mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	code (both asm & cbe) for Mingw32 target. Removed autoconf checks for underscored versions of setjmp/longjmp. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32415 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1667 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1667 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| TargetLowering::TargetLowering(TargetMachine &tm)
 | |
|   : TM(tm), TD(TM.getTargetData()) {
 | |
|   assert(ISD::BUILTIN_OP_END <= 156 &&
 | |
|          "Fixed size array in TargetLowering is not large enough!");
 | |
|   // All operations default to being supported.
 | |
|   memset(OpActions, 0, sizeof(OpActions));
 | |
|   memset(LoadXActions, 0, sizeof(LoadXActions));
 | |
|   memset(&StoreXActions, 0, sizeof(StoreXActions));
 | |
|   // Initialize all indexed load / store to expand.
 | |
|   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
 | |
|     for (unsigned IM = (unsigned)ISD::PRE_INC;
 | |
|          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
 | |
|       setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
 | |
|       setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   IsLittleEndian = TD->isLittleEndian();
 | |
|   UsesGlobalOffsetTable = false;
 | |
|   ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
 | |
|   ShiftAmtHandling = Undefined;
 | |
|   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
 | |
|   memset(TargetDAGCombineArray, 0, 
 | |
|          sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
 | |
|   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
 | |
|   allowUnalignedMemoryAccesses = false;
 | |
|   UseUnderscoreSetJmp = false;
 | |
|   UseUnderscoreLongJmp = false;
 | |
|   IntDivIsCheap = false;
 | |
|   Pow2DivIsCheap = false;
 | |
|   StackPointerRegisterToSaveRestore = 0;
 | |
|   SchedPreferenceInfo = SchedulingForLatency;
 | |
|   JumpBufSize = 0;
 | |
|   JumpBufAlignment = 0;
 | |
| }
 | |
| 
 | |
| TargetLowering::~TargetLowering() {}
 | |
| 
 | |
| /// setValueTypeAction - Set the action for a particular value type.  This
 | |
| /// assumes an action has not already been set for this value type.
 | |
| static void SetValueTypeAction(MVT::ValueType VT,
 | |
|                                TargetLowering::LegalizeAction Action,
 | |
|                                TargetLowering &TLI,
 | |
|                                MVT::ValueType *TransformToType,
 | |
|                         TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
 | |
|   ValueTypeActions.setTypeAction(VT, Action);
 | |
|   if (Action == TargetLowering::Promote) {
 | |
|     MVT::ValueType PromoteTo;
 | |
|     if (VT == MVT::f32)
 | |
|       PromoteTo = MVT::f64;
 | |
|     else {
 | |
|       unsigned LargerReg = VT+1;
 | |
|       while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
 | |
|         ++LargerReg;
 | |
|         assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
 | |
|                "Nothing to promote to??");
 | |
|       }
 | |
|       PromoteTo = (MVT::ValueType)LargerReg;
 | |
|     }
 | |
| 
 | |
|     assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
 | |
|            MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
 | |
|            "Can only promote from int->int or fp->fp!");
 | |
|     assert(VT < PromoteTo && "Must promote to a larger type!");
 | |
|     TransformToType[VT] = PromoteTo;
 | |
|   } else if (Action == TargetLowering::Expand) {
 | |
|     // f32 and f64 is each expanded to corresponding integer type of same size.
 | |
|     if (VT == MVT::f32)
 | |
|       TransformToType[VT] = MVT::i32;
 | |
|     else if (VT == MVT::f64)
 | |
|       TransformToType[VT] = MVT::i64;
 | |
|     else {
 | |
|       assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
 | |
|              "Cannot expand this type: target must support SOME integer reg!");
 | |
|       // Expand to the next smaller integer type!
 | |
|       TransformToType[VT] = (MVT::ValueType)(VT-1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// computeRegisterProperties - Once all of the register classes are added,
 | |
| /// this allows us to compute derived properties we expose.
 | |
| void TargetLowering::computeRegisterProperties() {
 | |
|   assert(MVT::LAST_VALUETYPE <= 32 &&
 | |
|          "Too many value types for ValueTypeActions to hold!");
 | |
| 
 | |
|   // Everything defaults to one.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
 | |
|     NumElementsForVT[i] = 1;
 | |
| 
 | |
|   // Find the largest integer register class.
 | |
|   unsigned LargestIntReg = MVT::i128;
 | |
|   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
 | |
|     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
 | |
| 
 | |
|   // Every integer value type larger than this largest register takes twice as
 | |
|   // many registers to represent as the previous ValueType.
 | |
|   unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
 | |
|   for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
 | |
|     NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
 | |
| 
 | |
|   // Inspect all of the ValueType's possible, deciding how to process them.
 | |
|   for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
 | |
|     // If we are expanding this type, expand it!
 | |
|     if (getNumElements((MVT::ValueType)IntReg) != 1)
 | |
|       SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
 | |
|                          ValueTypeActions);
 | |
|     else if (!isTypeLegal((MVT::ValueType)IntReg))
 | |
|       // Otherwise, if we don't have native support, we must promote to a
 | |
|       // larger type.
 | |
|       SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
 | |
|                          TransformToType, ValueTypeActions);
 | |
|     else
 | |
|       TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
 | |
| 
 | |
|   // If the target does not have native F64 support, expand it to I64. We will
 | |
|   // be generating soft float library calls. If the target does not have native
 | |
|   // support for F32, promote it to F64 if it is legal. Otherwise, expand it to
 | |
|   // I32.
 | |
|   if (isTypeLegal(MVT::f64))
 | |
|     TransformToType[MVT::f64] = MVT::f64;  
 | |
|   else {
 | |
|     NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64];
 | |
|     SetValueTypeAction(MVT::f64, Expand, *this, TransformToType,
 | |
|                        ValueTypeActions);
 | |
|   }
 | |
|   if (isTypeLegal(MVT::f32))
 | |
|     TransformToType[MVT::f32] = MVT::f32;
 | |
|   else if (isTypeLegal(MVT::f64))
 | |
|     SetValueTypeAction(MVT::f32, Promote, *this, TransformToType,
 | |
|                        ValueTypeActions);
 | |
|   else {
 | |
|     NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32];
 | |
|     SetValueTypeAction(MVT::f32, Expand, *this, TransformToType,
 | |
|                        ValueTypeActions);
 | |
|   }
 | |
|   
 | |
|   // Set MVT::Vector to always be Expanded
 | |
|   SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, 
 | |
|                      ValueTypeActions);
 | |
|   
 | |
|   // Loop over all of the legal vector value types, specifying an identity type
 | |
|   // transformation.
 | |
|   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|     if (isTypeLegal((MVT::ValueType)i))
 | |
|       TransformToType[i] = (MVT::ValueType)i;
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// getPackedTypeBreakdown - Packed types are broken down into some number of
 | |
| /// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
 | |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
 | |
| ///
 | |
| /// This method returns the number and type of the resultant breakdown.
 | |
| ///
 | |
| unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, 
 | |
|                                                 MVT::ValueType &PTyElementVT,
 | |
|                                       MVT::ValueType &PTyLegalElementVT) const {
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   unsigned NumElts = PTy->getNumElements();
 | |
|   MVT::ValueType EltTy = getValueType(PTy->getElementType());
 | |
|   
 | |
|   unsigned NumVectorRegs = 1;
 | |
|   
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
|   
 | |
|   MVT::ValueType VT;
 | |
|   if (NumElts == 1) {
 | |
|     VT = EltTy;
 | |
|   } else {
 | |
|     VT = getVectorType(EltTy, NumElts); 
 | |
|   }
 | |
|   PTyElementVT = VT;
 | |
| 
 | |
|   MVT::ValueType DestVT = getTypeToTransformTo(VT);
 | |
|   PTyLegalElementVT = DestVT;
 | |
|   if (DestVT < VT) {
 | |
|     // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
 | |
|   } else {
 | |
|     // Otherwise, promotion or legal types use the same number of registers as
 | |
|     // the vector decimated to the appropriate level.
 | |
|     return NumVectorRegs;
 | |
|   }
 | |
|   
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Optimization Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
| /// specified instruction is a constant integer.  If so, check to see if there
 | |
| /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
| /// constant and return true.
 | |
| bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, 
 | |
|                                                             uint64_t Demanded) {
 | |
|   // FIXME: ISD::SELECT, ISD::SELECT_CC
 | |
|   switch(Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|       if ((~Demanded & C->getValue()) != 0) {
 | |
|         MVT::ValueType VT = Op.getValueType();
 | |
|         SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
 | |
|                                     DAG.getConstant(Demanded & C->getValue(), 
 | |
|                                                     VT));
 | |
|         return CombineTo(Op, New);
 | |
|       }
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
| /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
| /// use this information to simplify Op, create a new simplified DAG node and
 | |
| /// return true, returning the original and new nodes in Old and New. Otherwise,
 | |
| /// analyze the expression and return a mask of KnownOne and KnownZero bits for
 | |
| /// the expression (used to simplify the caller).  The KnownZero/One bits may
 | |
| /// only be accurate for those bits in the DemandedMask.
 | |
| bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, 
 | |
|                                           uint64_t &KnownZero,
 | |
|                                           uint64_t &KnownOne,
 | |
|                                           TargetLoweringOpt &TLO,
 | |
|                                           unsigned Depth) const {
 | |
|   KnownZero = KnownOne = 0;   // Don't know anything.
 | |
|   // Other users may use these bits.
 | |
|   if (!Op.Val->hasOneUse()) { 
 | |
|     if (Depth != 0) {
 | |
|       // If not at the root, Just compute the KnownZero/KnownOne bits to 
 | |
|       // simplify things downstream.
 | |
|       ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|       return false;
 | |
|     }
 | |
|     // If this is the root being simplified, allow it to have multiple uses,
 | |
|     // just set the DemandedMask to all bits.
 | |
|     DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
 | |
|   } else if (DemandedMask == 0) {   
 | |
|     // Not demanding any bits from Op.
 | |
|     if (Op.getOpcode() != ISD::UNDEF)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
 | |
|     return false;
 | |
|   } else if (Depth == 6) {        // Limit search depth.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
 | |
|     KnownZero = ~KnownOne & DemandedMask;
 | |
|     return false;   // Don't fall through, will infinitely loop.
 | |
|   case ISD::AND:
 | |
|     // If the RHS is a constant, check to see if the LHS would be zero without
 | |
|     // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | |
|     // simplify the LHS, here we're using information from the LHS to simplify
 | |
|     // the RHS.
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       uint64_t LHSZero, LHSOne;
 | |
|       ComputeMaskedBits(Op.getOperand(0), DemandedMask,
 | |
|                         LHSZero, LHSOne, Depth+1);
 | |
|       // If the LHS already has zeros where RHSC does, this and is dead.
 | |
|       if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
 | |
|         return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|       // If any of the set bits in the RHS are known zero on the LHS, shrink
 | |
|       // the constant.
 | |
|       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
 | |
|         return true;
 | |
|     }
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|       
 | |
|     // If all of the demanded bits are known one on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
 | |
|       return true;
 | |
|       
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, 
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the potentially set bits on one side are known to be set on
 | |
|     // the other side, just use the 'other' side.
 | |
|     if ((DemandedMask & (~KnownZero) & KnownOne2) == 
 | |
|         (DemandedMask & (~KnownZero)))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & (~KnownZero2) & KnownOne) == 
 | |
|         (DemandedMask & (~KnownZero2)))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|           
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     break;
 | |
|   case ISD::XOR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if ((DemandedMask & KnownZero) == DemandedMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & KnownZero2) == DemandedMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|       
 | |
|     // If all of the unknown bits are known to be zero on one side or the other
 | |
|     // (but not both) turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
 | |
|                                                Op.getOperand(0),
 | |
|                                                Op.getOperand(1)));
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
 | |
|       if ((KnownOne & KnownOne2) == KnownOne) {
 | |
|         MVT::ValueType VT = Op.getValueType();
 | |
|         SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
 | |
|                                                  ANDC));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|     
 | |
|     KnownZero = KnownZeroOut;
 | |
|     KnownOne  = KnownOneOut;
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
 | |
|       KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
 | |
|     break;
 | |
|   case ISD::SELECT:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|       
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       KnownZero <<= SA->getValue();
 | |
|       KnownOne  <<= SA->getValue();
 | |
|       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       MVT::ValueType VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getValue();
 | |
|       
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), 
 | |
|                                (DemandedMask << ShAmt) & TypeMask,
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero &= TypeMask;
 | |
|       KnownOne  &= TypeMask;
 | |
|       KnownZero >>= ShAmt;
 | |
|       KnownOne  >>= ShAmt;
 | |
| 
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       MVT::ValueType VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getValue();
 | |
|       
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
 | |
|       
 | |
|       uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
 | |
| 
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
 | |
|       if (HighBits & DemandedMask)
 | |
|         InDemandedMask |= MVT::getIntVTSignBit(VT);
 | |
|       
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero &= TypeMask;
 | |
|       KnownOne  &= TypeMask;
 | |
|       KnownZero >>= ShAmt;
 | |
|       KnownOne  >>= ShAmt;
 | |
|       
 | |
|       // Handle the sign bits.
 | |
|       uint64_t SignBit = MVT::getIntVTSignBit(VT);
 | |
|       SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
 | |
|       
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
 | |
|                                                  Op.getOperand(1)));
 | |
|       } else if (KnownOne & SignBit) { // New bits are known one.
 | |
|         KnownOne |= HighBits;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
 | |
|     
 | |
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
| 
 | |
|     uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
 | |
|     int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
 | |
|     
 | |
|     // Since the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InputDemandedBits |= InSignBit;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     
 | |
|     // If the input sign bit is known zero, convert this into a zero extension.
 | |
|     if (KnownZero & InSignBit)
 | |
|       return TLO.CombineTo(Op, 
 | |
|                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
 | |
|     
 | |
|     if (KnownOne & InSignBit) {    // Input sign bit known set
 | |
|       KnownOne |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                       // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     MVT::ValueType VT = Op.getValueType();
 | |
|     unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
 | |
|     KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
 | |
|     KnownOne  = 0;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     if (ISD::isZEXTLoad(Op.Val)) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|       MVT::ValueType VT = LD->getLoadedVT();
 | |
|       KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
 | |
|     
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     uint64_t NewBits = (~InMask) & DemandedMask;
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, 
 | |
|                                                Op.getValueType(), 
 | |
|                                                Op.getOperand(0)));
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero |= NewBits;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     uint64_t InMask    = MVT::getIntVTBitMask(InVT);
 | |
|     uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
 | |
|     uint64_t NewBits   = (~InMask) & DemandedMask;
 | |
|     
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
 | |
|                                            Op.getOperand(0)));
 | |
|     
 | |
|     // Since some of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     uint64_t InDemandedBits = DemandedMask & InMask;
 | |
|     InDemandedBits |= InSignBit;
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     
 | |
|     // If the sign bit is known zero, convert this to a zero extend.
 | |
|     if (KnownZero & InSignBit)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, 
 | |
|                                                Op.getValueType(), 
 | |
|                                                Op.getOperand(0)));
 | |
|     
 | |
|     // If the sign bit is known one, the top bits match.
 | |
|     if (KnownOne & InSignBit) {
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       KnownOne  &= ~NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     // Simplify the input, using demanded bit information, and compute the known
 | |
|     // zero/one bits live out.
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     
 | |
|     // If the input is only used by this truncate, see if we can shrink it based
 | |
|     // on the known demanded bits.
 | |
|     if (Op.getOperand(0).Val->hasOneUse()) {
 | |
|       SDOperand In = Op.getOperand(0);
 | |
|       switch (In.getOpcode()) {
 | |
|       default: break;
 | |
|       case ISD::SRL:
 | |
|         // Shrink SRL by a constant if none of the high bits shifted in are
 | |
|         // demanded.
 | |
|         if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
 | |
|           uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
 | |
|           HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
 | |
|           HighBits >>= ShAmt->getValue();
 | |
|           
 | |
|           if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
 | |
|               (DemandedMask & HighBits) == 0) {
 | |
|             // None of the shifted in bits are needed.  Add a truncate of the
 | |
|             // shift input, then shift it.
 | |
|             SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, 
 | |
|                                                  Op.getValueType(), 
 | |
|                                                  In.getOperand(0));
 | |
|             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
 | |
|                                                    NewTrunc, In.getOperand(1)));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
 | |
|     KnownZero &= OutMask;
 | |
|     KnownOne &= OutMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(VT);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero |= ~InMask & DemandedMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|     // Just use ComputeMaskedBits to compute output bits.
 | |
|     ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // If we know the value of all of the demanded bits, return this as a
 | |
|   // constant.
 | |
|   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
 | |
|     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, 
 | |
|                                        unsigned Depth) const {
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, 
 | |
|                                        uint64_t &KnownZero, uint64_t &KnownOne,
 | |
|                                        unsigned Depth) const {
 | |
|   KnownZero = KnownOne = 0;   // Don't know anything.
 | |
|   if (Depth == 6 || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
|   
 | |
|   uint64_t KnownZero2, KnownOne2;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   case ISD::AND:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     Mask &= ~KnownZero;
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   case ISD::OR:
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     Mask &= ~KnownOne;
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   case ISD::XOR: {
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SELECT_CC:
 | |
|     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
 | |
|       KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
 | |
|     return;
 | |
|   case ISD::SHL:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= SA->getValue();
 | |
|       KnownOne  <<= SA->getValue();
 | |
|       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRL:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       MVT::ValueType VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
 | |
|       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero &= TypeMask;
 | |
|       KnownOne  &= TypeMask;
 | |
|       KnownZero >>= ShAmt;
 | |
|       KnownOne  >>= ShAmt;
 | |
| 
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       MVT::ValueType VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
 | |
| 
 | |
|       uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
 | |
|       if (HighBits & Mask)
 | |
|         InDemandedMask |= MVT::getIntVTSignBit(VT);
 | |
|       
 | |
|       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero &= TypeMask;
 | |
|       KnownOne  &= TypeMask;
 | |
|       KnownZero >>= ShAmt;
 | |
|       KnownOne  >>= ShAmt;
 | |
|       
 | |
|       // Handle the sign bits.
 | |
|       uint64_t SignBit = MVT::getIntVTSignBit(VT);
 | |
|       SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
 | |
|       
 | |
|       if (KnownZero & SignBit) {       
 | |
|         KnownZero |= HighBits;  // New bits are known zero.
 | |
|       } else if (KnownOne & SignBit) {
 | |
|         KnownOne  |= HighBits;  // New bits are known one.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
 | |
| 
 | |
|     uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
 | |
|     int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
 | |
|     
 | |
|     // If the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     if (NewBits)
 | |
|       InputDemandedBits |= InSignBit;
 | |
|     
 | |
|     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (KnownZero & InSignBit) {          // Input sign bit known clear
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne & InSignBit) {    // Input sign bit known set
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                              // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     MVT::ValueType VT = Op.getValueType();
 | |
|     unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
 | |
|     KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
 | |
|     KnownOne  = 0;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     if (ISD::isZEXTLoad(Op.Val)) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|       MVT::ValueType VT = LD->getLoadedVT();
 | |
|       KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
 | |
|     uint64_t NewBits = (~InMask) & Mask;
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= NewBits & Mask;
 | |
|     KnownOne  &= ~NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits    = MVT::getSizeInBits(InVT);
 | |
|     uint64_t InMask    = MVT::getIntVTBitMask(InVT);
 | |
|     uint64_t InSignBit = 1ULL << (InBits-1);
 | |
|     uint64_t NewBits   = (~InMask) & Mask;
 | |
|     uint64_t InDemandedBits = Mask & InMask;
 | |
| 
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     if (NewBits & Mask)
 | |
|       InDemandedBits |= InSignBit;
 | |
|     
 | |
|     ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     // If the sign bit is known zero or one, the  top bits match.
 | |
|     if (KnownZero & InSignBit) {
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne & InSignBit) {
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       KnownOne  &= ~NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     MVT::ValueType VT = Op.getOperand(0).getValueType();
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
 | |
|     KnownZero &= OutMask;
 | |
|     KnownOne &= OutMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(VT);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= (~InMask) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ADD: {
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the low clear bits
 | |
|     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
 | |
|     // low 3 bits clear.
 | |
|     uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), 
 | |
|                                      CountTrailingZeros_64(~KnownZero2));
 | |
|     
 | |
|     KnownZero = (1ULL << KnownZeroOut) - 1;
 | |
|     KnownOne = 0;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SUB: {
 | |
|     ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|     if (!CLHS) return;
 | |
| 
 | |
|     // We know that the top bits of C-X are clear if X contains less bits
 | |
|     // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|     // positive if we can prove that X is >= 0 and < 16.
 | |
|     MVT::ValueType VT = CLHS->getValueType(0);
 | |
|     if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
 | |
|       unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
 | |
|       uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
 | |
|       MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
 | |
|       ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|       // If all of the MaskV bits are known to be zero, then we know the output
 | |
|       // top bits are zero, because we now know that the output is from [0-C].
 | |
|       if ((KnownZero & MaskV) == MaskV) {
 | |
|         unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
 | |
|         KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
 | |
|         KnownOne = 0;   // No one bits known.
 | |
|       } else {
 | |
|         KnownZero = KnownOne = 0;  // Otherwise, nothing known.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   default:
 | |
|     // Allow the target to implement this method for its nodes.
 | |
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|       computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified 
 | |
| /// in Mask are known to be either zero or one and return them in the 
 | |
| /// KnownZero/KnownOne bitsets.
 | |
| void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 
 | |
|                                                     uint64_t Mask,
 | |
|                                                     uint64_t &KnownZero, 
 | |
|                                                     uint64_t &KnownOne,
 | |
|                                                     unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   KnownZero = 0;
 | |
|   KnownOne = 0;
 | |
| }
 | |
| 
 | |
| /// ComputeNumSignBits - Return the number of times the sign bit of the
 | |
| /// register is replicated into the other bits.  We know that at least 1 bit
 | |
| /// is always equal to the sign bit (itself), but other cases can give us
 | |
| /// information.  For example, immediately after an "SRA X, 2", we know that
 | |
| /// the top 3 bits are all equal to each other, so we return 3.
 | |
| unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   assert(MVT::isInteger(VT) && "Invalid VT!");
 | |
|   unsigned VTBits = MVT::getSizeInBits(VT);
 | |
|   unsigned Tmp, Tmp2;
 | |
|   
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AssertSext:
 | |
|     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
 | |
|     return VTBits-Tmp+1;
 | |
|   case ISD::AssertZext:
 | |
|     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
 | |
|     return VTBits-Tmp;
 | |
|     
 | |
|   case ISD::Constant: {
 | |
|     uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
 | |
|     // If negative, invert the bits, then look at it.
 | |
|     if (Val & MVT::getIntVTSignBit(VT))
 | |
|       Val = ~Val;
 | |
|     
 | |
|     // Shift the bits so they are the leading bits in the int64_t.
 | |
|     Val <<= 64-VTBits;
 | |
|     
 | |
|     // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|     // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|     return std::min(VTBits, CountLeadingZeros_64(Val));
 | |
|   }
 | |
|     
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
 | |
|     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
 | |
|     
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     // Max of the input and what this extends.
 | |
|     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
 | |
|     Tmp = VTBits-Tmp+1;
 | |
|     
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     return std::max(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     // SRA X, C   -> adds C sign bits.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       Tmp += C->getValue();
 | |
|       if (Tmp > VTBits) Tmp = VTBits;
 | |
|     }
 | |
|     return Tmp;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       // shl destroys sign bits.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (C->getValue() >= VTBits ||      // Bad shift.
 | |
|           C->getValue() >= Tmp) break;    // Shifted all sign bits out.
 | |
|       return Tmp - C->getValue();
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:    // NOT is handled here.
 | |
|     // Logical binary ops preserve the number of sign bits.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SELECT:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|     
 | |
|   case ISD::SETCC:
 | |
|     // If setcc returns 0/-1, all bits are sign bits.
 | |
|     if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
 | |
|       return VTBits;
 | |
|     break;
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned RotAmt = C->getValue() & (VTBits-1);
 | |
|       
 | |
|       // Handle rotate right by N like a rotate left by 32-N.
 | |
|       if (Op.getOpcode() == ISD::ROTR)
 | |
|         RotAmt = (VTBits-RotAmt) & (VTBits-1);
 | |
| 
 | |
|       // If we aren't rotating out all of the known-in sign bits, return the
 | |
|       // number that are left.  This handles rotl(sext(x), 1) for example.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (Tmp > RotAmt+1) return Tmp-RotAmt;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|     // Add can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       
 | |
|     // Special case decrementing a value (ADD X, -1):
 | |
|     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CRHS->isAllOnesValue()) {
 | |
|         uint64_t KnownZero, KnownOne;
 | |
|         uint64_t Mask = MVT::getIntVTBitMask(VT);
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero|1) == Mask)
 | |
|           return VTBits;
 | |
|         
 | |
|         // If we are subtracting one from a positive number, there is no carry
 | |
|         // out of the result.
 | |
|         if (KnownZero & MVT::getIntVTSignBit(VT))
 | |
|           return Tmp;
 | |
|       }
 | |
|       
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|     
 | |
|   case ISD::SUB:
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       
 | |
|     // Handle NEG.
 | |
|     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CLHS->getValue() == 0) {
 | |
|         uint64_t KnownZero, KnownOne;
 | |
|         uint64_t Mask = MVT::getIntVTBitMask(VT);
 | |
|         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero|1) == Mask)
 | |
|           return VTBits;
 | |
|         
 | |
|         // If the input is known to be positive (the sign bit is known clear),
 | |
|         // the output of the NEG has the same number of sign bits as the input.
 | |
|         if (KnownZero & MVT::getIntVTSignBit(VT))
 | |
|           return Tmp2;
 | |
|         
 | |
|         // Otherwise, we treat this like a SUB.
 | |
|       }
 | |
|     
 | |
|     // Sub can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     // FIXME: it's tricky to do anything useful for this, but it is an important
 | |
|     // case for targets like X86.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Handle LOADX separately here. EXTLOAD case will fallthrough.
 | |
|   if (Op.getOpcode() == ISD::LOAD) {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     unsigned ExtType = LD->getExtensionType();
 | |
|     switch (ExtType) {
 | |
|     default: break;
 | |
|     case ISD::SEXTLOAD:    // '17' bits known
 | |
|       Tmp = MVT::getSizeInBits(LD->getLoadedVT());
 | |
|       return VTBits-Tmp+1;
 | |
|     case ISD::ZEXTLOAD:    // '16' bits known
 | |
|       Tmp = MVT::getSizeInBits(LD->getLoadedVT());
 | |
|       return VTBits-Tmp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow the target to implement this method for its nodes.
 | |
|   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
 | |
|       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_VOID) {
 | |
|     unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
 | |
|     if (NumBits > 1) return NumBits;
 | |
|   }
 | |
|   
 | |
|   // Finally, if we can prove that the top bits of the result are 0's or 1's,
 | |
|   // use this information.
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   uint64_t Mask = MVT::getIntVTBitMask(VT);
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   
 | |
|   uint64_t SignBit = MVT::getIntVTSignBit(VT);
 | |
|   if (KnownZero & SignBit) {        // SignBit is 0
 | |
|     Mask = KnownZero;
 | |
|   } else if (KnownOne & SignBit) {  // SignBit is 1;
 | |
|     Mask = KnownOne;
 | |
|   } else {
 | |
|     // Nothing known.
 | |
|     return 1;
 | |
|   }
 | |
|   
 | |
|   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
 | |
|   // the number of identical bits in the top of the input value.
 | |
|   Mask ^= ~0ULL;
 | |
|   Mask <<= 64-VTBits;
 | |
|   // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|   // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|   return std::min(VTBits, CountLeadingZeros_64(Mask));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 | |
| /// targets that want to expose additional information about sign bits to the
 | |
| /// DAG Combiner.
 | |
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
 | |
|                                                          unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use ComputeNumSignBits if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand TargetLowering::
 | |
| PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // Default implementation: no optimization.
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Inline Assembler Implementation Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| TargetLowering::getConstraintType(char ConstraintLetter) const {
 | |
|   // FIXME: lots more standard ones to handle.
 | |
|   switch (ConstraintLetter) {
 | |
|   default: return C_Unknown;
 | |
|   case 'r': return C_RegisterClass;
 | |
|   case 'm':    // memory
 | |
|   case 'o':    // offsetable
 | |
|   case 'V':    // not offsetable
 | |
|     return C_Memory;
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's':    // Relocatable Constant
 | |
|   case 'I':    // Target registers.
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P':
 | |
|     return C_Other;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isOperandValidForConstraint - Return the specified operand (possibly
 | |
| /// modified) if the specified SDOperand is valid for the specified target
 | |
| /// constraint letter, otherwise return null.
 | |
| SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
 | |
|                                                       char ConstraintLetter,
 | |
|                                                       SelectionDAG &DAG) {
 | |
|   switch (ConstraintLetter) {
 | |
|   default: return SDOperand(0,0);
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's':    // Relocatable Constant
 | |
|     return Op;   // FIXME: not right.
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> TargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   MVT::ValueType VT) const {
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
 | |
| getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                              MVT::ValueType VT) const {
 | |
|   if (Constraint[0] != '{')
 | |
|     return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 | |
|   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
 | |
| 
 | |
|   // Remove the braces from around the name.
 | |
|   std::string RegName(Constraint.begin()+1, Constraint.end()-1);
 | |
| 
 | |
|   // Figure out which register class contains this reg.
 | |
|   const MRegisterInfo *RI = TM.getRegisterInfo();
 | |
|   for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
 | |
|        E = RI->regclass_end(); RCI != E; ++RCI) {
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
|     
 | |
|     // If none of the the value types for this register class are valid, we 
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     bool isLegal = false;
 | |
|     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|          I != E; ++I) {
 | |
|       if (isTypeLegal(*I)) {
 | |
|         isLegal = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!isLegal) continue;
 | |
|     
 | |
|     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
 | |
|          I != E; ++I) {
 | |
|       if (StringsEqualNoCase(RegName, RI->get(*I).Name))
 | |
|         return std::make_pair(*I, RC);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Loop Strength Reduction hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value or
 | |
| /// GlobalValue can be used as the offset of the target addressing mode.
 | |
| bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
 | |
|   return false;
 | |
| }
 | |
| bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Magic for divide replacement
 | |
| 
 | |
| struct ms {
 | |
|   int64_t m;  // magic number
 | |
|   int64_t s;  // shift amount
 | |
| };
 | |
| 
 | |
| struct mu {
 | |
|   uint64_t m; // magic number
 | |
|   int64_t a;  // add indicator
 | |
|   int64_t s;  // shift amount
 | |
| };
 | |
| 
 | |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as
 | |
| /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
 | |
| /// or -1.
 | |
| static ms magic32(int32_t d) {
 | |
|   int32_t p;
 | |
|   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
 | |
|   const uint32_t two31 = 0x80000000U;
 | |
|   struct ms mag;
 | |
|   
 | |
|   ad = abs(d);
 | |
|   t = two31 + ((uint32_t)d >> 31);
 | |
|   anc = t - 1 - t%ad;   // absolute value of nc
 | |
|   p = 31;               // initialize p
 | |
|   q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
 | |
|   r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
 | |
|   q2 = two31/ad;        // initialize q2 = 2p/abs(d)
 | |
|   r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     q1 = 2*q1;        // update q1 = 2p/abs(nc)
 | |
|     r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
 | |
|     if (r1 >= anc) {  // must be unsigned comparison
 | |
|       q1 = q1 + 1;
 | |
|       r1 = r1 - anc;
 | |
|     }
 | |
|     q2 = 2*q2;        // update q2 = 2p/abs(d)
 | |
|     r2 = 2*r2;        // update r2 = rem(2p/abs(d))
 | |
|     if (r2 >= ad) {   // must be unsigned comparison
 | |
|       q2 = q2 + 1;
 | |
|       r2 = r2 - ad;
 | |
|     }
 | |
|     delta = ad - r2;
 | |
|   } while (q1 < delta || (q1 == delta && r1 == 0));
 | |
|   
 | |
|   mag.m = (int32_t)(q2 + 1); // make sure to sign extend
 | |
|   if (d < 0) mag.m = -mag.m; // resulting magic number
 | |
|   mag.s = p - 32;            // resulting shift
 | |
|   return mag;
 | |
| }
 | |
| 
 | |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as
 | |
| /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
 | |
| static mu magicu32(uint32_t d) {
 | |
|   int32_t p;
 | |
|   uint32_t nc, delta, q1, r1, q2, r2;
 | |
|   struct mu magu;
 | |
|   magu.a = 0;               // initialize "add" indicator
 | |
|   nc = - 1 - (-d)%d;
 | |
|   p = 31;                   // initialize p
 | |
|   q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
 | |
|   r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
 | |
|   q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
 | |
|   r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     if (r1 >= nc - r1 ) {
 | |
|       q1 = 2*q1 + 1;  // update q1
 | |
|       r1 = 2*r1 - nc; // update r1
 | |
|     }
 | |
|     else {
 | |
|       q1 = 2*q1; // update q1
 | |
|       r1 = 2*r1; // update r1
 | |
|     }
 | |
|     if (r2 + 1 >= d - r2) {
 | |
|       if (q2 >= 0x7FFFFFFF) magu.a = 1;
 | |
|       q2 = 2*q2 + 1;     // update q2
 | |
|       r2 = 2*r2 + 1 - d; // update r2
 | |
|     }
 | |
|     else {
 | |
|       if (q2 >= 0x80000000) magu.a = 1;
 | |
|       q2 = 2*q2;     // update q2
 | |
|       r2 = 2*r2 + 1; // update r2
 | |
|     }
 | |
|     delta = d - 1 - r2;
 | |
|   } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
 | |
|   magu.m = q2 + 1; // resulting magic number
 | |
|   magu.s = p - 32;  // resulting shift
 | |
|   return magu;
 | |
| }
 | |
| 
 | |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as
 | |
| /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
 | |
| /// or -1.
 | |
| static ms magic64(int64_t d) {
 | |
|   int64_t p;
 | |
|   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
 | |
|   const uint64_t two63 = 9223372036854775808ULL; // 2^63
 | |
|   struct ms mag;
 | |
|   
 | |
|   ad = d >= 0 ? d : -d;
 | |
|   t = two63 + ((uint64_t)d >> 63);
 | |
|   anc = t - 1 - t%ad;   // absolute value of nc
 | |
|   p = 63;               // initialize p
 | |
|   q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
 | |
|   r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
 | |
|   q2 = two63/ad;        // initialize q2 = 2p/abs(d)
 | |
|   r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     q1 = 2*q1;        // update q1 = 2p/abs(nc)
 | |
|     r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
 | |
|     if (r1 >= anc) {  // must be unsigned comparison
 | |
|       q1 = q1 + 1;
 | |
|       r1 = r1 - anc;
 | |
|     }
 | |
|     q2 = 2*q2;        // update q2 = 2p/abs(d)
 | |
|     r2 = 2*r2;        // update r2 = rem(2p/abs(d))
 | |
|     if (r2 >= ad) {   // must be unsigned comparison
 | |
|       q2 = q2 + 1;
 | |
|       r2 = r2 - ad;
 | |
|     }
 | |
|     delta = ad - r2;
 | |
|   } while (q1 < delta || (q1 == delta && r1 == 0));
 | |
|   
 | |
|   mag.m = q2 + 1;
 | |
|   if (d < 0) mag.m = -mag.m; // resulting magic number
 | |
|   mag.s = p - 64;            // resulting shift
 | |
|   return mag;
 | |
| }
 | |
| 
 | |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as
 | |
| /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
 | |
| static mu magicu64(uint64_t d)
 | |
| {
 | |
|   int64_t p;
 | |
|   uint64_t nc, delta, q1, r1, q2, r2;
 | |
|   struct mu magu;
 | |
|   magu.a = 0;               // initialize "add" indicator
 | |
|   nc = - 1 - (-d)%d;
 | |
|   p = 63;                   // initialize p
 | |
|   q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
 | |
|   r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
 | |
|   q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
 | |
|   r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     if (r1 >= nc - r1 ) {
 | |
|       q1 = 2*q1 + 1;  // update q1
 | |
|       r1 = 2*r1 - nc; // update r1
 | |
|     }
 | |
|     else {
 | |
|       q1 = 2*q1; // update q1
 | |
|       r1 = 2*r1; // update r1
 | |
|     }
 | |
|     if (r2 + 1 >= d - r2) {
 | |
|       if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
 | |
|       q2 = 2*q2 + 1;     // update q2
 | |
|       r2 = 2*r2 + 1 - d; // update r2
 | |
|     }
 | |
|     else {
 | |
|       if (q2 >= 0x8000000000000000ull) magu.a = 1;
 | |
|       q2 = 2*q2;     // update q2
 | |
|       r2 = 2*r2 + 1; // update r2
 | |
|     }
 | |
|     delta = d - 1 - r2;
 | |
|   } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
 | |
|   magu.m = q2 + 1; // resulting magic number
 | |
|   magu.s = p - 64;  // resulting shift
 | |
|   return magu;
 | |
| }
 | |
| 
 | |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 
 | |
| 				    std::vector<SDNode*>* Created) const {
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // Check to see if we can do this.
 | |
|   if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
 | |
|     return SDOperand();       // BuildSDIV only operates on i32 or i64
 | |
|   if (!isOperationLegal(ISD::MULHS, VT))
 | |
|     return SDOperand();       // Make sure the target supports MULHS.
 | |
|   
 | |
|   int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
 | |
|   ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
 | |
|   
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
 | |
|                             DAG.getConstant(magics.m, VT));
 | |
|   // If d > 0 and m < 0, add the numerator
 | |
|   if (d > 0 && magics.m < 0) { 
 | |
|     Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
 | |
|     if (Created)
 | |
|       Created->push_back(Q.Val);
 | |
|   }
 | |
|   // If d < 0 and m > 0, subtract the numerator.
 | |
|   if (d < 0 && magics.m > 0) {
 | |
|     Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
 | |
|     if (Created)
 | |
|       Created->push_back(Q.Val);
 | |
|   }
 | |
|   // Shift right algebraic if shift value is nonzero
 | |
|   if (magics.s > 0) {
 | |
|     Q = DAG.getNode(ISD::SRA, VT, Q, 
 | |
|                     DAG.getConstant(magics.s, getShiftAmountTy()));
 | |
|     if (Created)
 | |
|       Created->push_back(Q.Val);
 | |
|   }
 | |
|   // Extract the sign bit and add it to the quotient
 | |
|   SDOperand T =
 | |
|     DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
 | |
|                                                  getShiftAmountTy()));
 | |
|   if (Created)
 | |
|     Created->push_back(T.Val);
 | |
|   return DAG.getNode(ISD::ADD, VT, Q, T);
 | |
| }
 | |
| 
 | |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
 | |
| 				    std::vector<SDNode*>* Created) const {
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // Check to see if we can do this.
 | |
|   if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
 | |
|     return SDOperand();       // BuildUDIV only operates on i32 or i64
 | |
|   if (!isOperationLegal(ISD::MULHU, VT))
 | |
|     return SDOperand();       // Make sure the target supports MULHU.
 | |
|   
 | |
|   uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
 | |
|   mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
 | |
|   
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
 | |
|                             DAG.getConstant(magics.m, VT));
 | |
|   if (Created)
 | |
|     Created->push_back(Q.Val);
 | |
| 
 | |
|   if (magics.a == 0) {
 | |
|     return DAG.getNode(ISD::SRL, VT, Q, 
 | |
|                        DAG.getConstant(magics.s, getShiftAmountTy()));
 | |
|   } else {
 | |
|     SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
 | |
|     if (Created)
 | |
|       Created->push_back(NPQ.Val);
 | |
|     NPQ = DAG.getNode(ISD::SRL, VT, NPQ, 
 | |
|                       DAG.getConstant(1, getShiftAmountTy()));
 | |
|     if (Created)
 | |
|       Created->push_back(NPQ.Val);
 | |
|     NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
 | |
|     if (Created)
 | |
|       Created->push_back(NPQ.Val);
 | |
|     return DAG.getNode(ISD::SRL, VT, NPQ, 
 | |
|                        DAG.getConstant(magics.s-1, getShiftAmountTy()));
 | |
|   }
 | |
| }
 |