mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-29 08:16:51 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32660 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1070 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the function verifier interface, that can be used for some
 | |
| // sanity checking of input to the system.
 | |
| //
 | |
| // Note that this does not provide full `Java style' security and verifications,
 | |
| // instead it just tries to ensure that code is well-formed.
 | |
| //
 | |
| //  * Both of a binary operator's parameters are of the same type
 | |
| //  * Verify that the indices of mem access instructions match other operands
 | |
| //  * Verify that arithmetic and other things are only performed on first-class
 | |
| //    types.  Verify that shifts & logicals only happen on integrals f.e.
 | |
| //  * All of the constants in a switch statement are of the correct type
 | |
| //  * The code is in valid SSA form
 | |
| //  * It should be illegal to put a label into any other type (like a structure)
 | |
| //    or to return one. [except constant arrays!]
 | |
| //  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
 | |
| //  * PHI nodes must have an entry for each predecessor, with no extras.
 | |
| //  * PHI nodes must be the first thing in a basic block, all grouped together
 | |
| //  * PHI nodes must have at least one entry
 | |
| //  * All basic blocks should only end with terminator insts, not contain them
 | |
| //  * The entry node to a function must not have predecessors
 | |
| //  * All Instructions must be embedded into a basic block
 | |
| //  * Functions cannot take a void-typed parameter
 | |
| //  * Verify that a function's argument list agrees with it's declared type.
 | |
| //  * It is illegal to specify a name for a void value.
 | |
| //  * It is illegal to have a internal global value with no initializer
 | |
| //  * It is illegal to have a ret instruction that returns a value that does not
 | |
| //    agree with the function return value type.
 | |
| //  * Function call argument types match the function prototype
 | |
| //  * All other things that are tested by asserts spread about the code...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <algorithm>
 | |
| #include <sstream>
 | |
| #include <cstdarg>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {  // Anonymous namespace for class
 | |
| 
 | |
|   struct VISIBILITY_HIDDEN
 | |
|      Verifier : public FunctionPass, InstVisitor<Verifier> {
 | |
|     bool Broken;          // Is this module found to be broken?
 | |
|     bool RealPass;        // Are we not being run by a PassManager?
 | |
|     VerifierFailureAction action;
 | |
|                           // What to do if verification fails.
 | |
|     Module *Mod;          // Module we are verifying right now
 | |
|     ETForest *EF;     // ET-Forest, caution can be null!
 | |
|     std::stringstream msgs;  // A stringstream to collect messages
 | |
| 
 | |
|     /// InstInThisBlock - when verifying a basic block, keep track of all of the
 | |
|     /// instructions we have seen so far.  This allows us to do efficient
 | |
|     /// dominance checks for the case when an instruction has an operand that is
 | |
|     /// an instruction in the same block.
 | |
|     std::set<Instruction*> InstsInThisBlock;
 | |
| 
 | |
|     Verifier()
 | |
|         : Broken(false), RealPass(true), action(AbortProcessAction),
 | |
|           EF(0), msgs( std::ios::app | std::ios::out ) {}
 | |
|     Verifier( VerifierFailureAction ctn )
 | |
|         : Broken(false), RealPass(true), action(ctn), EF(0),
 | |
|           msgs( std::ios::app | std::ios::out ) {}
 | |
|     Verifier(bool AB )
 | |
|         : Broken(false), RealPass(true),
 | |
|           action( AB ? AbortProcessAction : PrintMessageAction), EF(0),
 | |
|           msgs( std::ios::app | std::ios::out ) {}
 | |
|     Verifier(ETForest &ef)
 | |
|       : Broken(false), RealPass(false), action(PrintMessageAction),
 | |
|         EF(&ef), msgs( std::ios::app | std::ios::out ) {}
 | |
| 
 | |
| 
 | |
|     bool doInitialization(Module &M) {
 | |
|       Mod = &M;
 | |
|       verifySymbolTable(M.getSymbolTable());
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       if (RealPass)
 | |
|         return abortIfBroken();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) {
 | |
|       // Get dominator information if we are being run by PassManager
 | |
|       if (RealPass) EF = &getAnalysis<ETForest>();
 | |
|       
 | |
|       visit(F);
 | |
|       InstsInThisBlock.clear();
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       if (RealPass)
 | |
|         return abortIfBroken();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool doFinalization(Module &M) {
 | |
|       // Scan through, checking all of the external function's linkage now...
 | |
|       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|         visitGlobalValue(*I);
 | |
| 
 | |
|         // Check to make sure function prototypes are okay.
 | |
|         if (I->isExternal()) visitFunction(*I);
 | |
|       }
 | |
| 
 | |
|       for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
 | |
|            I != E; ++I)
 | |
|         visitGlobalVariable(*I);
 | |
| 
 | |
|       // If the module is broken, abort at this time.
 | |
|       return abortIfBroken();
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       if (RealPass)
 | |
|         AU.addRequired<ETForest>();
 | |
|     }
 | |
| 
 | |
|     /// abortIfBroken - If the module is broken and we are supposed to abort on
 | |
|     /// this condition, do so.
 | |
|     ///
 | |
|     bool abortIfBroken() {
 | |
|       if (Broken) {
 | |
|         msgs << "Broken module found, ";
 | |
|         switch (action) {
 | |
|           case AbortProcessAction:
 | |
|             msgs << "compilation aborted!\n";
 | |
|             cerr << msgs.str();
 | |
|             abort();
 | |
|           case PrintMessageAction:
 | |
|             msgs << "verification continues.\n";
 | |
|             cerr << msgs.str();
 | |
|             return false;
 | |
|           case ReturnStatusAction:
 | |
|             msgs << "compilation terminated.\n";
 | |
|             return Broken;
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Verification methods...
 | |
|     void verifySymbolTable(SymbolTable &ST);
 | |
|     void visitGlobalValue(GlobalValue &GV);
 | |
|     void visitGlobalVariable(GlobalVariable &GV);
 | |
|     void visitFunction(Function &F);
 | |
|     void visitBasicBlock(BasicBlock &BB);
 | |
|     void visitTruncInst(TruncInst &I);
 | |
|     void visitZExtInst(ZExtInst &I);
 | |
|     void visitSExtInst(SExtInst &I);
 | |
|     void visitFPTruncInst(FPTruncInst &I);
 | |
|     void visitFPExtInst(FPExtInst &I);
 | |
|     void visitFPToUIInst(FPToUIInst &I);
 | |
|     void visitFPToSIInst(FPToSIInst &I);
 | |
|     void visitUIToFPInst(UIToFPInst &I);
 | |
|     void visitSIToFPInst(SIToFPInst &I);
 | |
|     void visitIntToPtrInst(IntToPtrInst &I);
 | |
|     void visitPtrToIntInst(PtrToIntInst &I);
 | |
|     void visitBitCastInst(BitCastInst &I);
 | |
|     void visitPHINode(PHINode &PN);
 | |
|     void visitBinaryOperator(BinaryOperator &B);
 | |
|     void visitICmpInst(ICmpInst &IC);
 | |
|     void visitFCmpInst(FCmpInst &FC);
 | |
|     void visitShiftInst(ShiftInst &SI);
 | |
|     void visitExtractElementInst(ExtractElementInst &EI);
 | |
|     void visitInsertElementInst(InsertElementInst &EI);
 | |
|     void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | |
|     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | |
|     void visitCallInst(CallInst &CI);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     void visitLoadInst(LoadInst &LI);
 | |
|     void visitStoreInst(StoreInst &SI);
 | |
|     void visitInstruction(Instruction &I);
 | |
|     void visitTerminatorInst(TerminatorInst &I);
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitSwitchInst(SwitchInst &SI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     void visitUserOp1(Instruction &I);
 | |
|     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | |
|     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
 | |
| 
 | |
|     void VerifyIntrinsicPrototype(Function *F, ...);
 | |
| 
 | |
|     void WriteValue(const Value *V) {
 | |
|       if (!V) return;
 | |
|       if (isa<Instruction>(V)) {
 | |
|         msgs << *V;
 | |
|       } else {
 | |
|         WriteAsOperand(msgs, V, true, Mod);
 | |
|         msgs << "\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void WriteType(const Type* T ) {
 | |
|       if ( !T ) return;
 | |
|       WriteTypeSymbolic(msgs, T, Mod );
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // CheckFailed - A check failed, so print out the condition and the message
 | |
|     // that failed.  This provides a nice place to put a breakpoint if you want
 | |
|     // to see why something is not correct.
 | |
|     void CheckFailed(const std::string &Message,
 | |
|                      const Value *V1 = 0, const Value *V2 = 0,
 | |
|                      const Value *V3 = 0, const Value *V4 = 0) {
 | |
|       msgs << Message << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteValue(V2);
 | |
|       WriteValue(V3);
 | |
|       WriteValue(V4);
 | |
|       Broken = true;
 | |
|     }
 | |
| 
 | |
|     void CheckFailed( const std::string& Message, const Value* V1,
 | |
|                       const Type* T2, const Value* V3 = 0 ) {
 | |
|       msgs << Message << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteType(T2);
 | |
|       WriteValue(V3);
 | |
|       Broken = true;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   RegisterPass<Verifier> X("verify", "Module Verifier");
 | |
| } // End anonymous namespace
 | |
| 
 | |
| 
 | |
| // Assert - We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, M) \
 | |
|   do { if (!(C)) { CheckFailed(M); return; } } while (0)
 | |
| #define Assert1(C, M, V1) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
 | |
| #define Assert2(C, M, V1, V2) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
 | |
| #define Assert3(C, M, V1, V2, V3) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
 | |
| #define Assert4(C, M, V1, V2, V3, V4) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
 | |
| 
 | |
| 
 | |
| void Verifier::visitGlobalValue(GlobalValue &GV) {
 | |
|   Assert1(!GV.isExternal() ||
 | |
|           GV.hasExternalLinkage() ||
 | |
|           GV.hasDLLImportLinkage() ||
 | |
|           GV.hasExternalWeakLinkage(),
 | |
|   "Global is external, but doesn't have external or dllimport or weak linkage!",
 | |
|           &GV);
 | |
| 
 | |
|   Assert1(!GV.hasDLLImportLinkage() || GV.isExternal(),
 | |
|           "Global is marked as dllimport, but not external", &GV);
 | |
|   
 | |
|   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | |
|           "Only global variables can have appending linkage!", &GV);
 | |
| 
 | |
|   if (GV.hasAppendingLinkage()) {
 | |
|     GlobalVariable &GVar = cast<GlobalVariable>(GV);
 | |
|     Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
 | |
|             "Only global arrays can have appending linkage!", &GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalVariable(GlobalVariable &GV) {
 | |
|   if (GV.hasInitializer())
 | |
|     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
 | |
|             "Global variable initializer type does not match global "
 | |
|             "variable type!", &GV);
 | |
| 
 | |
|   visitGlobalValue(GV);
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifySymbolTable - Verify that a function or module symbol table is ok
 | |
| //
 | |
| void Verifier::verifySymbolTable(SymbolTable &ST) {
 | |
| 
 | |
|   // Loop over all of the values in all type planes in the symbol table.
 | |
|   for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
 | |
|        PE = ST.plane_end(); PI != PE; ++PI)
 | |
|     for (SymbolTable::value_const_iterator VI = PI->second.begin(),
 | |
|          VE = PI->second.end(); VI != VE; ++VI) {
 | |
|       Value *V = VI->second;
 | |
|       // Check that there are no void typed values in the symbol table.  Values
 | |
|       // with a void type cannot be put into symbol tables because they cannot
 | |
|       // have names!
 | |
|       Assert1(V->getType() != Type::VoidTy,
 | |
|         "Values with void type are not allowed to have names!", V);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // visitFunction - Verify that a function is ok.
 | |
| //
 | |
| void Verifier::visitFunction(Function &F) {
 | |
|   // Check function arguments.
 | |
|   const FunctionType *FT = F.getFunctionType();
 | |
|   unsigned NumArgs = F.getArgumentList().size();
 | |
| 
 | |
|   Assert2(FT->getNumParams() == NumArgs,
 | |
|           "# formal arguments must match # of arguments for function type!",
 | |
|           &F, FT);
 | |
|   Assert1(F.getReturnType()->isFirstClassType() ||
 | |
|           F.getReturnType() == Type::VoidTy,
 | |
|           "Functions cannot return aggregate values!", &F);
 | |
| 
 | |
|   // Check that this function meets the restrictions on this calling convention.
 | |
|   switch (F.getCallingConv()) {
 | |
|   default:
 | |
|     break;
 | |
|   case CallingConv::C:
 | |
|     break;
 | |
|   case CallingConv::CSRet:
 | |
|     Assert1(FT->getReturnType() == Type::VoidTy && 
 | |
|             FT->getNumParams() > 0 && isa<PointerType>(FT->getParamType(0)),
 | |
|             "Invalid struct-return function!", &F);
 | |
|     break;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::Cold:
 | |
|   case CallingConv::X86_FastCall:
 | |
|     Assert1(!F.isVarArg(),
 | |
|             "Varargs functions must have C calling conventions!", &F);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Check that the argument values match the function type for this function...
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I, ++i) {
 | |
|     Assert2(I->getType() == FT->getParamType(i),
 | |
|             "Argument value does not match function argument type!",
 | |
|             I, FT->getParamType(i));
 | |
|     // Make sure no aggregates are passed by value.
 | |
|     Assert1(I->getType()->isFirstClassType(),
 | |
|             "Functions cannot take aggregates as arguments by value!", I);
 | |
|    }
 | |
| 
 | |
|   if (!F.isExternal()) {
 | |
|     // Verify that this function (which has a body) is not named "llvm.*".  It
 | |
|     // is not legal to define intrinsics.
 | |
|     if (F.getName().size() >= 5)
 | |
|       Assert1(F.getName().substr(0, 5) != "llvm.",
 | |
|               "llvm intrinsics cannot be defined!", &F);
 | |
|     
 | |
|     verifySymbolTable(F.getSymbolTable());
 | |
| 
 | |
|     // Check the entry node
 | |
|     BasicBlock *Entry = &F.getEntryBlock();
 | |
|     Assert1(pred_begin(Entry) == pred_end(Entry),
 | |
|             "Entry block to function must not have predecessors!", Entry);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyBasicBlock - Verify that a basic block is well formed...
 | |
| //
 | |
| void Verifier::visitBasicBlock(BasicBlock &BB) {
 | |
|   InstsInThisBlock.clear();
 | |
| 
 | |
|   // Ensure that basic blocks have terminators!
 | |
|   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | |
| 
 | |
|   // Check constraints that this basic block imposes on all of the PHI nodes in
 | |
|   // it.
 | |
|   if (isa<PHINode>(BB.front())) {
 | |
|     std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB));
 | |
|     std::sort(Preds.begin(), Preds.end());
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | |
| 
 | |
|       // Ensure that PHI nodes have at least one entry!
 | |
|       Assert1(PN->getNumIncomingValues() != 0,
 | |
|               "PHI nodes must have at least one entry.  If the block is dead, "
 | |
|               "the PHI should be removed!", PN);
 | |
|       Assert1(PN->getNumIncomingValues() == Preds.size(),
 | |
|               "PHINode should have one entry for each predecessor of its "
 | |
|               "parent basic block!", PN);
 | |
| 
 | |
|       // Get and sort all incoming values in the PHI node...
 | |
|       std::vector<std::pair<BasicBlock*, Value*> > Values;
 | |
|       Values.reserve(PN->getNumIncomingValues());
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | |
|                                         PN->getIncomingValue(i)));
 | |
|       std::sort(Values.begin(), Values.end());
 | |
| 
 | |
|       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | |
|         // Check to make sure that if there is more than one entry for a
 | |
|         // particular basic block in this PHI node, that the incoming values are
 | |
|         // all identical.
 | |
|         //
 | |
|         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
 | |
|                 Values[i].second == Values[i-1].second,
 | |
|                 "PHI node has multiple entries for the same basic block with "
 | |
|                 "different incoming values!", PN, Values[i].first,
 | |
|                 Values[i].second, Values[i-1].second);
 | |
| 
 | |
|         // Check to make sure that the predecessors and PHI node entries are
 | |
|         // matched up.
 | |
|         Assert3(Values[i].first == Preds[i],
 | |
|                 "PHI node entries do not match predecessors!", PN,
 | |
|                 Values[i].first, Preds[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | |
|   // Ensure that terminators only exist at the end of the basic block.
 | |
|   Assert1(&I == I.getParent()->getTerminator(),
 | |
|           "Terminator found in the middle of a basic block!", I.getParent());
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitReturnInst(ReturnInst &RI) {
 | |
|   Function *F = RI.getParent()->getParent();
 | |
|   if (RI.getNumOperands() == 0)
 | |
|     Assert2(F->getReturnType() == Type::VoidTy,
 | |
|             "Found return instr that returns void in Function of non-void "
 | |
|             "return type!", &RI, F->getReturnType());
 | |
|   else
 | |
|     Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
 | |
|             "Function return type does not match operand "
 | |
|             "type of return inst!", &RI, F->getReturnType());
 | |
| 
 | |
|   // Check to make sure that the return value has necessary properties for
 | |
|   // terminators...
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSwitchInst(SwitchInst &SI) {
 | |
|   // Check to make sure that all of the constants in the switch instruction
 | |
|   // have the same type as the switched-on value.
 | |
|   const Type *SwitchTy = SI.getCondition()->getType();
 | |
|   for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
 | |
|     Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
 | |
|             "Switch constants must all be same type as switch value!", &SI);
 | |
| 
 | |
|   visitTerminatorInst(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSelectInst(SelectInst &SI) {
 | |
|   Assert1(SI.getCondition()->getType() == Type::BoolTy,
 | |
|           "Select condition type must be bool!", &SI);
 | |
|   Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
 | |
|           "Select values must have identical types!", &SI);
 | |
|   Assert1(SI.getTrueValue()->getType() == SI.getType(),
 | |
|           "Select values must have same type as select instruction!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | |
| /// a pass, if any exist, it's an error.
 | |
| ///
 | |
| void Verifier::visitUserOp1(Instruction &I) {
 | |
|   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTruncInst(TruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegral(), "Trunc only operates on integer", &I);
 | |
|   Assert1(DestTy->isIntegral(),"Trunc only produces integral", &I);
 | |
|   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitZExtInst(ZExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegral(),"ZExt only operates on integral", &I);
 | |
|   Assert1(DestTy->isInteger(),"ZExt only produces an integer", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSExtInst(SExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegral(),"SExt only operates on integral", &I);
 | |
|   Assert1(DestTy->isInteger(),"SExt only produces an integer", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
 | |
|   Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
 | |
|   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPExtInst(FPExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
 | |
|   Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegral(),"UInt2FP source must be integral", &I);
 | |
|   Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegral(),"SInt2FP source must be integral", &I);
 | |
|   Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
 | |
|   Assert1(DestTy->isIntegral(),"FP2UInt result must be integral", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
 | |
|   Assert1(DestTy->isIntegral(),"FP2ToI result must be integral", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
 | |
|   Assert1(DestTy->isIntegral(), "PtrToInt result must be integral", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegral(), "IntToPtr source must be an integral", &I);
 | |
|   Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBitCastInst(BitCastInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // BitCast implies a no-op cast of type only. No bits change.
 | |
|   // However, you can't cast pointers to anything but pointers.
 | |
|   Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
 | |
|           "Bitcast requires both operands to be pointer or neither", &I);
 | |
|   Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| /// visitPHINode - Ensure that a PHI node is well formed.
 | |
| ///
 | |
| void Verifier::visitPHINode(PHINode &PN) {
 | |
|   // Ensure that the PHI nodes are all grouped together at the top of the block.
 | |
|   // This can be tested by checking whether the instruction before this is
 | |
|   // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | |
|   // then there is some other instruction before a PHI.
 | |
|   Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
 | |
|           "PHI nodes not grouped at top of basic block!",
 | |
|           &PN, PN.getParent());
 | |
| 
 | |
|   // Check that all of the operands of the PHI node have the same type as the
 | |
|   // result.
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
 | |
|             "PHI node operands are not the same type as the result!", &PN);
 | |
| 
 | |
|   // All other PHI node constraints are checked in the visitBasicBlock method.
 | |
| 
 | |
|   visitInstruction(PN);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCallInst(CallInst &CI) {
 | |
|   Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
 | |
|           "Called function must be a pointer!", &CI);
 | |
|   const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
 | |
|   Assert1(isa<FunctionType>(FPTy->getElementType()),
 | |
|           "Called function is not pointer to function type!", &CI);
 | |
| 
 | |
|   const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
 | |
| 
 | |
|   // Verify that the correct number of arguments are being passed
 | |
|   if (FTy->isVarArg())
 | |
|     Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
 | |
|             "Called function requires more parameters than were provided!",&CI);
 | |
|   else
 | |
|     Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
 | |
|             "Incorrect number of arguments passed to called function!", &CI);
 | |
| 
 | |
|   // Verify that all arguments to the call match the function type...
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
 | |
|             "Call parameter type does not match function signature!",
 | |
|             CI.getOperand(i+1), FTy->getParamType(i), &CI);
 | |
| 
 | |
|   if (Function *F = CI.getCalledFunction())
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | |
|       visitIntrinsicFunctionCall(ID, CI);
 | |
| 
 | |
|   visitInstruction(CI);
 | |
| }
 | |
| 
 | |
| /// visitBinaryOperator - Check that both arguments to the binary operator are
 | |
| /// of the same type!
 | |
| ///
 | |
| void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | |
|   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | |
|           "Both operands to a binary operator are not of the same type!", &B);
 | |
| 
 | |
|   // Check that logical operators are only used with integral operands.
 | |
|   if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
 | |
|       B.getOpcode() == Instruction::Xor) {
 | |
|     Assert1(B.getType()->isIntegral() ||
 | |
|             (isa<PackedType>(B.getType()) && 
 | |
|              cast<PackedType>(B.getType())->getElementType()->isIntegral()),
 | |
|             "Logical operators only work with integral types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Logical operators must have same type for operands and result!",
 | |
|             &B);
 | |
|   } else if (isa<SetCondInst>(B)) {
 | |
|     // Check that setcc instructions return bool
 | |
|     Assert1(B.getType() == Type::BoolTy,
 | |
|             "setcc instructions must return boolean values!", &B);
 | |
|   } else {
 | |
|     // Arithmetic operators only work on integer or fp values
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Arithmetic operators must have same type for operands and result!",
 | |
|             &B);
 | |
|     Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
 | |
|             isa<PackedType>(B.getType()),
 | |
|             "Arithmetic operators must have integer, fp, or packed type!", &B);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(B);
 | |
| }
 | |
| 
 | |
| void Verifier::visitICmpInst(ICmpInst& IC) {
 | |
|   // Check that the operands are the same type
 | |
|   const Type* Op0Ty = IC.getOperand(0)->getType();
 | |
|   const Type* Op1Ty = IC.getOperand(1)->getType();
 | |
|   Assert1(Op0Ty == Op1Ty,
 | |
|           "Both operands to ICmp instruction are not of the same type!", &IC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert1(Op0Ty->isIntegral() || Op0Ty->getTypeID() == Type::PointerTyID ||
 | |
|           (isa<PackedType>(Op0Ty) && 
 | |
|            cast<PackedType>(Op0Ty)->getElementType()->isIntegral()),
 | |
|           "Invalid operand types for ICmp instruction", &IC);
 | |
|   visitInstruction(IC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFCmpInst(FCmpInst& FC) {
 | |
|   // Check that the operands are the same type
 | |
|   const Type* Op0Ty = FC.getOperand(0)->getType();
 | |
|   const Type* Op1Ty = FC.getOperand(1)->getType();
 | |
|   Assert1(Op0Ty == Op1Ty,
 | |
|           "Both operands to FCmp instruction are not of the same type!", &FC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert1(Op0Ty->isFloatingPoint() || (isa<PackedType>(Op0Ty) &&
 | |
|            cast<PackedType>(Op0Ty)->getElementType()->isFloatingPoint()),
 | |
|           "Invalid operand types for FCmp instruction", &FC);
 | |
|   visitInstruction(FC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShiftInst(ShiftInst &SI) {
 | |
|   Assert1(SI.getType()->isInteger(),
 | |
|           "Shift must return an integer result!", &SI);
 | |
|   Assert1(SI.getType() == SI.getOperand(0)->getType(),
 | |
|           "Shift return type must be same as first operand!", &SI);
 | |
|   Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
 | |
|           "Second operand to shift must be ubyte type!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
 | |
|                                               EI.getOperand(1)),
 | |
|           "Invalid extractelement operands!", &EI);
 | |
|   visitInstruction(EI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
 | |
|                                              IE.getOperand(1),
 | |
|                                              IE.getOperand(2)),
 | |
|           "Invalid insertelement operands!", &IE);
 | |
|   visitInstruction(IE);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | |
|   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | |
|                                              SV.getOperand(2)),
 | |
|           "Invalid shufflevector operands!", &SV);
 | |
|   Assert1(SV.getType() == SV.getOperand(0)->getType(),
 | |
|           "Result of shufflevector must match first operand type!", &SV);
 | |
|   
 | |
|   // Check to see if Mask is valid.
 | |
|   if (const ConstantPacked *MV = dyn_cast<ConstantPacked>(SV.getOperand(2))) {
 | |
|     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
 | |
|       Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
 | |
|               isa<UndefValue>(MV->getOperand(i)),
 | |
|               "Invalid shufflevector shuffle mask!", &SV);
 | |
|     }
 | |
|   } else {
 | |
|     Assert1(isa<UndefValue>(SV.getOperand(2)) || 
 | |
|             isa<ConstantAggregateZero>(SV.getOperand(2)),
 | |
|             "Invalid shufflevector shuffle mask!", &SV);
 | |
|   }
 | |
|   
 | |
|   visitInstruction(SV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   const Type *ElTy =
 | |
|     GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
 | |
|                    std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
 | |
|   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | |
|   Assert2(PointerType::get(ElTy) == GEP.getType(),
 | |
|           "GEP is not of right type for indices!", &GEP, ElTy);
 | |
|   visitInstruction(GEP);
 | |
| }
 | |
| 
 | |
| void Verifier::visitLoadInst(LoadInst &LI) {
 | |
|   const Type *ElTy =
 | |
|     cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
 | |
|   Assert2(ElTy == LI.getType(),
 | |
|           "Load result type does not match pointer operand type!", &LI, ElTy);
 | |
|   visitInstruction(LI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitStoreInst(StoreInst &SI) {
 | |
|   const Type *ElTy =
 | |
|     cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
 | |
|   Assert2(ElTy == SI.getOperand(0)->getType(),
 | |
|           "Stored value type does not match pointer operand type!", &SI, ElTy);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// verifyInstruction - Verify that an instruction is well formed.
 | |
| ///
 | |
| void Verifier::visitInstruction(Instruction &I) {
 | |
|   BasicBlock *BB = I.getParent();
 | |
|   Assert1(BB, "Instruction not embedded in basic block!", &I);
 | |
| 
 | |
|   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | |
|     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|          UI != UE; ++UI)
 | |
|       Assert1(*UI != (User*)&I ||
 | |
|               !EF->dominates(&BB->getParent()->getEntryBlock(), BB),
 | |
|               "Only PHI nodes may reference their own value!", &I);
 | |
|   }
 | |
| 
 | |
|   // Check that void typed values don't have names
 | |
|   Assert1(I.getType() != Type::VoidTy || !I.hasName(),
 | |
|           "Instruction has a name, but provides a void value!", &I);
 | |
| 
 | |
|   // Check that the return value of the instruction is either void or a legal
 | |
|   // value type.
 | |
|   Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
 | |
|           "Instruction returns a non-scalar type!", &I);
 | |
| 
 | |
|   // Check that all uses of the instruction, if they are instructions
 | |
|   // themselves, actually have parent basic blocks.  If the use is not an
 | |
|   // instruction, it is an error!
 | |
|   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
 | |
|             *UI);
 | |
|     Instruction *Used = cast<Instruction>(*UI);
 | |
|     Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
 | |
|             " embeded in a basic block!", &I, Used);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
 | |
| 
 | |
|     // Check to make sure that only first-class-values are operands to
 | |
|     // instructions.
 | |
|     Assert1(I.getOperand(i)->getType()->isFirstClassType(),
 | |
|             "Instruction operands must be first-class values!", &I);
 | |
|   
 | |
|     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | |
|       // Check to make sure that the "address of" an intrinsic function is never
 | |
|       // taken.
 | |
|       Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
 | |
|               "Cannot take the address of an intrinsic!", &I);
 | |
|     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | |
|       Assert1(OpBB->getParent() == BB->getParent(),
 | |
|               "Referring to a basic block in another function!", &I);
 | |
|     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | |
|       Assert1(OpArg->getParent() == BB->getParent(),
 | |
|               "Referring to an argument in another function!", &I);
 | |
|     } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
 | |
|       BasicBlock *OpBlock = Op->getParent();
 | |
| 
 | |
|       // Check that a definition dominates all of its uses.
 | |
|       if (!isa<PHINode>(I)) {
 | |
|         // Invoke results are only usable in the normal destination, not in the
 | |
|         // exceptional destination.
 | |
|         if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | |
|           OpBlock = II->getNormalDest();
 | |
|           
 | |
|           // If the normal successor of an invoke instruction has multiple
 | |
|           // predecessors, then the normal edge from the invoke is critical, so
 | |
|           // the invoke value can only be live if the destination block
 | |
|           // dominates all of it's predecessors (other than the invoke) or if
 | |
|           // the invoke value is only used by a phi in the successor.
 | |
|           if (!OpBlock->getSinglePredecessor() &&
 | |
|               EF->dominates(&BB->getParent()->getEntryBlock(), BB)) {
 | |
|             // The first case we allow is if the use is a PHI operand in the
 | |
|             // normal block, and if that PHI operand corresponds to the invoke's
 | |
|             // block.
 | |
|             bool Bad = true;
 | |
|             if (PHINode *PN = dyn_cast<PHINode>(&I))
 | |
|               if (PN->getParent() == OpBlock &&
 | |
|                   PN->getIncomingBlock(i/2) == Op->getParent())
 | |
|                 Bad = false;
 | |
|             
 | |
|             // If it is used by something non-phi, then the other case is that
 | |
|             // 'OpBlock' dominates all of its predecessors other than the
 | |
|             // invoke.  In this case, the invoke value can still be used.
 | |
|             if (!Bad) {
 | |
|               for (pred_iterator PI = pred_begin(OpBlock),
 | |
|                    E = pred_end(OpBlock); PI != E; ++PI) {
 | |
|                 if (*PI != II->getParent() && !EF->dominates(OpBlock, *PI)) {
 | |
|                   Bad = true;
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             Assert1(!Bad,
 | |
|                     "Invoke value defined on critical edge but not dead!", &I);
 | |
|           }
 | |
|         } else if (OpBlock == BB) {
 | |
|           // If they are in the same basic block, make sure that the definition
 | |
|           // comes before the use.
 | |
|           Assert2(InstsInThisBlock.count(Op) ||
 | |
|                   !EF->dominates(&BB->getParent()->getEntryBlock(), BB),
 | |
|                   "Instruction does not dominate all uses!", Op, &I);
 | |
|         }
 | |
| 
 | |
|         // Definition must dominate use unless use is unreachable!
 | |
|         Assert2(EF->dominates(OpBlock, BB) ||
 | |
|                 !EF->dominates(&BB->getParent()->getEntryBlock(), BB),
 | |
|                 "Instruction does not dominate all uses!", Op, &I);
 | |
|       } else {
 | |
|         // PHI nodes are more difficult than other nodes because they actually
 | |
|         // "use" the value in the predecessor basic blocks they correspond to.
 | |
|         BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
 | |
|         Assert2(EF->dominates(OpBlock, PredBB) ||
 | |
|                 !EF->dominates(&BB->getParent()->getEntryBlock(), PredBB),
 | |
|                 "Instruction does not dominate all uses!", Op, &I);
 | |
|       }
 | |
|     } else if (isa<InlineAsm>(I.getOperand(i))) {
 | |
|       Assert1(i == 0 && isa<CallInst>(I),
 | |
|               "Cannot take the address of an inline asm!", &I);
 | |
|     }
 | |
|   }
 | |
|   InstsInThisBlock.insert(&I);
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
 | |
| ///
 | |
| void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   Function *IF = CI.getCalledFunction();
 | |
|   Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF);
 | |
|   
 | |
| #define GET_INTRINSIC_VERIFIER
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_INTRINSIC_VERIFIER
 | |
| }
 | |
| 
 | |
| /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
 | |
| /// Intrinsics.gen.  This implements a little state machine that verifies the
 | |
| /// prototype of intrinsics.
 | |
| void Verifier::VerifyIntrinsicPrototype(Function *F, ...) {
 | |
|   va_list VA;
 | |
|   va_start(VA, F);
 | |
|   
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   
 | |
|   // Note that "arg#0" is the return type.
 | |
|   for (unsigned ArgNo = 0; 1; ++ArgNo) {
 | |
|     int TypeID = va_arg(VA, int);
 | |
| 
 | |
|     if (TypeID == -1) {
 | |
|       if (ArgNo != FTy->getNumParams()+1)
 | |
|         CheckFailed("Intrinsic prototype has too many arguments!", F);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (ArgNo == FTy->getNumParams()+1) {
 | |
|       CheckFailed("Intrinsic prototype has too few arguments!", F);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     const Type *Ty;
 | |
|     if (ArgNo == 0) 
 | |
|       Ty = FTy->getReturnType();
 | |
|     else
 | |
|       Ty = FTy->getParamType(ArgNo-1);
 | |
|     
 | |
|     if (Ty->getTypeID() != TypeID) {
 | |
|       if (ArgNo == 0)
 | |
|         CheckFailed("Intrinsic prototype has incorrect result type!", F);
 | |
|       else
 | |
|         CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a packed argument, verify the number and type of elements.
 | |
|     if (TypeID == Type::PackedTyID) {
 | |
|       const PackedType *PTy = cast<PackedType>(Ty);
 | |
|       if (va_arg(VA, int) != PTy->getElementType()->getTypeID()) {
 | |
|         CheckFailed("Intrinsic prototype has incorrect vector element type!",F);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if ((unsigned)va_arg(VA, int) != PTy->getNumElements()) {
 | |
|         CheckFailed("Intrinsic prototype has incorrect number of "
 | |
|                     "vector elements!",F);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   va_end(VA);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
 | |
|   return new Verifier(action);
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyFunction - Create
 | |
| bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
 | |
|   Function &F = const_cast<Function&>(f);
 | |
|   assert(!F.isExternal() && "Cannot verify external functions");
 | |
| 
 | |
|   FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
 | |
|   Verifier *V = new Verifier(action);
 | |
|   FPM.add(V);
 | |
|   FPM.run(F);
 | |
|   return V->Broken;
 | |
| }
 | |
| 
 | |
| /// verifyModule - Check a module for errors, printing messages on stderr.
 | |
| /// Return true if the module is corrupt.
 | |
| ///
 | |
| bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
 | |
|                         std::string *ErrorInfo) {
 | |
|   PassManager PM;
 | |
|   Verifier *V = new Verifier(action);
 | |
|   PM.add(V);
 | |
|   PM.run((Module&)M);
 | |
|   
 | |
|   if (ErrorInfo && V->Broken)
 | |
|     *ErrorInfo = V->msgs.str();
 | |
|   return V->Broken;
 | |
| }
 | |
| 
 | |
| // vim: sw=2
 |