mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32333 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1324 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1324 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the Evan Cheng and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a DAG pattern matching instruction selector for X86,
 | |
| // converting from a legalized dag to a X86 dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-isel"
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <queue>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Pattern Matcher Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
 | |
|   /// SDOperand's instead of register numbers for the leaves of the matched
 | |
|   /// tree.
 | |
|   struct X86ISelAddressMode {
 | |
|     enum {
 | |
|       RegBase,
 | |
|       FrameIndexBase
 | |
|     } BaseType;
 | |
| 
 | |
|     struct {            // This is really a union, discriminated by BaseType!
 | |
|       SDOperand Reg;
 | |
|       int FrameIndex;
 | |
|     } Base;
 | |
| 
 | |
|     bool isRIPRel;     // RIP relative?
 | |
|     unsigned Scale;
 | |
|     SDOperand IndexReg; 
 | |
|     unsigned Disp;
 | |
|     GlobalValue *GV;
 | |
|     Constant *CP;
 | |
|     const char *ES;
 | |
|     int JT;
 | |
|     unsigned Align;    // CP alignment.
 | |
| 
 | |
|     X86ISelAddressMode()
 | |
|       : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
 | |
|         GV(0), CP(0), ES(0), JT(-1), Align(0) {
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   Statistic
 | |
|   NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
 | |
| 
 | |
|   Statistic
 | |
|   NumLoadMoved("x86-codegen", "Number of loads moved below TokenFactor");
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISel - X86 specific code to select X86 machine instructions for
 | |
|   /// SelectionDAG operations.
 | |
|   ///
 | |
|   class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
 | |
|     /// ContainsFPCode - Every instruction we select that uses or defines a FP
 | |
|     /// register should set this to true.
 | |
|     bool ContainsFPCode;
 | |
| 
 | |
|     /// FastISel - Enable fast(er) instruction selection.
 | |
|     ///
 | |
|     bool FastISel;
 | |
| 
 | |
|     /// TM - Keep a reference to X86TargetMachine.
 | |
|     ///
 | |
|     X86TargetMachine &TM;
 | |
| 
 | |
|     /// X86Lowering - This object fully describes how to lower LLVM code to an
 | |
|     /// X86-specific SelectionDAG.
 | |
|     X86TargetLowering X86Lowering;
 | |
| 
 | |
|     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | |
|     /// make the right decision when generating code for different targets.
 | |
|     const X86Subtarget *Subtarget;
 | |
| 
 | |
|     /// GlobalBaseReg - keeps track of the virtual register mapped onto global
 | |
|     /// base register.
 | |
|     unsigned GlobalBaseReg;
 | |
| 
 | |
|   public:
 | |
|     X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
 | |
|       : SelectionDAGISel(X86Lowering),
 | |
|         ContainsFPCode(false), FastISel(fast), TM(tm),
 | |
|         X86Lowering(*TM.getTargetLowering()),
 | |
|         Subtarget(&TM.getSubtarget<X86Subtarget>()) {}
 | |
| 
 | |
|     virtual bool runOnFunction(Function &Fn) {
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseReg = 0;
 | |
|       return SelectionDAGISel::runOnFunction(Fn);
 | |
|     }
 | |
|    
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 DAG->DAG Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// InstructionSelectBasicBlock - This callback is invoked by
 | |
|     /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|     virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | |
| 
 | |
|     virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
 | |
| 
 | |
|     virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root);
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "X86GenDAGISel.inc"
 | |
| 
 | |
|   private:
 | |
|     SDNode *Select(SDOperand N);
 | |
| 
 | |
|     bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true);
 | |
|     bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
 | |
|                     SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
 | |
|     bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base,
 | |
|                        SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
 | |
|     bool SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
 | |
|                              SDOperand N, SDOperand &Base, SDOperand &Scale,
 | |
|                              SDOperand &Index, SDOperand &Disp,
 | |
|                              SDOperand &InChain, SDOperand &OutChain);
 | |
|     bool TryFoldLoad(SDOperand P, SDOperand N,
 | |
|                      SDOperand &Base, SDOperand &Scale,
 | |
|                      SDOperand &Index, SDOperand &Disp);
 | |
|     void InstructionSelectPreprocess(SelectionDAG &DAG);
 | |
| 
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.
 | |
|     virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
 | |
|                                               char ConstraintCode,
 | |
|                                               std::vector<SDOperand> &OutOps,
 | |
|                                               SelectionDAG &DAG);
 | |
|     
 | |
|     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
 | |
| 
 | |
|     inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base, 
 | |
|                                    SDOperand &Scale, SDOperand &Index,
 | |
|                                    SDOperand &Disp) {
 | |
|       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
 | |
|         CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
 | |
|         AM.Base.Reg;
 | |
|       Scale = getI8Imm(AM.Scale);
 | |
|       Index = AM.IndexReg;
 | |
|       // These are 32-bit even in 64-bit mode since RIP relative offset
 | |
|       // is 32-bit.
 | |
|       if (AM.GV)
 | |
|         Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
 | |
|       else if (AM.CP)
 | |
|         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp);
 | |
|       else if (AM.ES)
 | |
|         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
 | |
|       else if (AM.JT != -1)
 | |
|         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
 | |
|       else
 | |
|         Disp = getI32Imm(AM.Disp);
 | |
|     }
 | |
| 
 | |
|     /// getI8Imm - Return a target constant with the specified value, of type
 | |
|     /// i8.
 | |
|     inline SDOperand getI8Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i8);
 | |
|     }
 | |
| 
 | |
|     /// getI16Imm - Return a target constant with the specified value, of type
 | |
|     /// i16.
 | |
|     inline SDOperand getI16Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i16);
 | |
|     }
 | |
| 
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDOperand getI32Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | |
|     /// base register.  Return the virtual register that holds this value.
 | |
|     SDNode *getGlobalBaseReg();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     unsigned Indent;
 | |
| #endif
 | |
|   };
 | |
| }
 | |
| 
 | |
| static SDNode *findFlagUse(SDNode *N) {
 | |
|   unsigned FlagResNo = N->getNumValues()-1;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDNode *User = *I;
 | |
|     for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | |
|       SDOperand Op = User->getOperand(i);
 | |
|       if (Op.Val == N && Op.ResNo == FlagResNo)
 | |
|         return User;
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
 | |
|                           SDNode *Root, SDNode *Skip, bool &found,
 | |
|                           std::set<SDNode *> &Visited) {
 | |
|   if (found ||
 | |
|       Use->getNodeId() > Def->getNodeId() ||
 | |
|       !Visited.insert(Use).second)
 | |
|     return;
 | |
| 
 | |
|   for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
 | |
|     SDNode *N = Use->getOperand(i).Val;
 | |
|     if (N == Skip)
 | |
|       continue;
 | |
|     if (N == Def) {
 | |
|       if (Use == ImmedUse)
 | |
|         continue; // Immediate use is ok.
 | |
|       if (Use == Root) {
 | |
|         assert(Use->getOpcode() == ISD::STORE ||
 | |
|                Use->getOpcode() == X86ISD::CMP);
 | |
|         continue;
 | |
|       }
 | |
|       found = true;
 | |
|       break;
 | |
|     }
 | |
|     findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isNonImmUse - Start searching from Root up the DAG to check is Def can
 | |
| /// be reached. Return true if that's the case. However, ignore direct uses
 | |
| /// by ImmedUse (which would be U in the example illustrated in
 | |
| /// CanBeFoldedBy) and by Root (which can happen in the store case).
 | |
| /// FIXME: to be really generic, we should allow direct use by any node
 | |
| /// that is being folded. But realisticly since we only fold loads which
 | |
| /// have one non-chain use, we only need to watch out for load/op/store
 | |
| /// and load/op/cmp case where the root (store / cmp) may reach the load via
 | |
| /// its chain operand.
 | |
| static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
 | |
|                                SDNode *Skip = NULL) {
 | |
|   std::set<SDNode *> Visited;
 | |
|   bool found = false;
 | |
|   findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited);
 | |
|   return found;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) {
 | |
|   if (FastISel) return false;
 | |
| 
 | |
|   // If U use can somehow reach N through another path then U can't fold N or
 | |
|   // it will create a cycle. e.g. In the following diagram, U can reach N
 | |
|   // through X. If N is folded into into U, then X is both a predecessor and
 | |
|   // a successor of U.
 | |
|   //
 | |
|   //         [ N ]
 | |
|   //         ^  ^
 | |
|   //         |  |
 | |
|   //        /   \---
 | |
|   //      /        [X]
 | |
|   //      |         ^
 | |
|   //     [U]--------|
 | |
| 
 | |
|   if (isNonImmUse(Root, N, U))
 | |
|     return false;
 | |
| 
 | |
|   // If U produces a flag, then it gets (even more) interesting. Since it
 | |
|   // would have been "glued" together with its flag use, we need to check if
 | |
|   // it might reach N:
 | |
|   //
 | |
|   //       [ N ]
 | |
|   //        ^ ^
 | |
|   //        | |
 | |
|   //       [U] \--
 | |
|   //        ^   [TF]
 | |
|   //        |    ^
 | |
|   //        |    |
 | |
|   //         \  /
 | |
|   //          [FU]
 | |
|   //
 | |
|   // If FU (flag use) indirectly reach N (the load), and U fold N (call it
 | |
|   // NU), then TF is a predecessor of FU and a successor of NU. But since
 | |
|   // NU and FU are flagged together, this effectively creates a cycle.
 | |
|   bool HasFlagUse = false;
 | |
|   MVT::ValueType VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   while ((VT == MVT::Flag && !Root->use_empty())) {
 | |
|     SDNode *FU = findFlagUse(Root);
 | |
|     if (FU == NULL)
 | |
|       break;
 | |
|     else {
 | |
|       Root = FU;
 | |
|       HasFlagUse = true;
 | |
|     }
 | |
|     VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   }
 | |
| 
 | |
|   if (HasFlagUse)
 | |
|     return !isNonImmUse(Root, N, Root, U);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
 | |
| /// and move load below the TokenFactor. Replace store's chain operand with
 | |
| /// load's chain result.
 | |
| static void MoveBelowTokenFactor(SelectionDAG &DAG, SDOperand Load,
 | |
|                                  SDOperand Store, SDOperand TF) {
 | |
|   std::vector<SDOperand> Ops;
 | |
|   for (unsigned i = 0, e = TF.Val->getNumOperands(); i != e; ++i)
 | |
|     if (Load.Val == TF.Val->getOperand(i).Val)
 | |
|       Ops.push_back(Load.Val->getOperand(0));
 | |
|     else
 | |
|       Ops.push_back(TF.Val->getOperand(i));
 | |
|   DAG.UpdateNodeOperands(TF, &Ops[0], Ops.size());
 | |
|   DAG.UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
 | |
|   DAG.UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
 | |
|                          Store.getOperand(2), Store.getOperand(3));
 | |
| }
 | |
| 
 | |
| /// InstructionSelectPreprocess - Preprocess the DAG to allow the instruction
 | |
| /// selector to pick more load-modify-store instructions. This is a common
 | |
| /// case:
 | |
| ///
 | |
| ///     [Load chain]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///       [Load]
 | |
| ///       ^    ^
 | |
| ///       |    |
 | |
| ///      /      \-
 | |
| ///     /         |
 | |
| /// [TokenFactor] [Op]
 | |
| ///     ^          ^
 | |
| ///     |          |
 | |
| ///      \        /
 | |
| ///       \      /
 | |
| ///       [Store]
 | |
| ///
 | |
| /// The fact the store's chain operand != load's chain will prevent the
 | |
| /// (store (op (load))) instruction from being selected. We can transform it to:
 | |
| ///
 | |
| ///     [Load chain]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///    [TokenFactor]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///       [Load]
 | |
| ///       ^    ^
 | |
| ///       |    |
 | |
| ///       |     \- 
 | |
| ///       |       | 
 | |
| ///       |     [Op]
 | |
| ///       |       ^
 | |
| ///       |       |
 | |
| ///       \      /
 | |
| ///        \    /
 | |
| ///       [Store]
 | |
| void X86DAGToDAGISel::InstructionSelectPreprocess(SelectionDAG &DAG) {
 | |
|   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
 | |
|          E = DAG.allnodes_end(); I != E; ++I) {
 | |
|     if (!ISD::isNON_TRUNCStore(I))
 | |
|       continue;
 | |
|     SDOperand Chain = I->getOperand(0);
 | |
|     if (Chain.Val->getOpcode() != ISD::TokenFactor)
 | |
|       continue;
 | |
| 
 | |
|     SDOperand N1 = I->getOperand(1);
 | |
|     SDOperand N2 = I->getOperand(2);
 | |
|     if (MVT::isFloatingPoint(N1.getValueType()) ||
 | |
|         MVT::isVector(N1.getValueType()) ||
 | |
|         !N1.hasOneUse())
 | |
|       continue;
 | |
| 
 | |
|     bool RModW = false;
 | |
|     SDOperand Load;
 | |
|     unsigned Opcode = N1.Val->getOpcode();
 | |
|     switch (Opcode) {
 | |
|       case ISD::ADD:
 | |
|       case ISD::MUL:
 | |
|       case ISD::AND:
 | |
|       case ISD::OR:
 | |
|       case ISD::XOR:
 | |
|       case ISD::ADDC:
 | |
|       case ISD::ADDE: {
 | |
|         SDOperand N10 = N1.getOperand(0);
 | |
|         SDOperand N11 = N1.getOperand(1);
 | |
|         if (ISD::isNON_EXTLoad(N10.Val))
 | |
|           RModW = true;
 | |
|         else if (ISD::isNON_EXTLoad(N11.Val)) {
 | |
|           RModW = true;
 | |
|           std::swap(N10, N11);
 | |
|         }
 | |
|         RModW = RModW && N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
 | |
|           (N10.getOperand(1) == N2) &&
 | |
|           (N10.Val->getValueType(0) == N1.getValueType());
 | |
|         if (RModW)
 | |
|           Load = N10;
 | |
|         break;
 | |
|       }
 | |
|       case ISD::SUB:
 | |
|       case ISD::SHL:
 | |
|       case ISD::SRA:
 | |
|       case ISD::SRL:
 | |
|       case ISD::ROTL:
 | |
|       case ISD::ROTR:
 | |
|       case ISD::SUBC:
 | |
|       case ISD::SUBE:
 | |
|       case X86ISD::SHLD:
 | |
|       case X86ISD::SHRD: {
 | |
|         SDOperand N10 = N1.getOperand(0);
 | |
|         if (ISD::isNON_EXTLoad(N10.Val))
 | |
|           RModW = N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
 | |
|             (N10.getOperand(1) == N2) &&
 | |
|             (N10.Val->getValueType(0) == N1.getValueType());
 | |
|         if (RModW)
 | |
|           Load = N10;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (RModW) {
 | |
|       MoveBelowTokenFactor(DAG, Load, SDOperand(I, 0), Chain);
 | |
|       ++NumLoadMoved;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
 | |
| /// when it has created a SelectionDAG for us to codegen.
 | |
| void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | |
|   DEBUG(BB->dump());
 | |
|   MachineFunction::iterator FirstMBB = BB;
 | |
| 
 | |
|   if (!FastISel)
 | |
|     InstructionSelectPreprocess(DAG);
 | |
| 
 | |
|   // Codegen the basic block.
 | |
| #ifndef NDEBUG
 | |
|   DOUT << "===== Instruction selection begins:\n";
 | |
|   Indent = 0;
 | |
| #endif
 | |
|   DAG.setRoot(SelectRoot(DAG.getRoot()));
 | |
| #ifndef NDEBUG
 | |
|   DOUT << "===== Instruction selection ends:\n";
 | |
| #endif
 | |
| 
 | |
|   DAG.RemoveDeadNodes();
 | |
| 
 | |
|   // Emit machine code to BB. 
 | |
|   ScheduleAndEmitDAG(DAG);
 | |
|   
 | |
|   // If we are emitting FP stack code, scan the basic block to determine if this
 | |
|   // block defines any FP values.  If so, put an FP_REG_KILL instruction before
 | |
|   // the terminator of the block.
 | |
|   if (!Subtarget->hasSSE2()) {
 | |
|     // Note that FP stack instructions *are* used in SSE code when returning
 | |
|     // values, but these are not live out of the basic block, so we don't need
 | |
|     // an FP_REG_KILL in this case either.
 | |
|     bool ContainsFPCode = false;
 | |
|     
 | |
|     // Scan all of the machine instructions in these MBBs, checking for FP
 | |
|     // stores.
 | |
|     MachineFunction::iterator MBBI = FirstMBB;
 | |
|     do {
 | |
|       for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
 | |
|            !ContainsFPCode && I != E; ++I) {
 | |
|         for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
 | |
|           if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
 | |
|               MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
 | |
|               RegMap->getRegClass(I->getOperand(0).getReg()) == 
 | |
|                 X86::RFPRegisterClass) {
 | |
|             ContainsFPCode = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } while (!ContainsFPCode && &*(MBBI++) != BB);
 | |
|     
 | |
|     // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
 | |
|     // a copy of the input value in this block.
 | |
|     if (!ContainsFPCode) {
 | |
|       // Final check, check LLVM BB's that are successors to the LLVM BB
 | |
|       // corresponding to BB for FP PHI nodes.
 | |
|       const BasicBlock *LLVMBB = BB->getBasicBlock();
 | |
|       const PHINode *PN;
 | |
|       for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
 | |
|            !ContainsFPCode && SI != E; ++SI) {
 | |
|         for (BasicBlock::const_iterator II = SI->begin();
 | |
|              (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|           if (PN->getType()->isFloatingPoint()) {
 | |
|             ContainsFPCode = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
 | |
|     if (ContainsFPCode) {
 | |
|       BuildMI(*BB, BB->getFirstTerminator(),
 | |
|               TM.getInstrInfo()->get(X86::FP_REG_KILL));
 | |
|       ++NumFPKill;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
 | |
| /// the main function.
 | |
| void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
 | |
|                                              MachineFrameInfo *MFI) {
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   if (Subtarget->isTargetCygwin())
 | |
|     BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
 | |
| 
 | |
|   // Switch the FPU to 64-bit precision mode for better compatibility and speed.
 | |
|   int CWFrameIdx = MFI->CreateStackObject(2, 2);
 | |
|   addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
 | |
| 
 | |
|   // Set the high part to be 64-bit precision.
 | |
|   addFrameReference(BuildMI(BB, TII->get(X86::MOV8mi)),
 | |
|                     CWFrameIdx, 1).addImm(2);
 | |
| 
 | |
|   // Reload the modified control word now.
 | |
|   addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| }
 | |
| 
 | |
| void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
 | |
|   // If this is main, emit special code for main.
 | |
|   MachineBasicBlock *BB = MF.begin();
 | |
|   if (Fn.hasExternalLinkage() && Fn.getName() == "main")
 | |
|     EmitSpecialCodeForMain(BB, MF.getFrameInfo());
 | |
| }
 | |
| 
 | |
| /// MatchAddress - Add the specified node to the specified addressing mode,
 | |
| /// returning true if it cannot be done.  This just pattern matches for the
 | |
| /// addressing mode
 | |
| bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
 | |
|                                    bool isRoot) {
 | |
|   // RIP relative addressing: %rip + 32-bit displacement!
 | |
|   if (AM.isRIPRel) {
 | |
|     if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
 | |
|       int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
 | |
|       if (isInt32(AM.Disp + Val)) {
 | |
|         AM.Disp += Val;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int id = N.Val->getNodeId();
 | |
|   bool Available = isSelected(id);
 | |
| 
 | |
|   switch (N.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::Constant: {
 | |
|     int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
 | |
|     if (isInt32(AM.Disp + Val)) {
 | |
|       AM.Disp += Val;
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86ISD::Wrapper: {
 | |
|     bool is64Bit = Subtarget->is64Bit();
 | |
|     // Under X86-64 non-small code model, GV (and friends) are 64-bits.
 | |
|     if (is64Bit && TM.getCodeModel() != CodeModel::Small)
 | |
|       break;
 | |
|     if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
 | |
|       break;
 | |
|     // If value is available in a register both base and index components have
 | |
|     // been picked, we can't fit the result available in the register in the
 | |
|     // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
 | |
|     if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
 | |
|       bool isStatic = TM.getRelocationModel() == Reloc::Static;
 | |
|       SDOperand N0 = N.getOperand(0);
 | |
|       if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
 | |
|         GlobalValue *GV = G->getGlobal();
 | |
|         bool isAbs32 = !is64Bit ||
 | |
|           (isStatic && !(GV->isExternal() || GV->hasWeakLinkage() ||
 | |
|                          GV->hasLinkOnceLinkage()));
 | |
|         if (isAbs32 || isRoot) {
 | |
|           AM.GV = G->getGlobal();
 | |
|           AM.Disp += G->getOffset();
 | |
|           AM.isRIPRel = !isAbs32;
 | |
|           return false;
 | |
|         }
 | |
|       } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
 | |
|         if (!is64Bit || isStatic || isRoot) {
 | |
|           AM.CP = CP->getConstVal();
 | |
|           AM.Align = CP->getAlignment();
 | |
|           AM.Disp += CP->getOffset();
 | |
|           AM.isRIPRel = !isStatic;
 | |
|           return false;
 | |
|         }
 | |
|       } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
 | |
|         if (isStatic || isRoot) {
 | |
|           AM.ES = S->getSymbol();
 | |
|           AM.isRIPRel = !isStatic;
 | |
|           return false;
 | |
|         }
 | |
|       } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
 | |
|         if (isStatic || isRoot) {
 | |
|           AM.JT = J->getIndex();
 | |
|           AM.isRIPRel = !isStatic;
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::FrameIndex:
 | |
|     if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
 | |
|       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
 | |
|       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
 | |
|         unsigned Val = CN->getValue();
 | |
|         if (Val == 1 || Val == 2 || Val == 3) {
 | |
|           AM.Scale = 1 << Val;
 | |
|           SDOperand ShVal = N.Val->getOperand(0);
 | |
| 
 | |
|           // Okay, we know that we have a scale by now.  However, if the scaled
 | |
|           // value is an add of something and a constant, we can fold the
 | |
|           // constant into the disp field here.
 | |
|           if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
 | |
|               isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
 | |
|             AM.IndexReg = ShVal.Val->getOperand(0);
 | |
|             ConstantSDNode *AddVal =
 | |
|               cast<ConstantSDNode>(ShVal.Val->getOperand(1));
 | |
|             uint64_t Disp = AM.Disp + (AddVal->getValue() << Val);
 | |
|             if (isInt32(Disp))
 | |
|               AM.Disp = Disp;
 | |
|             else
 | |
|               AM.IndexReg = ShVal;
 | |
|           } else {
 | |
|             AM.IndexReg = ShVal;
 | |
|           }
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     break;
 | |
| 
 | |
|   case ISD::MUL:
 | |
|     // X*[3,5,9] -> X+X*[2,4,8]
 | |
|     if (!Available &&
 | |
|         AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|         AM.Base.Reg.Val == 0 &&
 | |
|         AM.IndexReg.Val == 0)
 | |
|       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
 | |
|         if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
 | |
|           AM.Scale = unsigned(CN->getValue())-1;
 | |
| 
 | |
|           SDOperand MulVal = N.Val->getOperand(0);
 | |
|           SDOperand Reg;
 | |
| 
 | |
|           // Okay, we know that we have a scale by now.  However, if the scaled
 | |
|           // value is an add of something and a constant, we can fold the
 | |
|           // constant into the disp field here.
 | |
|           if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
 | |
|               isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
 | |
|             Reg = MulVal.Val->getOperand(0);
 | |
|             ConstantSDNode *AddVal =
 | |
|               cast<ConstantSDNode>(MulVal.Val->getOperand(1));
 | |
|             uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue();
 | |
|             if (isInt32(Disp))
 | |
|               AM.Disp = Disp;
 | |
|             else
 | |
|               Reg = N.Val->getOperand(0);
 | |
|           } else {
 | |
|             Reg = N.Val->getOperand(0);
 | |
|           }
 | |
| 
 | |
|           AM.IndexReg = AM.Base.Reg = Reg;
 | |
|           return false;
 | |
|         }
 | |
|     break;
 | |
| 
 | |
|   case ISD::ADD: {
 | |
|     if (!Available) {
 | |
|       X86ISelAddressMode Backup = AM;
 | |
|       if (!MatchAddress(N.Val->getOperand(0), AM, false) &&
 | |
|           !MatchAddress(N.Val->getOperand(1), AM, false))
 | |
|         return false;
 | |
|       AM = Backup;
 | |
|       if (!MatchAddress(N.Val->getOperand(1), AM, false) &&
 | |
|           !MatchAddress(N.Val->getOperand(0), AM, false))
 | |
|         return false;
 | |
|       AM = Backup;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::OR: {
 | |
|     if (!Available) {
 | |
|       X86ISelAddressMode Backup = AM;
 | |
|       // Look for (x << c1) | c2 where (c2 < c1)
 | |
|       ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(0));
 | |
|       if (CN && !MatchAddress(N.Val->getOperand(1), AM, false)) {
 | |
|         if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) {
 | |
|           AM.Disp = CN->getValue();
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       AM = Backup;
 | |
|       CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1));
 | |
|       if (CN && !MatchAddress(N.Val->getOperand(0), AM, false)) {
 | |
|         if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) {
 | |
|           AM.Disp = CN->getValue();
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       AM = Backup;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Is the base register already occupied?
 | |
|   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
 | |
|     // If so, check to see if the scale index register is set.
 | |
|     if (AM.IndexReg.Val == 0) {
 | |
|       AM.IndexReg = N;
 | |
|       AM.Scale = 1;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we cannot select it.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Default, generate it as a register.
 | |
|   AM.BaseType = X86ISelAddressMode::RegBase;
 | |
|   AM.Base.Reg = N;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectAddr - returns true if it is able pattern match an addressing mode.
 | |
| /// It returns the operands which make up the maximal addressing mode it can
 | |
| /// match by reference.
 | |
| bool X86DAGToDAGISel::SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
 | |
|                                  SDOperand &Scale, SDOperand &Index,
 | |
|                                  SDOperand &Disp) {
 | |
|   X86ISelAddressMode AM;
 | |
|   if (MatchAddress(N, AM))
 | |
|     return false;
 | |
| 
 | |
|   MVT::ValueType VT = N.getValueType();
 | |
|   if (AM.BaseType == X86ISelAddressMode::RegBase) {
 | |
|     if (!AM.Base.Reg.Val)
 | |
|       AM.Base.Reg = CurDAG->getRegister(0, VT);
 | |
|   }
 | |
| 
 | |
|   if (!AM.IndexReg.Val)
 | |
|     AM.IndexReg = CurDAG->getRegister(0, VT);
 | |
| 
 | |
|   getAddressOperands(AM, Base, Scale, Index, Disp);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point
 | |
| /// constant +0.0.
 | |
| static inline bool isZeroNode(SDOperand Elt) {
 | |
|   return ((isa<ConstantSDNode>(Elt) &&
 | |
|   cast<ConstantSDNode>(Elt)->getValue() == 0) ||
 | |
|   (isa<ConstantFPSDNode>(Elt) &&
 | |
|   cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
 | |
| /// match a load whose top elements are either undef or zeros.  The load flavor
 | |
| /// is derived from the type of N, which is either v4f32 or v2f64.
 | |
| bool X86DAGToDAGISel::SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
 | |
|                                           SDOperand N, SDOperand &Base,
 | |
|                                           SDOperand &Scale, SDOperand &Index,
 | |
|                                           SDOperand &Disp, SDOperand &InChain,
 | |
|                                           SDOperand &OutChain) {
 | |
|   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|     InChain = N.getOperand(0).getValue(1);
 | |
|     if (ISD::isNON_EXTLoad(InChain.Val) &&
 | |
|         InChain.getValue(0).hasOneUse() &&
 | |
|         N.hasOneUse() &&
 | |
|         CanBeFoldedBy(N.Val, Pred.Val, Op.Val)) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(InChain);
 | |
|       if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
 | |
|         return false;
 | |
|       OutChain = LD->getChain();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Also handle the case where we explicitly require zeros in the top
 | |
|   // elements.  This is a vector shuffle from the zero vector.
 | |
|   if (N.getOpcode() == ISD::VECTOR_SHUFFLE && N.Val->hasOneUse() &&
 | |
|       N.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
 | |
|       N.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR && 
 | |
|       N.getOperand(1).Val->hasOneUse() &&
 | |
|       ISD::isNON_EXTLoad(N.getOperand(1).getOperand(0).Val) &&
 | |
|       N.getOperand(1).getOperand(0).hasOneUse()) {
 | |
|     // Check to see if the BUILD_VECTOR is building a zero vector.
 | |
|     SDOperand BV = N.getOperand(0);
 | |
|     for (unsigned i = 0, e = BV.getNumOperands(); i != e; ++i)
 | |
|       if (!isZeroNode(BV.getOperand(i)) &&
 | |
|           BV.getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|         return false;  // Not a zero/undef vector.
 | |
|     // Check to see if the shuffle mask is 4/L/L/L or 2/L, where L is something
 | |
|     // from the LHS.
 | |
|     unsigned VecWidth = BV.getNumOperands();
 | |
|     SDOperand ShufMask = N.getOperand(2);
 | |
|     assert(ShufMask.getOpcode() == ISD::BUILD_VECTOR && "Invalid shuf mask!");
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(ShufMask.getOperand(0))) {
 | |
|       if (C->getValue() == VecWidth) {
 | |
|         for (unsigned i = 1; i != VecWidth; ++i) {
 | |
|           if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF) {
 | |
|             // ok.
 | |
|           } else {
 | |
|             ConstantSDNode *C = cast<ConstantSDNode>(ShufMask.getOperand(i));
 | |
|             if (C->getValue() >= VecWidth) return false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Okay, this is a zero extending load.  Fold it.
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(1).getOperand(0));
 | |
|       if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
 | |
|         return false;
 | |
|       OutChain = LD->getChain();
 | |
|       InChain = SDOperand(LD, 1);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
 | |
| /// mode it matches can be cost effectively emitted as an LEA instruction.
 | |
| bool X86DAGToDAGISel::SelectLEAAddr(SDOperand Op, SDOperand N,
 | |
|                                     SDOperand &Base, SDOperand &Scale,
 | |
|                                     SDOperand &Index, SDOperand &Disp) {
 | |
|   X86ISelAddressMode AM;
 | |
|   if (MatchAddress(N, AM))
 | |
|     return false;
 | |
| 
 | |
|   MVT::ValueType VT = N.getValueType();
 | |
|   unsigned Complexity = 0;
 | |
|   if (AM.BaseType == X86ISelAddressMode::RegBase)
 | |
|     if (AM.Base.Reg.Val)
 | |
|       Complexity = 1;
 | |
|     else
 | |
|       AM.Base.Reg = CurDAG->getRegister(0, VT);
 | |
|   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | |
|     Complexity = 4;
 | |
| 
 | |
|   if (AM.IndexReg.Val)
 | |
|     Complexity++;
 | |
|   else
 | |
|     AM.IndexReg = CurDAG->getRegister(0, VT);
 | |
| 
 | |
|   if (AM.Scale > 2) 
 | |
|     Complexity += 2;
 | |
|   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg
 | |
|   else if (AM.Scale > 1)
 | |
|     Complexity++;
 | |
| 
 | |
|   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
 | |
|   // to a LEA. This is determined with some expermentation but is by no means
 | |
|   // optimal (especially for code size consideration). LEA is nice because of
 | |
|   // its three-address nature. Tweak the cost function again when we can run
 | |
|   // convertToThreeAddress() at register allocation time.
 | |
|   if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
 | |
|     // For X86-64, we should always use lea to materialize RIP relative
 | |
|     // addresses.
 | |
|     if (Subtarget->is64Bit())
 | |
|       Complexity = 4;
 | |
|     else
 | |
|       Complexity += 2;
 | |
|   }
 | |
| 
 | |
|   if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
 | |
|     Complexity++;
 | |
| 
 | |
|   if (Complexity > 2) {
 | |
|     getAddressOperands(AM, Base, Scale, Index, Disp);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
 | |
|                                   SDOperand &Base, SDOperand &Scale,
 | |
|                                   SDOperand &Index, SDOperand &Disp) {
 | |
|   if (ISD::isNON_EXTLoad(N.Val) &&
 | |
|       N.hasOneUse() &&
 | |
|       CanBeFoldedBy(N.Val, P.Val, P.Val))
 | |
|     return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
 | |
|   assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
 | |
|   if (!GlobalBaseReg) {
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     SSARegMap *RegMap = BB->getParent()->getSSARegMap();
 | |
|     GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
 | |
|     const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|     BuildMI(FirstMBB, MBBI, TII->get(X86::MovePCtoStack));
 | |
|     BuildMI(FirstMBB, MBBI, TII->get(X86::POP32r), GlobalBaseReg);
 | |
|   }
 | |
|   return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).Val;
 | |
| }
 | |
| 
 | |
| static SDNode *FindCallStartFromCall(SDNode *Node) {
 | |
|   if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
 | |
|     assert(Node->getOperand(0).getValueType() == MVT::Other &&
 | |
|          "Node doesn't have a token chain argument!");
 | |
|   return FindCallStartFromCall(Node->getOperand(0).Val);
 | |
| }
 | |
| 
 | |
| SDNode *X86DAGToDAGISel::Select(SDOperand N) {
 | |
|   SDNode *Node = N.Val;
 | |
|   MVT::ValueType NVT = Node->getValueType(0);
 | |
|   unsigned Opc, MOpc;
 | |
|   unsigned Opcode = Node->getOpcode();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DOUT << std::string(Indent, ' ') << "Selecting: ";
 | |
|   DEBUG(Node->dump(CurDAG));
 | |
|   DOUT << "\n";
 | |
|   Indent += 2;
 | |
| #endif
 | |
| 
 | |
|   if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
 | |
| #ifndef NDEBUG
 | |
|     DOUT << std::string(Indent-2, ' ') << "== ";
 | |
|     DEBUG(Node->dump(CurDAG));
 | |
|     DOUT << "\n";
 | |
|     Indent -= 2;
 | |
| #endif
 | |
|     return NULL;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     default: break;
 | |
|     case X86ISD::GlobalBaseReg: 
 | |
|       return getGlobalBaseReg();
 | |
| 
 | |
|     case ISD::ADD: {
 | |
|       // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
 | |
|       // code and is matched first so to prevent it from being turned into
 | |
|       // LEA32r X+c.
 | |
|       // In 64-bit mode, use LEA to take advantage of RIP-relative addressing.
 | |
|       MVT::ValueType PtrVT = TLI.getPointerTy();
 | |
|       SDOperand N0 = N.getOperand(0);
 | |
|       SDOperand N1 = N.getOperand(1);
 | |
|       if (N.Val->getValueType(0) == PtrVT &&
 | |
|           N0.getOpcode() == X86ISD::Wrapper &&
 | |
|           N1.getOpcode() == ISD::Constant) {
 | |
|         unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
 | |
|         SDOperand C(0, 0);
 | |
|         // TODO: handle ExternalSymbolSDNode.
 | |
|         if (GlobalAddressSDNode *G =
 | |
|             dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
 | |
|           C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT,
 | |
|                                              G->getOffset() + Offset);
 | |
|         } else if (ConstantPoolSDNode *CP =
 | |
|                    dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
 | |
|           C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT,
 | |
|                                             CP->getAlignment(),
 | |
|                                             CP->getOffset()+Offset);
 | |
|         }
 | |
| 
 | |
|         if (C.Val) {
 | |
|           if (Subtarget->is64Bit()) {
 | |
|             SDOperand Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1),
 | |
|                                 CurDAG->getRegister(0, PtrVT), C };
 | |
|             return CurDAG->SelectNodeTo(N.Val, X86::LEA64r, MVT::i64, Ops, 4);
 | |
|           } else
 | |
|             return CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, PtrVT, C);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Other cases are handled by auto-generated code.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ISD::MULHU:
 | |
|     case ISD::MULHS: {
 | |
|       if (Opcode == ISD::MULHU)
 | |
|         switch (NVT) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
 | |
|         case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
 | |
|         case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
 | |
|         case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
 | |
|         }
 | |
|       else
 | |
|         switch (NVT) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
 | |
|         case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
 | |
|         case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
 | |
|         case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
 | |
|         }
 | |
| 
 | |
|       unsigned LoReg, HiReg;
 | |
|       switch (NVT) {
 | |
|       default: assert(0 && "Unsupported VT!");
 | |
|       case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
 | |
|       case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
 | |
|       case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
 | |
|       case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
 | |
|       }
 | |
| 
 | |
|       SDOperand N0 = Node->getOperand(0);
 | |
|       SDOperand N1 = Node->getOperand(1);
 | |
| 
 | |
|       bool foldedLoad = false;
 | |
|       SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
 | |
|       foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
 | |
|       // MULHU and MULHS are commmutative
 | |
|       if (!foldedLoad) {
 | |
|         foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
 | |
|         if (foldedLoad) {
 | |
|           N0 = Node->getOperand(1);
 | |
|           N1 = Node->getOperand(0);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDOperand Chain;
 | |
|       if (foldedLoad) {
 | |
|         Chain = N1.getOperand(0);
 | |
|         AddToISelQueue(Chain);
 | |
|       } else
 | |
|         Chain = CurDAG->getEntryNode();
 | |
| 
 | |
|       SDOperand InFlag(0, 0);
 | |
|       AddToISelQueue(N0);
 | |
|       Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
 | |
|                                     N0, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
| 
 | |
|       if (foldedLoad) {
 | |
|         AddToISelQueue(Tmp0);
 | |
|         AddToISelQueue(Tmp1);
 | |
|         AddToISelQueue(Tmp2);
 | |
|         AddToISelQueue(Tmp3);
 | |
|         SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Chain, InFlag };
 | |
|         SDNode *CNode =
 | |
|           CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
 | |
|         Chain  = SDOperand(CNode, 0);
 | |
|         InFlag = SDOperand(CNode, 1);
 | |
|       } else {
 | |
|         AddToISelQueue(N1);
 | |
|         InFlag =
 | |
|           SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
 | |
|       }
 | |
| 
 | |
|       SDOperand Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
 | |
|       ReplaceUses(N.getValue(0), Result);
 | |
|       if (foldedLoad)
 | |
|         ReplaceUses(N1.getValue(1), Result.getValue(1));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|       DEBUG(Result.Val->dump(CurDAG));
 | |
|       DOUT << "\n";
 | |
|       Indent -= 2;
 | |
| #endif
 | |
|       return NULL;
 | |
|     }
 | |
|       
 | |
|     case ISD::SDIV:
 | |
|     case ISD::UDIV:
 | |
|     case ISD::SREM:
 | |
|     case ISD::UREM: {
 | |
|       bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
 | |
|       bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
 | |
|       if (!isSigned)
 | |
|         switch (NVT) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
 | |
|         case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
 | |
|         case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
 | |
|         case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
 | |
|         }
 | |
|       else
 | |
|         switch (NVT) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
 | |
|         case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
 | |
|         case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
 | |
|         case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
 | |
|         }
 | |
| 
 | |
|       unsigned LoReg, HiReg;
 | |
|       unsigned ClrOpcode, SExtOpcode;
 | |
|       switch (NVT) {
 | |
|       default: assert(0 && "Unsupported VT!");
 | |
|       case MVT::i8:
 | |
|         LoReg = X86::AL;  HiReg = X86::AH;
 | |
|         ClrOpcode  = 0;
 | |
|         SExtOpcode = X86::CBW;
 | |
|         break;
 | |
|       case MVT::i16:
 | |
|         LoReg = X86::AX;  HiReg = X86::DX;
 | |
|         ClrOpcode  = X86::MOV16r0;
 | |
|         SExtOpcode = X86::CWD;
 | |
|         break;
 | |
|       case MVT::i32:
 | |
|         LoReg = X86::EAX; HiReg = X86::EDX;
 | |
|         ClrOpcode  = X86::MOV32r0;
 | |
|         SExtOpcode = X86::CDQ;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         LoReg = X86::RAX; HiReg = X86::RDX;
 | |
|         ClrOpcode  = X86::MOV64r0;
 | |
|         SExtOpcode = X86::CQO;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       SDOperand N0 = Node->getOperand(0);
 | |
|       SDOperand N1 = Node->getOperand(1);
 | |
|       SDOperand InFlag(0, 0);
 | |
|       if (NVT == MVT::i8 && !isSigned) {
 | |
|         // Special case for div8, just use a move with zero extension to AX to
 | |
|         // clear the upper 8 bits (AH).
 | |
|         SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
 | |
|         if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
 | |
|           SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
 | |
|           AddToISelQueue(N0.getOperand(0));
 | |
|           AddToISelQueue(Tmp0);
 | |
|           AddToISelQueue(Tmp1);
 | |
|           AddToISelQueue(Tmp2);
 | |
|           AddToISelQueue(Tmp3);
 | |
|           Move =
 | |
|             SDOperand(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
 | |
|                                             Ops, 5), 0);
 | |
|           Chain = Move.getValue(1);
 | |
|           ReplaceUses(N0.getValue(1), Chain);
 | |
|         } else {
 | |
|           AddToISelQueue(N0);
 | |
|           Move =
 | |
|             SDOperand(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
 | |
|           Chain = CurDAG->getEntryNode();
 | |
|         }
 | |
|         Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, InFlag);
 | |
|         InFlag = Chain.getValue(1);
 | |
|       } else {
 | |
|         AddToISelQueue(N0);
 | |
|         InFlag =
 | |
|           CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg, N0,
 | |
|                                InFlag).getValue(1);
 | |
|         if (isSigned) {
 | |
|           // Sign extend the low part into the high part.
 | |
|           InFlag =
 | |
|             SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
 | |
|         } else {
 | |
|           // Zero out the high part, effectively zero extending the input.
 | |
|           SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
 | |
|           InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg, ClrNode,
 | |
|                                         InFlag).getValue(1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Chain;
 | |
|       bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
 | |
|       if (foldedLoad) {
 | |
|         AddToISelQueue(N1.getOperand(0));
 | |
|         AddToISelQueue(Tmp0);
 | |
|         AddToISelQueue(Tmp1);
 | |
|         AddToISelQueue(Tmp2);
 | |
|         AddToISelQueue(Tmp3);
 | |
|         SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
 | |
|         SDNode *CNode =
 | |
|           CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
 | |
|         Chain  = SDOperand(CNode, 0);
 | |
|         InFlag = SDOperand(CNode, 1);
 | |
|       } else {
 | |
|         AddToISelQueue(N1);
 | |
|         Chain = CurDAG->getEntryNode();
 | |
|         InFlag =
 | |
|           SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
 | |
|       }
 | |
| 
 | |
|       SDOperand Result =
 | |
|         CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg, NVT, InFlag);
 | |
|       ReplaceUses(N.getValue(0), Result);
 | |
|       if (foldedLoad)
 | |
|         ReplaceUses(N1.getValue(1), Result.getValue(1));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|       DEBUG(Result.Val->dump(CurDAG));
 | |
|       DOUT << "\n";
 | |
|       Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|       return NULL;
 | |
|     }
 | |
| 
 | |
|     case ISD::TRUNCATE: {
 | |
|       if (!Subtarget->is64Bit() && NVT == MVT::i8) {
 | |
|         unsigned Opc2;
 | |
|         MVT::ValueType VT;
 | |
|         switch (Node->getOperand(0).getValueType()) {
 | |
|         default: assert(0 && "Unknown truncate!");
 | |
|         case MVT::i16:
 | |
|           Opc = X86::MOV16to16_;
 | |
|           VT = MVT::i16;
 | |
|           Opc2 = X86::TRUNC_16_to8;
 | |
|           break;
 | |
|         case MVT::i32:
 | |
|           Opc = X86::MOV32to32_;
 | |
|           VT = MVT::i32;
 | |
|           Opc2 = X86::TRUNC_32_to8;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         AddToISelQueue(Node->getOperand(0));
 | |
|         SDOperand Tmp =
 | |
|           SDOperand(CurDAG->getTargetNode(Opc, VT, Node->getOperand(0)), 0);
 | |
|         SDNode *ResNode = CurDAG->getTargetNode(Opc2, NVT, Tmp);
 | |
|       
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(ResNode->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
|         Indent -= 2;
 | |
| #endif
 | |
|         return ResNode;
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDNode *ResNode = SelectCode(N);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|   if (ResNode == NULL || ResNode == N.Val)
 | |
|     DEBUG(N.Val->dump(CurDAG));
 | |
|   else
 | |
|     DEBUG(ResNode->dump(CurDAG));
 | |
|   DOUT << "\n";
 | |
|   Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::
 | |
| SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode,
 | |
|                              std::vector<SDOperand> &OutOps, SelectionDAG &DAG){
 | |
|   SDOperand Op0, Op1, Op2, Op3;
 | |
|   switch (ConstraintCode) {
 | |
|   case 'o':   // offsetable        ??
 | |
|   case 'v':   // not offsetable    ??
 | |
|   default: return true;
 | |
|   case 'm':   // memory
 | |
|     if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   OutOps.push_back(Op0);
 | |
|   OutOps.push_back(Op1);
 | |
|   OutOps.push_back(Op2);
 | |
|   OutOps.push_back(Op3);
 | |
|   AddToISelQueue(Op0);
 | |
|   AddToISelQueue(Op1);
 | |
|   AddToISelQueue(Op2);
 | |
|   AddToISelQueue(Op3);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// createX86ISelDag - This pass converts a legalized DAG into a 
 | |
| /// X86-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
 | |
|   return new X86DAGToDAGISel(TM, Fast);
 | |
| }
 |