mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41230 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			682 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			682 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the LoopInfo class that is used to identify natural loops
 | |
| // and determine the loop depth of various nodes of the CFG.  Note that the
 | |
| // loops identified may actually be several natural loops that share the same
 | |
| // header node... not just a single natural loop.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <algorithm>
 | |
| #include <ostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| char LoopInfo::ID = 0;
 | |
| static RegisterPass<LoopInfo>
 | |
| X("loops", "Natural Loop Construction", true);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Loop implementation
 | |
| //
 | |
| bool Loop::contains(const BasicBlock *BB) const {
 | |
|   return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
 | |
| }
 | |
| 
 | |
| bool Loop::isLoopExit(const BasicBlock *BB) const {
 | |
|   for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|        SI != SE; ++SI) {
 | |
|     if (!contains(*SI))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getNumBackEdges - Calculate the number of back edges to the loop header.
 | |
| ///
 | |
| unsigned Loop::getNumBackEdges() const {
 | |
|   unsigned NumBackEdges = 0;
 | |
|   BasicBlock *H = getHeader();
 | |
| 
 | |
|   for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I)
 | |
|     if (contains(*I))
 | |
|       ++NumBackEdges;
 | |
| 
 | |
|   return NumBackEdges;
 | |
| }
 | |
| 
 | |
| /// isLoopInvariant - Return true if the specified value is loop invariant
 | |
| ///
 | |
| bool Loop::isLoopInvariant(Value *V) const {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return !contains(I->getParent());
 | |
|   return true;  // All non-instructions are loop invariant
 | |
| }
 | |
| 
 | |
| void Loop::print(std::ostream &OS, unsigned Depth) const {
 | |
|   OS << std::string(Depth*2, ' ') << "Loop Containing: ";
 | |
| 
 | |
|   for (unsigned i = 0; i < getBlocks().size(); ++i) {
 | |
|     if (i) OS << ",";
 | |
|     WriteAsOperand(OS, getBlocks()[i], false);
 | |
|   }
 | |
|   OS << "\n";
 | |
| 
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|     (*I)->print(OS, Depth+2);
 | |
| }
 | |
| 
 | |
| /// verifyLoop - Verify loop structure
 | |
| void Loop::verifyLoop() const {
 | |
| #ifndef NDEBUG
 | |
|   assert (getHeader() && "Loop header is missing");
 | |
|   assert (getLoopPreheader() && "Loop preheader is missing");
 | |
|   assert (getLoopLatch() && "Loop latch is missing");
 | |
|   for (std::vector<Loop*>::const_iterator I = SubLoops.begin(), E = SubLoops.end();
 | |
|        I != E; ++I)
 | |
|     (*I)->verifyLoop();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void Loop::dump() const {
 | |
|   print(cerr);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopInfo implementation
 | |
| //
 | |
| bool LoopInfo::runOnFunction(Function &) {
 | |
|   releaseMemory();
 | |
|   Calculate(getAnalysis<DominatorTree>());    // Update
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopInfo::releaseMemory() {
 | |
|   for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
 | |
|          E = TopLevelLoops.end(); I != E; ++I)
 | |
|     delete *I;   // Delete all of the loops...
 | |
| 
 | |
|   BBMap.clear();                             // Reset internal state of analysis
 | |
|   TopLevelLoops.clear();
 | |
| }
 | |
| 
 | |
| void LoopInfo::Calculate(DominatorTree &DT) {
 | |
|   BasicBlock *RootNode = DT.getRootNode()->getBlock();
 | |
| 
 | |
|   for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
 | |
|          NE = df_end(RootNode); NI != NE; ++NI)
 | |
|     if (Loop *L = ConsiderForLoop(*NI, DT))
 | |
|       TopLevelLoops.push_back(L);
 | |
| }
 | |
| 
 | |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<DominatorTree>();
 | |
| }
 | |
| 
 | |
| void LoopInfo::print(std::ostream &OS, const Module* ) const {
 | |
|   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
 | |
|     TopLevelLoops[i]->print(OS);
 | |
| #if 0
 | |
|   for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
 | |
|          E = BBMap.end(); I != E; ++I)
 | |
|     OS << "BB '" << I->first->getName() << "' level = "
 | |
|        << I->second->getLoopDepth() << "\n";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
 | |
|   if (SubLoop == 0) return true;
 | |
|   if (SubLoop == ParentLoop) return false;
 | |
|   return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
 | |
| }
 | |
| 
 | |
| Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, DominatorTree &DT) {
 | |
|   if (BBMap.find(BB) != BBMap.end()) return 0;   // Haven't processed this node?
 | |
| 
 | |
|   std::vector<BasicBlock *> TodoStack;
 | |
| 
 | |
|   // Scan the predecessors of BB, checking to see if BB dominates any of
 | |
|   // them.  This identifies backedges which target this node...
 | |
|   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
 | |
|     if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
 | |
|       TodoStack.push_back(*I);
 | |
| 
 | |
|   if (TodoStack.empty()) return 0;  // No backedges to this block...
 | |
| 
 | |
|   // Create a new loop to represent this basic block...
 | |
|   Loop *L = new Loop(BB);
 | |
|   BBMap[BB] = L;
 | |
| 
 | |
|   BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock();
 | |
| 
 | |
|   while (!TodoStack.empty()) {  // Process all the nodes in the loop
 | |
|     BasicBlock *X = TodoStack.back();
 | |
|     TodoStack.pop_back();
 | |
| 
 | |
|     if (!L->contains(X) &&         // As of yet unprocessed??
 | |
|         DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
 | |
|       // Check to see if this block already belongs to a loop.  If this occurs
 | |
|       // then we have a case where a loop that is supposed to be a child of the
 | |
|       // current loop was processed before the current loop.  When this occurs,
 | |
|       // this child loop gets added to a part of the current loop, making it a
 | |
|       // sibling to the current loop.  We have to reparent this loop.
 | |
|       if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X)))
 | |
|         if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
 | |
|           // Remove the subloop from it's current parent...
 | |
|           assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
 | |
|           Loop *SLP = SubLoop->ParentLoop;  // SubLoopParent
 | |
|           std::vector<Loop*>::iterator I =
 | |
|             std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
 | |
|           assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
 | |
|           SLP->SubLoops.erase(I);   // Remove from parent...
 | |
| 
 | |
|           // Add the subloop to THIS loop...
 | |
|           SubLoop->ParentLoop = L;
 | |
|           L->SubLoops.push_back(SubLoop);
 | |
|         }
 | |
| 
 | |
|       // Normal case, add the block to our loop...
 | |
|       L->Blocks.push_back(X);
 | |
| 
 | |
|       // Add all of the predecessors of X to the end of the work stack...
 | |
|       TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any loops nested within this loop, create them now!
 | |
|   for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
 | |
|          E = L->Blocks.end(); I != E; ++I)
 | |
|     if (Loop *NewLoop = ConsiderForLoop(*I, DT)) {
 | |
|       L->SubLoops.push_back(NewLoop);
 | |
|       NewLoop->ParentLoop = L;
 | |
|     }
 | |
| 
 | |
|   // Add the basic blocks that comprise this loop to the BBMap so that this
 | |
|   // loop can be found for them.
 | |
|   //
 | |
|   for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
 | |
|          E = L->Blocks.end(); I != E; ++I) {
 | |
|     std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I);
 | |
|     if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet...
 | |
|       BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
 | |
|   }
 | |
| 
 | |
|   // Now that we have a list of all of the child loops of this loop, check to
 | |
|   // see if any of them should actually be nested inside of each other.  We can
 | |
|   // accidentally pull loops our of their parents, so we must make sure to
 | |
|   // organize the loop nests correctly now.
 | |
|   {
 | |
|     std::map<BasicBlock*, Loop*> ContainingLoops;
 | |
|     for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
 | |
|       Loop *Child = L->SubLoops[i];
 | |
|       assert(Child->getParentLoop() == L && "Not proper child loop?");
 | |
| 
 | |
|       if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) {
 | |
|         // If there is already a loop which contains this loop, move this loop
 | |
|         // into the containing loop.
 | |
|         MoveSiblingLoopInto(Child, ContainingLoop);
 | |
|         --i;  // The loop got removed from the SubLoops list.
 | |
|       } else {
 | |
|         // This is currently considered to be a top-level loop.  Check to see if
 | |
|         // any of the contained blocks are loop headers for subloops we have
 | |
|         // already processed.
 | |
|         for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
 | |
|           Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]];
 | |
|           if (BlockLoop == 0) {   // Child block not processed yet...
 | |
|             BlockLoop = Child;
 | |
|           } else if (BlockLoop != Child) {
 | |
|             Loop *SubLoop = BlockLoop;
 | |
|             // Reparent all of the blocks which used to belong to BlockLoops
 | |
|             for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
 | |
|               ContainingLoops[SubLoop->Blocks[j]] = Child;
 | |
| 
 | |
|             // There is already a loop which contains this block, that means
 | |
|             // that we should reparent the loop which the block is currently
 | |
|             // considered to belong to to be a child of this loop.
 | |
|             MoveSiblingLoopInto(SubLoop, Child);
 | |
|             --i;  // We just shrunk the SubLoops list.
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
 | |
| /// the NewParent Loop, instead of being a sibling of it.
 | |
| void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) {
 | |
|   Loop *OldParent = NewChild->getParentLoop();
 | |
|   assert(OldParent && OldParent == NewParent->getParentLoop() &&
 | |
|          NewChild != NewParent && "Not sibling loops!");
 | |
| 
 | |
|   // Remove NewChild from being a child of OldParent
 | |
|   std::vector<Loop*>::iterator I =
 | |
|     std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
 | |
|   assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
 | |
|   OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
 | |
|   NewChild->ParentLoop = 0;
 | |
| 
 | |
|   InsertLoopInto(NewChild, NewParent);
 | |
| }
 | |
| 
 | |
| /// InsertLoopInto - This inserts loop L into the specified parent loop.  If the
 | |
| /// parent loop contains a loop which should contain L, the loop gets inserted
 | |
| /// into L instead.
 | |
| void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) {
 | |
|   BasicBlock *LHeader = L->getHeader();
 | |
|   assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
 | |
| 
 | |
|   // Check to see if it belongs in a child loop...
 | |
|   for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
 | |
|     if (Parent->SubLoops[i]->contains(LHeader)) {
 | |
|       InsertLoopInto(L, Parent->SubLoops[i]);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // If not, insert it here!
 | |
|   Parent->SubLoops.push_back(L);
 | |
|   L->ParentLoop = Parent;
 | |
| }
 | |
| 
 | |
| /// changeLoopFor - Change the top-level loop that contains BB to the
 | |
| /// specified loop.  This should be used by transformations that restructure
 | |
| /// the loop hierarchy tree.
 | |
| void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) {
 | |
|   Loop *&OldLoop = BBMap[BB];
 | |
|   assert(OldLoop && "Block not in a loop yet!");
 | |
|   OldLoop = L;
 | |
| }
 | |
| 
 | |
| /// changeTopLevelLoop - Replace the specified loop in the top-level loops
 | |
| /// list with the indicated loop.
 | |
| void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
 | |
|   std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(),
 | |
|                                              TopLevelLoops.end(), OldLoop);
 | |
|   assert(I != TopLevelLoops.end() && "Old loop not at top level!");
 | |
|   *I = NewLoop;
 | |
|   assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
 | |
|          "Loops already embedded into a subloop!");
 | |
| }
 | |
| 
 | |
| /// removeLoop - This removes the specified top-level loop from this loop info
 | |
| /// object.  The loop is not deleted, as it will presumably be inserted into
 | |
| /// another loop.
 | |
| Loop *LoopInfo::removeLoop(iterator I) {
 | |
|   assert(I != end() && "Cannot remove end iterator!");
 | |
|   Loop *L = *I;
 | |
|   assert(L->getParentLoop() == 0 && "Not a top-level loop!");
 | |
|   TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| /// removeBlock - This method completely removes BB from all data structures,
 | |
| /// including all of the Loop objects it is nested in and our mapping from
 | |
| /// BasicBlocks to loops.
 | |
| void LoopInfo::removeBlock(BasicBlock *BB) {
 | |
|   std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB);
 | |
|   if (I != BBMap.end()) {
 | |
|     for (Loop *L = I->second; L; L = L->getParentLoop())
 | |
|       L->removeBlockFromLoop(BB);
 | |
| 
 | |
|     BBMap.erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // APIs for simple analysis of the loop.
 | |
| //
 | |
| 
 | |
| /// getExitingBlocks - Return all blocks inside the loop that have successors
 | |
| /// outside of the loop.  These are the blocks _inside of the current loop_
 | |
| /// which branch out.  The returned list is always unique.
 | |
| ///
 | |
| void Loop::getExitingBlocks(SmallVectorImpl<BasicBlock*> &ExitingBlocks) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BasicBlock*, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
|   
 | |
|   for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
 | |
|        BE = Blocks.end(); BI != BE; ++BI)
 | |
|     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
 | |
|       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
 | |
|         // Not in current loop? It must be an exit block.
 | |
|         ExitingBlocks.push_back(*BI);
 | |
|         break;
 | |
|       }
 | |
| }
 | |
| 
 | |
| /// getExitBlocks - Return all of the successor blocks of this loop.  These
 | |
| /// are the blocks _outside of the current loop_ which are branched to.
 | |
| ///
 | |
| void Loop::getExitBlocks(SmallVectorImpl<BasicBlock*> &ExitBlocks) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BasicBlock*, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
|   
 | |
|   for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
 | |
|        BE = Blocks.end(); BI != BE; ++BI)
 | |
|     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
 | |
|       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | |
|         // Not in current loop? It must be an exit block.
 | |
|         ExitBlocks.push_back(*I);
 | |
| }
 | |
| 
 | |
| /// getUniqueExitBlocks - Return all unique successor blocks of this loop. These
 | |
| /// are the blocks _outside of the current loop_ which are branched to. This
 | |
| /// assumes that loop is in canonical form.
 | |
| //
 | |
| void Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock*> &ExitBlocks) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BasicBlock*, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   std::vector<BasicBlock*> switchExitBlocks;  
 | |
|   
 | |
|   for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
 | |
|     BE = Blocks.end(); BI != BE; ++BI) {
 | |
| 
 | |
|     BasicBlock *current = *BI;
 | |
|     switchExitBlocks.clear();
 | |
| 
 | |
|     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
 | |
|       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | |
|     // If block is inside the loop then it is not a exit block.
 | |
|         continue;
 | |
| 
 | |
|       pred_iterator PI = pred_begin(*I);
 | |
|       BasicBlock *firstPred = *PI;
 | |
| 
 | |
|       // If current basic block is this exit block's first predecessor
 | |
|       // then only insert exit block in to the output ExitBlocks vector.
 | |
|       // This ensures that same exit block is not inserted twice into
 | |
|       // ExitBlocks vector.
 | |
|       if (current != firstPred) 
 | |
|         continue;
 | |
| 
 | |
|       // If a terminator has more then two successors, for example SwitchInst,
 | |
|       // then it is possible that there are multiple edges from current block 
 | |
|       // to one exit block. 
 | |
|       if (current->getTerminator()->getNumSuccessors() <= 2) {
 | |
|         ExitBlocks.push_back(*I);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // In case of multiple edges from current block to exit block, collect
 | |
|       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | |
|       // duplicate edges.
 | |
|       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 
 | |
|           == switchExitBlocks.end()) {
 | |
|         switchExitBlocks.push_back(*I);
 | |
|         ExitBlocks.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getLoopPreheader - If there is a preheader for this loop, return it.  A
 | |
| /// loop has a preheader if there is only one edge to the header of the loop
 | |
| /// from outside of the loop.  If this is the case, the block branching to the
 | |
| /// header of the loop is the preheader node.
 | |
| ///
 | |
| /// This method returns null if there is no preheader for the loop.
 | |
| ///
 | |
| BasicBlock *Loop::getLoopPreheader() const {
 | |
|   // Keep track of nodes outside the loop branching to the header...
 | |
|   BasicBlock *Out = 0;
 | |
| 
 | |
|   // Loop over the predecessors of the header node...
 | |
|   BasicBlock *Header = getHeader();
 | |
|   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|        PI != PE; ++PI)
 | |
|     if (!contains(*PI)) {     // If the block is not in the loop...
 | |
|       if (Out && Out != *PI)
 | |
|         return 0;             // Multiple predecessors outside the loop
 | |
|       Out = *PI;
 | |
|     }
 | |
| 
 | |
|   // Make sure there is only one exit out of the preheader.
 | |
|   assert(Out && "Header of loop has no predecessors from outside loop?");
 | |
|   succ_iterator SI = succ_begin(Out);
 | |
|   ++SI;
 | |
|   if (SI != succ_end(Out))
 | |
|     return 0;  // Multiple exits from the block, must not be a preheader.
 | |
| 
 | |
|   // If there is exactly one preheader, return it.  If there was zero, then Out
 | |
|   // is still null.
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| /// getLoopLatch - If there is a latch block for this loop, return it.  A
 | |
| /// latch block is the canonical backedge for a loop.  A loop header in normal
 | |
| /// form has two edges into it: one from a preheader and one from a latch
 | |
| /// block.
 | |
| BasicBlock *Loop::getLoopLatch() const {
 | |
|   BasicBlock *Header = getHeader();
 | |
|   pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|   if (PI == PE) return 0;  // no preds?
 | |
|   
 | |
|   BasicBlock *Latch = 0;
 | |
|   if (contains(*PI))
 | |
|     Latch = *PI;
 | |
|   ++PI;
 | |
|   if (PI == PE) return 0;  // only one pred?
 | |
|   
 | |
|   if (contains(*PI)) {
 | |
|     if (Latch) return 0;  // multiple backedges
 | |
|     Latch = *PI;
 | |
|   }
 | |
|   ++PI;
 | |
|   if (PI != PE) return 0;  // more than two preds
 | |
|   
 | |
|   return Latch;  
 | |
| }
 | |
| 
 | |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | |
| /// induction variable: an integer recurrence that starts at 0 and increments by
 | |
| /// one each time through the loop.  If so, return the phi node that corresponds
 | |
| /// to it.
 | |
| ///
 | |
| PHINode *Loop::getCanonicalInductionVariable() const {
 | |
|   BasicBlock *H = getHeader();
 | |
| 
 | |
|   BasicBlock *Incoming = 0, *Backedge = 0;
 | |
|   pred_iterator PI = pred_begin(H);
 | |
|   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
 | |
|   Backedge = *PI++;
 | |
|   if (PI == pred_end(H)) return 0;  // dead loop
 | |
|   Incoming = *PI++;
 | |
|   if (PI != pred_end(H)) return 0;  // multiple backedges?
 | |
| 
 | |
|   if (contains(Incoming)) {
 | |
|     if (contains(Backedge))
 | |
|       return 0;
 | |
|     std::swap(Incoming, Backedge);
 | |
|   } else if (!contains(Backedge))
 | |
|     return 0;
 | |
| 
 | |
|   // Loop over all of the PHI nodes, looking for a canonical indvar.
 | |
|   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (Instruction *Inc =
 | |
|         dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | |
|       if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | |
|           if (CI->equalsInt(1))
 | |
|             return PN;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
 | |
| /// the canonical induction variable value for the "next" iteration of the loop.
 | |
| /// This always succeeds if getCanonicalInductionVariable succeeds.
 | |
| ///
 | |
| Instruction *Loop::getCanonicalInductionVariableIncrement() const {
 | |
|   if (PHINode *PN = getCanonicalInductionVariable()) {
 | |
|     bool P1InLoop = contains(PN->getIncomingBlock(1));
 | |
|     return cast<Instruction>(PN->getIncomingValue(P1InLoop));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of
 | |
| /// times the loop will be executed.  Note that this means that the backedge of
 | |
| /// the loop executes N-1 times.  If the trip-count cannot be determined, this
 | |
| /// returns null.
 | |
| ///
 | |
| Value *Loop::getTripCount() const {
 | |
|   // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
 | |
|   // canonical induction variable and V is the trip count of the loop.
 | |
|   Instruction *Inc = getCanonicalInductionVariableIncrement();
 | |
|   if (Inc == 0) return 0;
 | |
|   PHINode *IV = cast<PHINode>(Inc->getOperand(0));
 | |
| 
 | |
|   BasicBlock *BackedgeBlock =
 | |
|     IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
 | |
|     if (BI->isConditional()) {
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
 | |
|         if (ICI->getOperand(0) == Inc)
 | |
|           if (BI->getSuccessor(0) == getHeader()) {
 | |
|             if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | |
|               return ICI->getOperand(1);
 | |
|           } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
 | |
|             return ICI->getOperand(1);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form
 | |
| bool Loop::isLCSSAForm() const { 
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
 | |
|   
 | |
|   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
 | |
|     BasicBlock *BB = *BI;
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|            ++UI) {
 | |
|         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | |
|         if (PHINode *P = dyn_cast<PHINode>(*UI)) {
 | |
|           unsigned OperandNo = UI.getOperandNo();
 | |
|           UserBB = P->getIncomingBlock(OperandNo/2);
 | |
|         }
 | |
|         
 | |
|         // Check the current block, as a fast-path.  Most values are used in the
 | |
|         // same block they are defined in.
 | |
|         if (UserBB != BB && !LoopBBs.count(UserBB))
 | |
|           return false;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===-------------------------------------------------------------------===//
 | |
| // APIs for updating loop information after changing the CFG
 | |
| //
 | |
| 
 | |
| /// addBasicBlockToLoop - This function is used by other analyses to update loop
 | |
| /// information.  NewBB is set to be a new member of the current loop.  Because
 | |
| /// of this, it is added as a member of all parent loops, and is added to the
 | |
| /// specified LoopInfo object as being in the current basic block.  It is not
 | |
| /// valid to replace the loop header with this method.
 | |
| ///
 | |
| void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) {
 | |
|   assert((Blocks.empty() || LI[getHeader()] == this) &&
 | |
|          "Incorrect LI specified for this loop!");
 | |
|   assert(NewBB && "Cannot add a null basic block to the loop!");
 | |
|   assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
 | |
| 
 | |
|   // Add the loop mapping to the LoopInfo object...
 | |
|   LI.BBMap[NewBB] = this;
 | |
| 
 | |
|   // Add the basic block to this loop and all parent loops...
 | |
|   Loop *L = this;
 | |
|   while (L) {
 | |
|     L->Blocks.push_back(NewBB);
 | |
|     L = L->getParentLoop();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
 | |
| /// the OldChild entry in our children list with NewChild, and updates the
 | |
| /// parent pointers of the two loops as appropriate.
 | |
| void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) {
 | |
|   assert(OldChild->ParentLoop == this && "This loop is already broken!");
 | |
|   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | |
|   std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(),
 | |
|                                              OldChild);
 | |
|   assert(I != SubLoops.end() && "OldChild not in loop!");
 | |
|   *I = NewChild;
 | |
|   OldChild->ParentLoop = 0;
 | |
|   NewChild->ParentLoop = this;
 | |
| }
 | |
| 
 | |
| /// addChildLoop - Add the specified loop to be a child of this loop.
 | |
| ///
 | |
| void Loop::addChildLoop(Loop *NewChild) {
 | |
|   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | |
|   NewChild->ParentLoop = this;
 | |
|   SubLoops.push_back(NewChild);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void RemoveFromVector(std::vector<T*> &V, T *N) {
 | |
|   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
 | |
|   assert(I != V.end() && "N is not in this list!");
 | |
|   V.erase(I);
 | |
| }
 | |
| 
 | |
| /// removeChildLoop - This removes the specified child from being a subloop of
 | |
| /// this loop.  The loop is not deleted, as it will presumably be inserted
 | |
| /// into another loop.
 | |
| Loop *Loop::removeChildLoop(iterator I) {
 | |
|   assert(I != SubLoops.end() && "Cannot remove end iterator!");
 | |
|   Loop *Child = *I;
 | |
|   assert(Child->ParentLoop == this && "Child is not a child of this loop!");
 | |
|   SubLoops.erase(SubLoops.begin()+(I-begin()));
 | |
|   Child->ParentLoop = 0;
 | |
|   return Child;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// removeBlockFromLoop - This removes the specified basic block from the
 | |
| /// current loop, updating the Blocks and ExitBlocks lists as appropriate.  This
 | |
| /// does not update the mapping in the LoopInfo class.
 | |
| void Loop::removeBlockFromLoop(BasicBlock *BB) {
 | |
|   RemoveFromVector(Blocks, BB);
 | |
| }
 | |
| 
 | |
| // Ensure this file gets linked when LoopInfo.h is used.
 | |
| DEFINING_FILE_FOR(LoopInfo)
 |