo.getOrder(RC);
 | |
| 
 | |
|   assert(!Order.empty() && "No allocatable register in this register class!");
 | |
| 
 | |
|   // Scan for the first available register.
 | |
|   for (unsigned i = 0; i != Order.size(); ++i) {
 | |
|     unsigned Reg = Order[i];
 | |
|     // Ignore "downgraded" registers.
 | |
|     if (SkipDGRegs && DowngradedRegs.count(Reg))
 | |
|       continue;
 | |
|     // Skip reserved registers.
 | |
|     if (reservedRegs_.test(Reg))
 | |
|       continue;
 | |
|     // Skip recently allocated registers.
 | |
|     if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
 | |
|       FreeReg = Reg;
 | |
|       if (FreeReg < inactiveCounts.size())
 | |
|         FreeRegInactiveCount = inactiveCounts[FreeReg];
 | |
|       else
 | |
|         FreeRegInactiveCount = 0;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no free regs, or if this reg has the max inactive count,
 | |
|   // return this register.
 | |
|   if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
 | |
|     // Remember what register we picked so we can skip it next time.
 | |
|     if (FreeReg != 0) recordRecentlyUsed(FreeReg);
 | |
|     return FreeReg;
 | |
|   }
 | |
| 
 | |
|   // Continue scanning the registers, looking for the one with the highest
 | |
|   // inactive count.  Alkis found that this reduced register pressure very
 | |
|   // slightly on X86 (in rev 1.94 of this file), though this should probably be
 | |
|   // reevaluated now.
 | |
|   for (unsigned i = 0; i != Order.size(); ++i) {
 | |
|     unsigned Reg = Order[i];
 | |
|     // Ignore "downgraded" registers.
 | |
|     if (SkipDGRegs && DowngradedRegs.count(Reg))
 | |
|       continue;
 | |
|     // Skip reserved registers.
 | |
|     if (reservedRegs_.test(Reg))
 | |
|       continue;
 | |
|     if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
 | |
|         FreeRegInactiveCount < inactiveCounts[Reg] &&
 | |
|         (!SkipDGRegs || !isRecentlyUsed(Reg))) {
 | |
|       FreeReg = Reg;
 | |
|       FreeRegInactiveCount = inactiveCounts[Reg];
 | |
|       if (FreeRegInactiveCount == MaxInactiveCount)
 | |
|         break;    // We found the one with the max inactive count.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remember what register we picked so we can skip it next time.
 | |
|   recordRecentlyUsed(FreeReg);
 | |
| 
 | |
|   return FreeReg;
 | |
| }
 | |
| 
 | |
| /// getFreePhysReg - return a free physical register for this virtual register
 | |
| /// interval if we have one, otherwise return 0.
 | |
| unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
 | |
|   SmallVector<unsigned, 256> inactiveCounts;
 | |
|   unsigned MaxInactiveCount = 0;
 | |
| 
 | |
|   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
 | |
|   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 | |
| 
 | |
|   for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
 | |
|        i != e; ++i) {
 | |
|     unsigned reg = i->first->reg;
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
| 
 | |
|     // If this is not in a related reg class to the register we're allocating,
 | |
|     // don't check it.
 | |
|     const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
 | |
|     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       if (inactiveCounts.size() <= reg)
 | |
|         inactiveCounts.resize(reg+1);
 | |
|       ++inactiveCounts[reg];
 | |
|       MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If copy coalescer has assigned a "preferred" register, check if it's
 | |
|   // available first.
 | |
|   unsigned Preference = vrm_->getRegAllocPref(cur->reg);
 | |
|   if (Preference) {
 | |
|     DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
 | |
|     if (isRegAvail(Preference) &&
 | |
|         RC->contains(Preference))
 | |
|       return Preference;
 | |
|   }
 | |
| 
 | |
|   unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
 | |
|                                     true);
 | |
|   if (FreeReg)
 | |
|     return FreeReg;
 | |
|   return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
 | |
| }
 | |
| 
 | |
| FunctionPass* llvm::createLinearScanRegisterAllocator() {
 | |
|   return new RALinScan();
 | |
| }
 |