mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	SCEV subclasses to being non-static member functions of the ScalarEvolution class. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43224 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			222 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution expander,
 | |
| // which is used to generate the code corresponding to a given scalar evolution
 | |
| // expression.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// InsertCastOfTo - Insert a cast of V to the specified type, doing what
 | |
| /// we can to share the casts.
 | |
| Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V, 
 | |
|                                     const Type *Ty) {
 | |
|   // FIXME: keep track of the cast instruction.
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(opcode, C, Ty);
 | |
|   
 | |
|   if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|     // Check to see if there is already a cast!
 | |
|     for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       if ((*UI)->getType() == Ty)
 | |
|         if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
 | |
|           // If the cast isn't the first instruction of the function, move it.
 | |
|           if (BasicBlock::iterator(CI) != 
 | |
|               A->getParent()->getEntryBlock().begin()) {
 | |
|             CI->moveBefore(A->getParent()->getEntryBlock().begin());
 | |
|           }
 | |
|           return CI;
 | |
|         }
 | |
|     }
 | |
|     return CastInst::create(opcode, V, Ty, V->getName(), 
 | |
|                             A->getParent()->getEntryBlock().begin());
 | |
|   }
 | |
|     
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   
 | |
|   // Check to see if there is already a cast.  If there is, use it.
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if ((*UI)->getType() == Ty)
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
 | |
|         BasicBlock::iterator It = I; ++It;
 | |
|         if (isa<InvokeInst>(I))
 | |
|           It = cast<InvokeInst>(I)->getNormalDest()->begin();
 | |
|         while (isa<PHINode>(It)) ++It;
 | |
|         if (It != BasicBlock::iterator(CI)) {
 | |
|           // Splice the cast immediately after the operand in question.
 | |
|           CI->moveBefore(It);
 | |
|         }
 | |
|         return CI;
 | |
|       }
 | |
|   }
 | |
|   BasicBlock::iterator IP = I; ++IP;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
 | |
|     IP = II->getNormalDest()->begin();
 | |
|   while (isa<PHINode>(IP)) ++IP;
 | |
|   return CastInst::create(opcode, V, Ty, V->getName(), IP);
 | |
| }
 | |
| 
 | |
| /// InsertBinop - Insert the specified binary operator, doing a small amount
 | |
| /// of work to avoid inserting an obviously redundant operation.
 | |
| Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
 | |
|                                  Value *RHS, Instruction *&InsertPt) {
 | |
|   // Fold a binop with constant operands.
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantExpr::get(Opcode, CLHS, CRHS);
 | |
| 
 | |
|   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
 | |
|   unsigned ScanLimit = 6;
 | |
|   for (BasicBlock::iterator IP = InsertPt, E = InsertPt->getParent()->begin();
 | |
|        ScanLimit; --IP, --ScanLimit) {
 | |
|     if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(IP))
 | |
|       if (BinOp->getOpcode() == Opcode && BinOp->getOperand(0) == LHS &&
 | |
|           BinOp->getOperand(1) == RHS) {
 | |
|         // If we found the instruction *at* the insert point, insert later
 | |
|         // instructions after it.
 | |
|         if (BinOp == InsertPt)
 | |
|           InsertPt = ++IP;
 | |
|         return BinOp;
 | |
|       }
 | |
|     if (IP == E) break;
 | |
|   }
 | |
| 
 | |
|   // If we don't have 
 | |
|   return BinaryOperator::create(Opcode, LHS, RHS, "tmp", InsertPt);
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
 | |
|   int FirstOp = 0;  // Set if we should emit a subtract.
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
 | |
|     if (SC->getValue()->isAllOnesValue())
 | |
|       FirstOp = 1;
 | |
| 
 | |
|   int i = S->getNumOperands()-2;
 | |
|   Value *V = expand(S->getOperand(i+1));
 | |
| 
 | |
|   // Emit a bunch of multiply instructions
 | |
|   for (; i >= FirstOp; --i)
 | |
|     V = InsertBinop(Instruction::Mul, V, expand(S->getOperand(i)),
 | |
|                     InsertPt);
 | |
|   // -1 * ...  --->  0 - ...
 | |
|   if (FirstOp == 1)
 | |
|     V = InsertBinop(Instruction::Sub, Constant::getNullValue(V->getType()), V,
 | |
|                     InsertPt);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
 | |
|   const Type *Ty = S->getType();
 | |
|   const Loop *L = S->getLoop();
 | |
|   // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
 | |
|   assert(Ty->isInteger() && "Cannot expand fp recurrences yet!");
 | |
| 
 | |
|   // {X,+,F} --> X + {0,+,F}
 | |
|   if (!isa<SCEVConstant>(S->getStart()) ||
 | |
|       !cast<SCEVConstant>(S->getStart())->getValue()->isZero()) {
 | |
|     Value *Start = expand(S->getStart());
 | |
|     std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
 | |
|     NewOps[0] = SE.getIntegerSCEV(0, Ty);
 | |
|     Value *Rest = expand(SE.getAddRecExpr(NewOps, L));
 | |
| 
 | |
|     // FIXME: look for an existing add to use.
 | |
|     return InsertBinop(Instruction::Add, Rest, Start, InsertPt);
 | |
|   }
 | |
| 
 | |
|   // {0,+,1} --> Insert a canonical induction variable into the loop!
 | |
|   if (S->getNumOperands() == 2 &&
 | |
|       S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
 | |
|     // Create and insert the PHI node for the induction variable in the
 | |
|     // specified loop.
 | |
|     BasicBlock *Header = L->getHeader();
 | |
|     PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
 | |
|     PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
 | |
| 
 | |
|     pred_iterator HPI = pred_begin(Header);
 | |
|     assert(HPI != pred_end(Header) && "Loop with zero preds???");
 | |
|     if (!L->contains(*HPI)) ++HPI;
 | |
|     assert(HPI != pred_end(Header) && L->contains(*HPI) &&
 | |
|            "No backedge in loop?");
 | |
| 
 | |
|     // Insert a unit add instruction right before the terminator corresponding
 | |
|     // to the back-edge.
 | |
|     Constant *One = ConstantInt::get(Ty, 1);
 | |
|     Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
 | |
|                                                  (*HPI)->getTerminator());
 | |
| 
 | |
|     pred_iterator PI = pred_begin(Header);
 | |
|     if (*PI == L->getLoopPreheader())
 | |
|       ++PI;
 | |
|     PN->addIncoming(Add, *PI);
 | |
|     return PN;
 | |
|   }
 | |
| 
 | |
|   // Get the canonical induction variable I for this loop.
 | |
|   Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
 | |
| 
 | |
|   // If this is a simple linear addrec, emit it now as a special case.
 | |
|   if (S->getNumOperands() == 2) {   // {0,+,F} --> i*F
 | |
|     Value *F = expand(S->getOperand(1));
 | |
|     
 | |
|     // IF the step is by one, just return the inserted IV.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
 | |
|       if (CI->getValue() == 1)
 | |
|         return I;
 | |
|     
 | |
|     // If the insert point is directly inside of the loop, emit the multiply at
 | |
|     // the insert point.  Otherwise, L is a loop that is a parent of the insert
 | |
|     // point loop.  If we can, move the multiply to the outer most loop that it
 | |
|     // is safe to be in.
 | |
|     Instruction *MulInsertPt = InsertPt;
 | |
|     Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
 | |
|     if (InsertPtLoop != L && InsertPtLoop &&
 | |
|         L->contains(InsertPtLoop->getHeader())) {
 | |
|       while (InsertPtLoop != L) {
 | |
|         // If we cannot hoist the multiply out of this loop, don't.
 | |
|         if (!InsertPtLoop->isLoopInvariant(F)) break;
 | |
| 
 | |
|         // Otherwise, move the insert point to the preheader of the loop.
 | |
|         MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
 | |
|         InsertPtLoop = InsertPtLoop->getParentLoop();
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
 | |
|   }
 | |
| 
 | |
|   // If this is a chain of recurrences, turn it into a closed form, using the
 | |
|   // folders, then expandCodeFor the closed form.  This allows the folders to
 | |
|   // simplify the expression without having to build a bunch of special code
 | |
|   // into this folder.
 | |
|   SCEVHandle IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
 | |
| 
 | |
|   SCEVHandle V = S->evaluateAtIteration(IH, SE);
 | |
|   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
 | |
| 
 | |
|   return expand(V);
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expand(SCEV *S) {
 | |
|   // Check to see if we already expanded this.
 | |
|   std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
 | |
|   if (I != InsertedExpressions.end())
 | |
|     return I->second;
 | |
|   
 | |
|   Value *V = visit(S);
 | |
|   InsertedExpressions[S] = V;
 | |
|   return V;
 | |
| }
 | |
| 
 |