mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Supports constant pools Supports relocations to jump tables Supports relocations within the data segment (global = address of global) Allocates memory in a non-hacky for all non-code objects. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32430 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			836 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Nate Begeman and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the target-independent Mach-O writer.  This file writes
 | |
| // out the Mach-O file in the following order:
 | |
| //
 | |
| //  #1 FatHeader (universal-only)
 | |
| //  #2 FatArch (universal-only, 1 per universal arch)
 | |
| //  Per arch:
 | |
| //    #3 Header
 | |
| //    #4 Load Commands
 | |
| //    #5 Sections
 | |
| //    #6 Relocations
 | |
| //    #7 Symbols
 | |
| //    #8 Strings
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachOWriter.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/Target/TargetAsmInfo.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| #include "llvm/Support/Mangler.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       MachOCodeEmitter Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace llvm {
 | |
|   /// MachOCodeEmitter - This class is used by the MachOWriter to emit the code 
 | |
|   /// for functions to the Mach-O file.
 | |
|   class MachOCodeEmitter : public MachineCodeEmitter {
 | |
|     MachOWriter &MOW;
 | |
| 
 | |
|     /// Relocations - These are the relocations that the function needs, as
 | |
|     /// emitted.
 | |
|     std::vector<MachineRelocation> Relocations;
 | |
|     
 | |
|     /// CPLocations - This is a map of constant pool indices to offsets from the
 | |
|     /// start of the section for that constant pool index.
 | |
|     std::vector<intptr_t> CPLocations;
 | |
| 
 | |
|     /// CPSections - This is a map of constant pool indices to the MachOSection
 | |
|     /// containing the constant pool entry for that index.
 | |
|     std::vector<unsigned> CPSections;
 | |
| 
 | |
|     /// JTLocations - This is a map of jump table indices to offsets from the
 | |
|     /// start of the section for that jump table index.
 | |
|     std::vector<intptr_t> JTLocations;
 | |
| 
 | |
|     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
 | |
|     /// It is filled in by the StartMachineBasicBlock callback and queried by
 | |
|     /// the getMachineBasicBlockAddress callback.
 | |
|     std::vector<intptr_t> MBBLocations;
 | |
|     
 | |
|   public:
 | |
|     MachOCodeEmitter(MachOWriter &mow) : MOW(mow) {}
 | |
| 
 | |
|     virtual void startFunction(MachineFunction &F);
 | |
|     virtual bool finishFunction(MachineFunction &F);
 | |
| 
 | |
|     virtual void addRelocation(const MachineRelocation &MR) {
 | |
|       Relocations.push_back(MR);
 | |
|     }
 | |
|     
 | |
|     void emitConstantPool(MachineConstantPool *MCP);
 | |
|     void emitJumpTables(MachineJumpTableInfo *MJTI);
 | |
|     
 | |
|     virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const {
 | |
|       assert(CPLocations.size() > Index && "CP not emitted!");
 | |
|       return CPLocations[Index];
 | |
|     }
 | |
|     virtual intptr_t getJumpTableEntryAddress(unsigned Index) const {
 | |
|       assert(JTLocations.size() > Index && "JT not emitted!");
 | |
|       return JTLocations[Index];
 | |
|     }
 | |
| 
 | |
|     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
 | |
|       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
 | |
|         MBBLocations.resize((MBB->getNumber()+1)*2);
 | |
|       MBBLocations[MBB->getNumber()] = getCurrentPCOffset();
 | |
|     }
 | |
| 
 | |
|     virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
 | |
|       assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 
 | |
|              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
 | |
|       return MBBLocations[MBB->getNumber()];
 | |
|     }
 | |
| 
 | |
|     /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
 | |
|     virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) {
 | |
|       assert(0 && "JIT specific function called!");
 | |
|       abort();
 | |
|     }
 | |
|     virtual void *finishFunctionStub(const Function *F) {
 | |
|       assert(0 && "JIT specific function called!");
 | |
|       abort();
 | |
|       return 0;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// startFunction - This callback is invoked when a new machine function is
 | |
| /// about to be emitted.
 | |
| void MachOCodeEmitter::startFunction(MachineFunction &F) {
 | |
|   // Align the output buffer to the appropriate alignment, power of 2.
 | |
|   // FIXME: MachineFunction or TargetData should probably carry an alignment
 | |
|   // field for functions that we can query here instead of hard coding 4 in both
 | |
|   // the object writer and asm printer.
 | |
|   unsigned Align = 4;
 | |
| 
 | |
|   // Get the Mach-O Section that this function belongs in.
 | |
|   MachOWriter::MachOSection *MOS = MOW.getTextSection();
 | |
|   
 | |
|   // FIXME: better memory management
 | |
|   MOS->SectionData.reserve(4096);
 | |
|   BufferBegin = &MOS->SectionData[0];
 | |
|   BufferEnd = BufferBegin + MOS->SectionData.capacity();
 | |
| 
 | |
|   // FIXME: Using MOS->size directly here instead of calculating it from the
 | |
|   // output buffer size (impossible because the code emitter deals only in raw
 | |
|   // bytes) forces us to manually synchronize size and write padding zero bytes
 | |
|   // to the output buffer for all non-text sections.  For text sections, we do
 | |
|   // not synchonize the output buffer, and we just blow up if anyone tries to
 | |
|   // write non-code to it.  An assert should probably be added to
 | |
|   // AddSymbolToSection to prevent calling it on the text section.
 | |
|   CurBufferPtr = BufferBegin + MOS->size;
 | |
| 
 | |
|   // Upgrade the section alignment if required.
 | |
|   if (MOS->align < Align) MOS->align = Align;
 | |
| 
 | |
|   // Clear per-function data structures.
 | |
|   CPLocations.clear();
 | |
|   CPSections.clear();
 | |
|   JTLocations.clear();
 | |
|   MBBLocations.clear();
 | |
| }
 | |
| 
 | |
| /// finishFunction - This callback is invoked after the function is completely
 | |
| /// finished.
 | |
| bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
 | |
|   // Get the Mach-O Section that this function belongs in.
 | |
|   MachOWriter::MachOSection *MOS = MOW.getTextSection();
 | |
| 
 | |
|   MOS->size += CurBufferPtr - BufferBegin;
 | |
|   
 | |
|   // Get a symbol for the function to add to the symbol table
 | |
|   const GlobalValue *FuncV = F.getFunction();
 | |
|   MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index, MOW.TM);
 | |
| 
 | |
|   // Emit constant pool to appropriate section(s)
 | |
|   emitConstantPool(F.getConstantPool());
 | |
| 
 | |
|   // Emit jump tables to appropriate section
 | |
|   emitJumpTables(F.getJumpTableInfo());
 | |
|   
 | |
|   // If we have emitted any relocations to function-specific objects such as 
 | |
|   // basic blocks, constant pools entries, or jump tables, record their
 | |
|   // addresses now so that we can rewrite them with the correct addresses
 | |
|   // later.
 | |
|   for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
 | |
|     MachineRelocation &MR = Relocations[i];
 | |
|     intptr_t Addr;
 | |
| 
 | |
|     if (MR.isBasicBlock()) {
 | |
|       Addr = getMachineBasicBlockAddress(MR.getBasicBlock());
 | |
|       MR.setConstantVal(MOS->Index);
 | |
|       MR.setResultPointer((void*)Addr);
 | |
|     } else if (MR.isJumpTableIndex()) {
 | |
|       Addr = getJumpTableEntryAddress(MR.getJumpTableIndex());
 | |
|       MR.setConstantVal(MOW.getJumpTableSection()->Index);
 | |
|       MR.setResultPointer((void*)Addr);
 | |
|     } else if (MR.isConstantPoolIndex()) {
 | |
|       Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex());
 | |
|       MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]);
 | |
|       MR.setResultPointer((void*)Addr);
 | |
|     } else if (!MR.isGlobalValue()) {
 | |
|       assert(0 && "Unhandled relocation type");
 | |
|     }
 | |
|     MOS->Relocations.push_back(MR);
 | |
|   }
 | |
|   Relocations.clear();
 | |
|   
 | |
|   // Finally, add it to the symtab.
 | |
|   MOW.SymbolTable.push_back(FnSym);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// emitConstantPool - For each constant pool entry, figure out which section
 | |
| /// the constant should live in, allocate space for it, and emit it to the 
 | |
| /// Section data buffer.
 | |
| void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
 | |
|   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
 | |
|   if (CP.empty()) return;
 | |
| 
 | |
|   // FIXME: handle PIC codegen
 | |
|   bool isPIC = MOW.TM.getRelocationModel() == Reloc::PIC_;
 | |
|   assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!");
 | |
| 
 | |
|   // Although there is no strict necessity that I am aware of, we will do what
 | |
|   // gcc for OS X does and put each constant pool entry in a section of constant
 | |
|   // objects of a certain size.  That means that float constants go in the
 | |
|   // literal4 section, and double objects go in literal8, etc.
 | |
|   //
 | |
|   // FIXME: revisit this decision if we ever do the "stick everything into one
 | |
|   // "giant object for PIC" optimization.
 | |
|   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
 | |
|     const Type *Ty = CP[i].getType();
 | |
|     unsigned Size = MOW.TM.getTargetData()->getTypeSize(Ty);
 | |
| 
 | |
|     MachOWriter::MachOSection *Sec = MOW.getConstSection(Ty);
 | |
|     CPLocations.push_back(Sec->SectionData.size());
 | |
|     CPSections.push_back(Sec->Index);
 | |
|     
 | |
|     // FIXME: remove when we have unified size + output buffer
 | |
|     Sec->size += Size;
 | |
| 
 | |
|     // Allocate space in the section for the global.
 | |
|     // FIXME: need alignment?
 | |
|     // FIXME: share between here and AddSymbolToSection?
 | |
|     for (unsigned j = 0; j < Size; ++j)
 | |
|       MOW.outbyte(Sec->SectionData, 0);
 | |
| 
 | |
|     MOW.InitMem(CP[i].Val.ConstVal, &Sec->SectionData[0], CPLocations[i],
 | |
|                 MOW.TM.getTargetData(), Sec->Relocations);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// emitJumpTables - Emit all the jump tables for a given jump table info
 | |
| /// record to the appropriate section.
 | |
| void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty()) return;
 | |
| 
 | |
|   // FIXME: handle PIC codegen
 | |
|   bool isPIC = MOW.TM.getRelocationModel() == Reloc::PIC_;
 | |
|   assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!");
 | |
| 
 | |
|   MachOWriter::MachOSection *Sec = MOW.getJumpTableSection();
 | |
|   unsigned TextSecIndex = MOW.getTextSection()->Index;
 | |
| 
 | |
|   for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|     // For each jump table, record its offset from the start of the section,
 | |
|     // reserve space for the relocations to the MBBs, and add the relocations.
 | |
|     const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|     JTLocations.push_back(Sec->SectionData.size());
 | |
|     for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
 | |
|       MachineRelocation MR(MOW.GetJTRelocation(Sec->SectionData.size(),
 | |
|                                                MBBs[mi]));
 | |
|       MR.setResultPointer((void *)JTLocations[i]);
 | |
|       MR.setConstantVal(TextSecIndex);
 | |
|       Sec->Relocations.push_back(MR);
 | |
|       MOW.outaddr(Sec->SectionData, 0);
 | |
|     }
 | |
|   }
 | |
|   // FIXME: remove when we have unified size + output buffer
 | |
|   Sec->size = Sec->SectionData.size();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          MachOWriter Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
 | |
|   is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
 | |
|   isLittleEndian = TM.getTargetData()->isLittleEndian();
 | |
| 
 | |
|   // Create the machine code emitter object for this target.
 | |
|   MCE = new MachOCodeEmitter(*this);
 | |
| }
 | |
| 
 | |
| MachOWriter::~MachOWriter() {
 | |
|   delete MCE;
 | |
| }
 | |
| 
 | |
| void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
 | |
|   const Type *Ty = GV->getType()->getElementType();
 | |
|   unsigned Size = TM.getTargetData()->getTypeSize(Ty);
 | |
|   unsigned Align = GV->getAlignment();
 | |
|   if (Align == 0)
 | |
|     Align = TM.getTargetData()->getTypeAlignment(Ty);
 | |
|   
 | |
|   MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM);
 | |
|   
 | |
|   // Reserve space in the .bss section for this symbol while maintaining the
 | |
|   // desired section alignment, which must be at least as much as required by
 | |
|   // this symbol.
 | |
|   if (Align) {
 | |
|     uint64_t OrigSize = Sec->size;
 | |
|     Align = Log2_32(Align);
 | |
|     Sec->align = std::max(unsigned(Sec->align), Align);
 | |
|     Sec->size = (Sec->size + Align - 1) & ~(Align-1);
 | |
|     
 | |
|     // Add alignment padding to buffer as well.
 | |
|     // FIXME: remove when we have unified size + output buffer
 | |
|     unsigned AlignedSize = Sec->size - OrigSize;
 | |
|     for (unsigned i = 0; i < AlignedSize; ++i)
 | |
|       outbyte(Sec->SectionData, 0);
 | |
|   }
 | |
|   // Record the offset of the symbol, and then allocate space for it.
 | |
|   // FIXME: remove when we have unified size + output buffer
 | |
|   Sym.n_value = Sec->size;
 | |
|   Sec->size += Size;
 | |
|   SymbolTable.push_back(Sym);
 | |
| 
 | |
|   // Now that we know what section the GlovalVariable is going to be emitted 
 | |
|   // into, update our mappings.
 | |
|   // FIXME: We may also need to update this when outputting non-GlobalVariable
 | |
|   // GlobalValues such as functions.
 | |
|   GVSection[GV] = Sec;
 | |
|   GVOffset[GV] = Sec->SectionData.size();
 | |
|   
 | |
|   // Allocate space in the section for the global.
 | |
|   for (unsigned i = 0; i < Size; ++i)
 | |
|     outbyte(Sec->SectionData, 0);
 | |
| }
 | |
| 
 | |
| void MachOWriter::EmitGlobal(GlobalVariable *GV) {
 | |
|   const Type *Ty = GV->getType()->getElementType();
 | |
|   unsigned Size = TM.getTargetData()->getTypeSize(Ty);
 | |
|   bool NoInit = !GV->hasInitializer();
 | |
|   
 | |
|   // If this global has a zero initializer, it is part of the .bss or common
 | |
|   // section.
 | |
|   if (NoInit || GV->getInitializer()->isNullValue()) {
 | |
|     // If this global is part of the common block, add it now.  Variables are
 | |
|     // part of the common block if they are zero initialized and allowed to be
 | |
|     // merged with other symbols.
 | |
|     if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) {
 | |
|       MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT,TM);
 | |
|       // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
 | |
|       // bytes of the symbol.
 | |
|       ExtOrCommonSym.n_value = Size;
 | |
|       // If the symbol is external, we'll put it on a list of symbols whose
 | |
|       // addition to the symbol table is being pended until we find a reference
 | |
|       if (NoInit)
 | |
|         PendingSyms.push_back(ExtOrCommonSym);
 | |
|       else
 | |
|         SymbolTable.push_back(ExtOrCommonSym);
 | |
|       return;
 | |
|     }
 | |
|     // Otherwise, this symbol is part of the .bss section.
 | |
|     MachOSection *BSS = getBSSSection();
 | |
|     AddSymbolToSection(BSS, GV);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Scalar read-only data goes in a literal section if the scalar is 4, 8, or
 | |
|   // 16 bytes, or a cstring.  Other read only data goes into a regular const
 | |
|   // section.  Read-write data goes in the data section.
 | |
|   MachOSection *Sec = GV->isConstant() ? getConstSection(Ty) : getDataSection();
 | |
|   AddSymbolToSection(Sec, GV);
 | |
|   InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV],
 | |
|           TM.getTargetData(), Sec->Relocations);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   // Nothing to do here, this is all done through the MCE object.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachOWriter::doInitialization(Module &M) {
 | |
|   // Set the magic value, now that we know the pointer size and endianness
 | |
|   Header.setMagic(isLittleEndian, is64Bit);
 | |
| 
 | |
|   // Set the file type
 | |
|   // FIXME: this only works for object files, we do not support the creation
 | |
|   //        of dynamic libraries or executables at this time.
 | |
|   Header.filetype = MachOHeader::MH_OBJECT;
 | |
| 
 | |
|   Mang = new Mangler(M);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// doFinalization - Now that the module has been completely processed, emit
 | |
| /// the Mach-O file to 'O'.
 | |
| bool MachOWriter::doFinalization(Module &M) {
 | |
|   // FIXME: we don't handle debug info yet, we should probably do that.
 | |
| 
 | |
|   // Okay, the.text section has been completed, build the .data, .bss, and 
 | |
|   // "common" sections next.
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E; ++I)
 | |
|     EmitGlobal(I);
 | |
|   
 | |
|   // Emit the header and load commands.
 | |
|   EmitHeaderAndLoadCommands();
 | |
| 
 | |
|   // Emit the various sections and their relocation info.
 | |
|   EmitSections();
 | |
| 
 | |
|   // Write the symbol table and the string table to the end of the file.
 | |
|   O.write((char*)&SymT[0], SymT.size());
 | |
|   O.write((char*)&StrT[0], StrT.size());
 | |
| 
 | |
|   // We are done with the abstract symbols.
 | |
|   SectionList.clear();
 | |
|   SymbolTable.clear();
 | |
|   DynamicSymbolTable.clear();
 | |
| 
 | |
|   // Release the name mangler object.
 | |
|   delete Mang; Mang = 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void MachOWriter::EmitHeaderAndLoadCommands() {
 | |
|   // Step #0: Fill in the segment load command size, since we need it to figure
 | |
|   //          out the rest of the header fields
 | |
|   MachOSegment SEG("", is64Bit);
 | |
|   SEG.nsects  = SectionList.size();
 | |
|   SEG.cmdsize = SEG.cmdSize(is64Bit) + 
 | |
|                 SEG.nsects * SectionList[0]->cmdSize(is64Bit);
 | |
|   
 | |
|   // Step #1: calculate the number of load commands.  We always have at least
 | |
|   //          one, for the LC_SEGMENT load command, plus two for the normal
 | |
|   //          and dynamic symbol tables, if there are any symbols.
 | |
|   Header.ncmds = SymbolTable.empty() ? 1 : 3;
 | |
|   
 | |
|   // Step #2: calculate the size of the load commands
 | |
|   Header.sizeofcmds = SEG.cmdsize;
 | |
|   if (!SymbolTable.empty())
 | |
|     Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
 | |
|     
 | |
|   // Step #3: write the header to the file
 | |
|   // Local alias to shortenify coming code.
 | |
|   DataBuffer &FH = Header.HeaderData;
 | |
|   outword(FH, Header.magic);
 | |
|   outword(FH, Header.cputype);
 | |
|   outword(FH, Header.cpusubtype);
 | |
|   outword(FH, Header.filetype);
 | |
|   outword(FH, Header.ncmds);
 | |
|   outword(FH, Header.sizeofcmds);
 | |
|   outword(FH, Header.flags);
 | |
|   if (is64Bit)
 | |
|     outword(FH, Header.reserved);
 | |
|   
 | |
|   // Step #4: Finish filling in the segment load command and write it out
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I)
 | |
|     SEG.filesize += (*I)->size;
 | |
| 
 | |
|   SEG.vmsize = SEG.filesize;
 | |
|   SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
 | |
|   
 | |
|   outword(FH, SEG.cmd);
 | |
|   outword(FH, SEG.cmdsize);
 | |
|   outstring(FH, SEG.segname, 16);
 | |
|   outaddr(FH, SEG.vmaddr);
 | |
|   outaddr(FH, SEG.vmsize);
 | |
|   outaddr(FH, SEG.fileoff);
 | |
|   outaddr(FH, SEG.filesize);
 | |
|   outword(FH, SEG.maxprot);
 | |
|   outword(FH, SEG.initprot);
 | |
|   outword(FH, SEG.nsects);
 | |
|   outword(FH, SEG.flags);
 | |
|   
 | |
|   // Step #5: Finish filling in the fields of the MachOSections 
 | |
|   uint64_t currentAddr = 0;
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I) {
 | |
|     MachOSection *MOS = *I;
 | |
|     MOS->addr = currentAddr;
 | |
|     MOS->offset = currentAddr + SEG.fileoff;
 | |
| 
 | |
|     // FIXME: do we need to do something with alignment here?
 | |
|     currentAddr += MOS->size;
 | |
|   }
 | |
|   
 | |
|   // Step #6: Calculate the number of relocations for each section and write out
 | |
|   // the section commands for each section
 | |
|   currentAddr += SEG.fileoff;
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I) {
 | |
|     MachOSection *MOS = *I;
 | |
|     // Convert the relocations to target-specific relocations, and fill in the
 | |
|     // relocation offset for this section.
 | |
|     CalculateRelocations(*MOS);
 | |
|     MOS->reloff = MOS->nreloc ? currentAddr : 0;
 | |
|     currentAddr += MOS->nreloc * 8;
 | |
|     
 | |
|     // write the finalized section command to the output buffer
 | |
|     outstring(FH, MOS->sectname, 16);
 | |
|     outstring(FH, MOS->segname, 16);
 | |
|     outaddr(FH, MOS->addr);
 | |
|     outaddr(FH, MOS->size);
 | |
|     outword(FH, MOS->offset);
 | |
|     outword(FH, MOS->align);
 | |
|     outword(FH, MOS->reloff);
 | |
|     outword(FH, MOS->nreloc);
 | |
|     outword(FH, MOS->flags);
 | |
|     outword(FH, MOS->reserved1);
 | |
|     outword(FH, MOS->reserved2);
 | |
|     if (is64Bit)
 | |
|       outword(FH, MOS->reserved3);
 | |
|   }
 | |
|   
 | |
|   // Step #7: Emit the symbol table to temporary buffers, so that we know the
 | |
|   // size of the string table when we write the next load command.
 | |
|   BufferSymbolAndStringTable();
 | |
|   
 | |
|   // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands
 | |
|   SymTab.symoff  = currentAddr;
 | |
|   SymTab.nsyms   = SymbolTable.size();
 | |
|   SymTab.stroff  = SymTab.symoff + SymT.size();
 | |
|   SymTab.strsize = StrT.size();
 | |
|   outword(FH, SymTab.cmd);
 | |
|   outword(FH, SymTab.cmdsize);
 | |
|   outword(FH, SymTab.symoff);
 | |
|   outword(FH, SymTab.nsyms);
 | |
|   outword(FH, SymTab.stroff);
 | |
|   outword(FH, SymTab.strsize);
 | |
| 
 | |
|   // FIXME: set DySymTab fields appropriately
 | |
|   // We should probably just update these in BufferSymbolAndStringTable since
 | |
|   // thats where we're partitioning up the different kinds of symbols.
 | |
|   outword(FH, DySymTab.cmd);
 | |
|   outword(FH, DySymTab.cmdsize);
 | |
|   outword(FH, DySymTab.ilocalsym);
 | |
|   outword(FH, DySymTab.nlocalsym);
 | |
|   outword(FH, DySymTab.iextdefsym);
 | |
|   outword(FH, DySymTab.nextdefsym);
 | |
|   outword(FH, DySymTab.iundefsym);
 | |
|   outword(FH, DySymTab.nundefsym);
 | |
|   outword(FH, DySymTab.tocoff);
 | |
|   outword(FH, DySymTab.ntoc);
 | |
|   outword(FH, DySymTab.modtaboff);
 | |
|   outword(FH, DySymTab.nmodtab);
 | |
|   outword(FH, DySymTab.extrefsymoff);
 | |
|   outword(FH, DySymTab.nextrefsyms);
 | |
|   outword(FH, DySymTab.indirectsymoff);
 | |
|   outword(FH, DySymTab.nindirectsyms);
 | |
|   outword(FH, DySymTab.extreloff);
 | |
|   outword(FH, DySymTab.nextrel);
 | |
|   outword(FH, DySymTab.locreloff);
 | |
|   outword(FH, DySymTab.nlocrel);
 | |
|   
 | |
|   O.write((char*)&FH[0], FH.size());
 | |
| }
 | |
| 
 | |
| /// EmitSections - Now that we have constructed the file header and load
 | |
| /// commands, emit the data for each section to the file.
 | |
| void MachOWriter::EmitSections() {
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I)
 | |
|     // Emit the contents of each section
 | |
|     O.write((char*)&(*I)->SectionData[0], (*I)->size);
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I)
 | |
|     // Emit the relocation entry data for each section.
 | |
|     O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
 | |
| }
 | |
| 
 | |
| /// PartitionByLocal - Simple boolean predicate that returns true if Sym is
 | |
| /// a local symbol rather than an external symbol.
 | |
| bool MachOWriter::PartitionByLocal(const MachOSym &Sym) {
 | |
|   return (Sym.n_type & (MachOSym::N_EXT | MachOSym::N_PEXT)) == 0;
 | |
| }
 | |
| 
 | |
| /// PartitionByDefined - Simple boolean predicate that returns true if Sym is
 | |
| /// defined in this module.
 | |
| bool MachOWriter::PartitionByDefined(const MachOSym &Sym) {
 | |
|   // FIXME: Do N_ABS or N_INDR count as defined?
 | |
|   return (Sym.n_type & MachOSym::N_SECT) == MachOSym::N_SECT;
 | |
| }
 | |
| 
 | |
| /// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them
 | |
| /// each a string table index so that they appear in the correct order in the
 | |
| /// output file.
 | |
| void MachOWriter::BufferSymbolAndStringTable() {
 | |
|   // The order of the symbol table is:
 | |
|   // 1. local symbols
 | |
|   // 2. defined external symbols (sorted by name)
 | |
|   // 3. undefined external symbols (sorted by name)
 | |
|   
 | |
|   // Sort the symbols by name, so that when we partition the symbols by scope
 | |
|   // of definition, we won't have to sort by name within each partition.
 | |
|   std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSymCmp());
 | |
| 
 | |
|   // Parition the symbol table entries so that all local symbols come before 
 | |
|   // all symbols with external linkage. { 1 | 2 3 }
 | |
|   std::partition(SymbolTable.begin(), SymbolTable.end(), PartitionByLocal);
 | |
|   
 | |
|   // Advance iterator to beginning of external symbols and partition so that
 | |
|   // all external symbols defined in this module come before all external
 | |
|   // symbols defined elsewhere. { 1 | 2 | 3 }
 | |
|   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
 | |
|          E = SymbolTable.end(); I != E; ++I) {
 | |
|     if (!PartitionByLocal(*I)) {
 | |
|       std::partition(I, E, PartitionByDefined);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Calculate the starting index for each of the local, extern defined, and 
 | |
|   // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
 | |
|   // load command.
 | |
|   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
 | |
|          E = SymbolTable.end(); I != E; ++I) {
 | |
|     if (PartitionByLocal(*I)) {
 | |
|       ++DySymTab.nlocalsym;
 | |
|       ++DySymTab.iextdefsym;
 | |
|     } else if (PartitionByDefined(*I)) {
 | |
|       ++DySymTab.nextdefsym;
 | |
|       ++DySymTab.iundefsym;
 | |
|     } else {
 | |
|       ++DySymTab.nundefsym;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Write out a leading zero byte when emitting string table, for n_strx == 0
 | |
|   // which means an empty string.
 | |
|   outbyte(StrT, 0);
 | |
| 
 | |
|   // The order of the string table is:
 | |
|   // 1. strings for external symbols
 | |
|   // 2. strings for local symbols
 | |
|   // Since this is the opposite order from the symbol table, which we have just
 | |
|   // sorted, we can walk the symbol table backwards to output the string table.
 | |
|   for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(),
 | |
|         E = SymbolTable.rend(); I != E; ++I) {
 | |
|     if (I->GVName == "") {
 | |
|       I->n_strx = 0;
 | |
|     } else {
 | |
|       I->n_strx = StrT.size();
 | |
|       outstring(StrT, I->GVName, I->GVName.length()+1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
 | |
|          E = SymbolTable.end(); I != E; ++I) {
 | |
|     // Add the section base address to the section offset in the n_value field
 | |
|     // to calculate the full address.
 | |
|     // FIXME: handle symbols where the n_value field is not the address
 | |
|     GlobalValue *GV = const_cast<GlobalValue*>(I->GV);
 | |
|     if (GV && GVSection[GV])
 | |
|       I->n_value += GVSection[GV]->addr;
 | |
|          
 | |
|     // Emit nlist to buffer
 | |
|     outword(SymT, I->n_strx);
 | |
|     outbyte(SymT, I->n_type);
 | |
|     outbyte(SymT, I->n_sect);
 | |
|     outhalf(SymT, I->n_desc);
 | |
|     outaddr(SymT, I->n_value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalculateRelocations - For each MachineRelocation in the current section,
 | |
| /// calculate the index of the section containing the object to be relocated,
 | |
| /// and the offset into that section.  From this information, create the
 | |
| /// appropriate target-specific MachORelocation type and add buffer it to be
 | |
| /// written out after we are finished writing out sections.
 | |
| void MachOWriter::CalculateRelocations(MachOSection &MOS) {
 | |
|   for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) {
 | |
|     MachineRelocation &MR = MOS.Relocations[i];
 | |
|     unsigned TargetSection = MR.getConstantVal();
 | |
|     
 | |
|     // Since we may not have seen the GlobalValue we were interested in yet at
 | |
|     // the time we emitted the relocation for it, fix it up now so that it
 | |
|     // points to the offset into the correct section.
 | |
|     if (MR.isGlobalValue()) {
 | |
|       GlobalValue *GV = MR.getGlobalValue();
 | |
|       MachOSection *MOSPtr = GVSection[GV];
 | |
|       intptr_t offset = GVOffset[GV];
 | |
|       
 | |
|       assert(MOSPtr && "Trying to relocate unknown global!");
 | |
|       
 | |
|       TargetSection = MOSPtr->Index;
 | |
|       MR.setResultPointer((void*)offset);
 | |
|     }
 | |
|     
 | |
|     GetTargetRelocation(MR, MOS, *SectionList[TargetSection-1]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // InitMem - Write the value of a Constant to the specified memory location,
 | |
| // converting it into bytes and relocations.
 | |
| void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
 | |
|                           const TargetData *TD, 
 | |
|                           std::vector<MachineRelocation> &MRs) {
 | |
|   typedef std::pair<const Constant*, intptr_t> CPair;
 | |
|   std::vector<CPair> WorkList;
 | |
|   
 | |
|   WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
 | |
|   
 | |
|   while (!WorkList.empty()) {
 | |
|     const Constant *PC = WorkList.back().first;
 | |
|     intptr_t PA = WorkList.back().second;
 | |
|     WorkList.pop_back();
 | |
|     
 | |
|     if (isa<UndefValue>(PC)) {
 | |
|       continue;
 | |
|     } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(PC)) {
 | |
|       unsigned ElementSize = 
 | |
|         CP->getType()->getElementType()->getPrimitiveSize();
 | |
|       for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|         WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
 | |
|     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
 | |
|       //
 | |
|       // FIXME: Handle ConstantExpression.  See EE::getConstantValue()
 | |
|       //
 | |
|       switch (CE->getOpcode()) {
 | |
|       case Instruction::GetElementPtr:
 | |
|       case Instruction::Add:
 | |
|       default:
 | |
|         cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
 | |
|         abort();
 | |
|         break;
 | |
|       }
 | |
|     } else if (PC->getType()->isFirstClassType()) {
 | |
|       unsigned char *ptr = (unsigned char *)PA;
 | |
|       uint64_t val;
 | |
|       
 | |
|       switch (PC->getType()->getTypeID()) {
 | |
|       case Type::BoolTyID:
 | |
|       case Type::UByteTyID:
 | |
|       case Type::SByteTyID:
 | |
|         ptr[0] = cast<ConstantInt>(PC)->getZExtValue();
 | |
|         break;
 | |
|       case Type::UShortTyID:
 | |
|       case Type::ShortTyID:
 | |
|         val = cast<ConstantInt>(PC)->getZExtValue();
 | |
|         if (TD->isBigEndian())
 | |
|           val = ByteSwap_16(val);
 | |
|         ptr[0] = val;
 | |
|         ptr[1] = val >> 8;
 | |
|         break;
 | |
|       case Type::UIntTyID:
 | |
|       case Type::IntTyID:
 | |
|       case Type::FloatTyID:
 | |
|         if (PC->getType()->getTypeID() == Type::FloatTyID) {
 | |
|           val = FloatToBits(cast<ConstantFP>(PC)->getValue());
 | |
|         } else {
 | |
|           val = cast<ConstantInt>(PC)->getZExtValue();
 | |
|         }
 | |
|         if (TD->isBigEndian())
 | |
|           val = ByteSwap_32(val);
 | |
|         ptr[0] = val;
 | |
|         ptr[1] = val >> 8;
 | |
|         ptr[2] = val >> 16;
 | |
|         ptr[3] = val >> 24;
 | |
|         break;
 | |
|       case Type::DoubleTyID:
 | |
|       case Type::ULongTyID:
 | |
|       case Type::LongTyID:
 | |
|         if (PC->getType()->getTypeID() == Type::DoubleTyID) {
 | |
|           val = DoubleToBits(cast<ConstantFP>(PC)->getValue());
 | |
|         } else {
 | |
|           val = cast<ConstantInt>(PC)->getZExtValue();
 | |
|         }
 | |
|         if (TD->isBigEndian())
 | |
|           val = ByteSwap_64(val);
 | |
|         ptr[0] = val;
 | |
|         ptr[1] = val >> 8;
 | |
|         ptr[2] = val >> 16;
 | |
|         ptr[3] = val >> 24;
 | |
|         ptr[4] = val >> 32;
 | |
|         ptr[5] = val >> 40;
 | |
|         ptr[6] = val >> 48;
 | |
|         ptr[7] = val >> 56;
 | |
|         break;
 | |
|       case Type::PointerTyID:
 | |
|         if (isa<ConstantPointerNull>(C))
 | |
|           memset(ptr, 0, TD->getPointerSize());
 | |
|         else if (const GlobalValue* GV = dyn_cast<GlobalValue>(C))
 | |
|           // FIXME: what about function stubs?
 | |
|           MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr, 
 | |
|                                                  MachineRelocation::VANILLA,
 | |
|                                                  const_cast<GlobalValue*>(GV)));
 | |
|         else
 | |
|           assert(0 && "Unknown constant pointer type!");
 | |
|         break;
 | |
|       default:
 | |
|         cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n";
 | |
|         abort();
 | |
|       }
 | |
|     } else if (isa<ConstantAggregateZero>(PC)) {
 | |
|       memset((void*)PA, 0, (size_t)TD->getTypeSize(PC->getType()));
 | |
|     } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
 | |
|       unsigned ElementSize = 
 | |
|         CPA->getType()->getElementType()->getPrimitiveSize();
 | |
|       for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | |
|         WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
 | |
|     } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
 | |
|       const StructLayout *SL =
 | |
|         TD->getStructLayout(cast<StructType>(CPS->getType()));
 | |
|       for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | |
|         WorkList.push_back(CPair(CPS->getOperand(i), PA+SL->MemberOffsets[i]));
 | |
|     } else {
 | |
|       cerr << "Bad Type: " << *PC->getType() << "\n";
 | |
|       assert(0 && "Unknown constant type to initialize memory with!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
 | |
|                    TargetMachine &TM) :
 | |
|   GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
 | |
|   n_desc(0), n_value(0) {
 | |
| 
 | |
|   const TargetAsmInfo *TAI = TM.getTargetAsmInfo();  
 | |
|   
 | |
|   switch (GV->getLinkage()) {
 | |
|   default:
 | |
|     assert(0 && "Unexpected linkage type!");
 | |
|     break;
 | |
|   case GlobalValue::WeakLinkage:
 | |
|   case GlobalValue::LinkOnceLinkage:
 | |
|     assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
 | |
|   case GlobalValue::ExternalLinkage:
 | |
|     GVName = TAI->getGlobalPrefix() + name;
 | |
|     n_type |= N_EXT;
 | |
|     break;
 | |
|   case GlobalValue::InternalLinkage:
 | |
|     GVName = TAI->getPrivateGlobalPrefix() + name;
 | |
|     break;
 | |
|   }
 | |
| }
 |