mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	in the trampoline lowering. Lookup the jump and mov opcodes for the trampoline rather than hard coding them. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41577 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			753 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			753 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the pass that transforms the X86 machine instructions into
 | 
						|
// relocatable machine code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-emitter"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "X86Relocations.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
 | 
						|
    const X86InstrInfo  *II;
 | 
						|
    const TargetData    *TD;
 | 
						|
    TargetMachine       &TM;
 | 
						|
    MachineCodeEmitter  &MCE;
 | 
						|
    bool Is64BitMode;
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
 | 
						|
      : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm), 
 | 
						|
      MCE(mce), Is64BitMode(false) {}
 | 
						|
    Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
 | 
						|
            const X86InstrInfo &ii, const TargetData &td, bool is64)
 | 
						|
      : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm), 
 | 
						|
      MCE(mce), Is64BitMode(is64) {}
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Machine Code Emitter";
 | 
						|
    }
 | 
						|
 | 
						|
    void emitInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
  private:
 | 
						|
    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
 | 
						|
    void emitPCRelativeValue(intptr_t Address);
 | 
						|
    void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
 | 
						|
    void emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
 | 
						|
                                 int Disp = 0, unsigned PCAdj = 0);
 | 
						|
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
 | 
						|
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0,
 | 
						|
                              unsigned PCAdj = 0);
 | 
						|
    void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0);
 | 
						|
 | 
						|
    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
 | 
						|
                               unsigned PCAdj = 0);
 | 
						|
 | 
						|
    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
 | 
						|
    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
 | 
						|
    void emitConstant(uint64_t Val, unsigned Size);
 | 
						|
 | 
						|
    void emitMemModRMByte(const MachineInstr &MI,
 | 
						|
                          unsigned Op, unsigned RegOpcodeField,
 | 
						|
                          unsigned PCAdj = 0);
 | 
						|
 | 
						|
    unsigned getX86RegNum(unsigned RegNo);
 | 
						|
    bool isX86_64ExtendedReg(const MachineOperand &MO);
 | 
						|
    unsigned determineREX(const MachineInstr &MI);
 | 
						|
  };
 | 
						|
  char Emitter::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
 | 
						|
/// to the specified MCE object.
 | 
						|
FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
 | 
						|
                                             MachineCodeEmitter &MCE) {
 | 
						|
  return new Emitter(TM, MCE);
 | 
						|
}
 | 
						|
 | 
						|
bool Emitter::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | 
						|
          MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | 
						|
         "JIT relocation model must be set to static or default!");
 | 
						|
  II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
 | 
						|
  TD = ((X86TargetMachine&)MF.getTarget()).getTargetData();
 | 
						|
  Is64BitMode =
 | 
						|
    ((X86TargetMachine&)MF.getTarget()).getSubtarget<X86Subtarget>().is64Bit();
 | 
						|
 | 
						|
  do {
 | 
						|
    MCE.startFunction(MF);
 | 
						|
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | 
						|
         MBB != E; ++MBB) {
 | 
						|
      MCE.StartMachineBasicBlock(MBB);
 | 
						|
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | 
						|
           I != E; ++I)
 | 
						|
        emitInstruction(*I);
 | 
						|
    }
 | 
						|
  } while (MCE.finishFunction(MF));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// emitPCRelativeValue - Emit a PC relative address.
 | 
						|
///
 | 
						|
void Emitter::emitPCRelativeValue(intptr_t Address) {
 | 
						|
  MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4);
 | 
						|
}
 | 
						|
 | 
						|
/// emitPCRelativeBlockAddress - This method keeps track of the information
 | 
						|
/// necessary to resolve the address of this block later and emits a dummy
 | 
						|
/// value.
 | 
						|
///
 | 
						|
void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
 | 
						|
  // Remember where this reference was and where it is to so we can
 | 
						|
  // deal with it later.
 | 
						|
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | 
						|
                                             X86::reloc_pcrel_word, MBB));
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitGlobalAddressForCall - Emit the specified address to the code stream
 | 
						|
/// assuming this is part of a function call, which is PC relative.
 | 
						|
///
 | 
						|
void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
 | 
						|
                                      X86::reloc_pcrel_word, GV, 0,
 | 
						|
                                      DoesntNeedStub));
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitGlobalAddress - Emit the specified address to the code stream assuming
 | 
						|
/// this is part of a "take the address of a global" instruction.
 | 
						|
///
 | 
						|
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
 | 
						|
                                      int Disp /* = 0 */,
 | 
						|
                                      unsigned PCAdj /* = 0 */) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
 | 
						|
                                             GV, PCAdj));
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitWordLE(0);
 | 
						|
  MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
 | 
						|
}
 | 
						|
 | 
						|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | 
						|
                                                 Reloc, ES));
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitWordLE(0);
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitConstPoolAddress - Arrange for the address of an constant pool
 | 
						|
/// to be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
 | 
						|
                                   int Disp /* = 0 */,
 | 
						|
                                   unsigned PCAdj /* = 0 */) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | 
						|
                                                    Reloc, CPI, PCAdj));
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitWordLE(0);
 | 
						|
  MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
 | 
						|
}
 | 
						|
 | 
						|
/// emitJumpTableAddress - Arrange for the address of a jump table to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | 
						|
                                   unsigned PCAdj /* = 0 */) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | 
						|
                                                    Reloc, JTI, PCAdj));
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitWordLE(0);
 | 
						|
  MCE.emitWordLE(0); // The relocated value will be added to the displacement
 | 
						|
}
 | 
						|
 | 
						|
unsigned Emitter::getX86RegNum(unsigned RegNo) {
 | 
						|
  return ((X86RegisterInfo&)II->getRegisterInfo()).getX86RegNum(RegNo);
 | 
						|
}
 | 
						|
 | 
						|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | 
						|
                                      unsigned RM) {
 | 
						|
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | 
						|
  return RM | (RegOpcode << 3) | (Mod << 6);
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
 | 
						|
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
 | 
						|
  // SIB byte is in the same format as the ModRMByte...
 | 
						|
  MCE.emitByte(ModRMByte(SS, Index, Base));
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitConstant(uint64_t Val, unsigned Size) {
 | 
						|
  // Output the constant in little endian byte order...
 | 
						|
  for (unsigned i = 0; i != Size; ++i) {
 | 
						|
    MCE.emitByte(Val & 255);
 | 
						|
    Val >>= 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit 
 | 
						|
/// sign-extended field. 
 | 
						|
static bool isDisp8(int Value) {
 | 
						|
  return Value == (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitDisplacementField(const MachineOperand *RelocOp,
 | 
						|
                                    int DispVal, unsigned PCAdj) {
 | 
						|
  // If this is a simple integer displacement that doesn't require a relocation,
 | 
						|
  // emit it now.
 | 
						|
  if (!RelocOp) {
 | 
						|
    emitConstant(DispVal, 4);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, this is something that requires a relocation.  Emit it as such
 | 
						|
  // now.
 | 
						|
  if (RelocOp->isGlobalAddress()) {
 | 
						|
    // In 64-bit static small code model, we could potentially emit absolute.
 | 
						|
    // But it's probably not beneficial.
 | 
						|
    //  89 05 00 00 00 00    	mov    %eax,0(%rip)  # PC-relative
 | 
						|
    //	89 04 25 00 00 00 00 	mov    %eax,0x0      # Absolute
 | 
						|
    unsigned rt= Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
 | 
						|
    emitGlobalAddressForPtr(RelocOp->getGlobal(), rt,
 | 
						|
                            RelocOp->getOffset(), PCAdj);
 | 
						|
  } else if (RelocOp->isConstantPoolIndex()) {
 | 
						|
    // Must be in 64-bit mode.
 | 
						|
    emitConstPoolAddress(RelocOp->getConstantPoolIndex(), X86::reloc_pcrel_word,
 | 
						|
                         RelocOp->getOffset(), PCAdj);
 | 
						|
  } else if (RelocOp->isJumpTableIndex()) {
 | 
						|
    // Must be in 64-bit mode.
 | 
						|
    emitJumpTableAddress(RelocOp->getJumpTableIndex(), X86::reloc_pcrel_word,
 | 
						|
                         PCAdj);
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown value to relocate!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitMemModRMByte(const MachineInstr &MI,
 | 
						|
                               unsigned Op, unsigned RegOpcodeField,
 | 
						|
                               unsigned PCAdj) {
 | 
						|
  const MachineOperand &Op3 = MI.getOperand(Op+3);
 | 
						|
  int DispVal = 0;
 | 
						|
  const MachineOperand *DispForReloc = 0;
 | 
						|
  
 | 
						|
  // Figure out what sort of displacement we have to handle here.
 | 
						|
  if (Op3.isGlobalAddress()) {
 | 
						|
    DispForReloc = &Op3;
 | 
						|
  } else if (Op3.isConstantPoolIndex()) {
 | 
						|
    if (Is64BitMode) {
 | 
						|
      DispForReloc = &Op3;
 | 
						|
    } else {
 | 
						|
      DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex());
 | 
						|
      DispVal += Op3.getOffset();
 | 
						|
    }
 | 
						|
  } else if (Op3.isJumpTableIndex()) {
 | 
						|
    if (Is64BitMode) {
 | 
						|
      DispForReloc = &Op3;
 | 
						|
    } else {
 | 
						|
      DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    DispVal = Op3.getImm();
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineOperand &Base     = MI.getOperand(Op);
 | 
						|
  const MachineOperand &Scale    = MI.getOperand(Op+1);
 | 
						|
  const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | 
						|
 | 
						|
  unsigned BaseReg = Base.getReg();
 | 
						|
 | 
						|
  // Is a SIB byte needed?
 | 
						|
  if (IndexReg.getReg() == 0 &&
 | 
						|
      (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) {
 | 
						|
    if (BaseReg == 0) {  // Just a displacement?
 | 
						|
      // Emit special case [disp32] encoding
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | 
						|
      
 | 
						|
      emitDisplacementField(DispForReloc, DispVal, PCAdj);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = getX86RegNum(BaseReg);
 | 
						|
      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | 
						|
        // Emit simple indirect register encoding... [EAX] f.e.
 | 
						|
        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
 | 
						|
      } else if (!DispForReloc && isDisp8(DispVal)) {
 | 
						|
        // Emit the disp8 encoding... [REG+disp8]
 | 
						|
        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
 | 
						|
        emitConstant(DispVal, 1);
 | 
						|
      } else {
 | 
						|
        // Emit the most general non-SIB encoding: [REG+disp32]
 | 
						|
        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | 
						|
        emitDisplacementField(DispForReloc, DispVal, PCAdj);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | 
						|
    assert(IndexReg.getReg() != X86::ESP &&
 | 
						|
           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | 
						|
 | 
						|
    bool ForceDisp32 = false;
 | 
						|
    bool ForceDisp8  = false;
 | 
						|
    if (BaseReg == 0) {
 | 
						|
      // If there is no base register, we emit the special case SIB byte with
 | 
						|
      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else if (DispForReloc) {
 | 
						|
      // Emit the normal disp32 encoding.
 | 
						|
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
 | 
						|
      // Emit no displacement ModR/M byte
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | 
						|
    } else if (isDisp8(DispVal)) {
 | 
						|
      // Emit the disp8 encoding...
 | 
						|
      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
 | 
						|
      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | 
						|
    } else {
 | 
						|
      // Emit the normal disp32 encoding...
 | 
						|
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | 
						|
    }
 | 
						|
 | 
						|
    // Calculate what the SS field value should be...
 | 
						|
    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | 
						|
    unsigned SS = SSTable[Scale.getImm()];
 | 
						|
 | 
						|
    if (BaseReg == 0) {
 | 
						|
      // Handle the SIB byte for the case where there is no base.  The
 | 
						|
      // displacement has already been output.
 | 
						|
      assert(IndexReg.getReg() && "Index register must be specified!");
 | 
						|
      emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = getX86RegNum(BaseReg);
 | 
						|
      unsigned IndexRegNo;
 | 
						|
      if (IndexReg.getReg())
 | 
						|
        IndexRegNo = getX86RegNum(IndexReg.getReg());
 | 
						|
      else
 | 
						|
        IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | 
						|
      emitSIBByte(SS, IndexRegNo, BaseRegNo);
 | 
						|
    }
 | 
						|
 | 
						|
    // Do we need to output a displacement?
 | 
						|
    if (ForceDisp8) {
 | 
						|
      emitConstant(DispVal, 1);
 | 
						|
    } else if (DispVal != 0 || ForceDisp32) {
 | 
						|
      emitDisplacementField(DispForReloc, DispVal, PCAdj);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned sizeOfImm(const TargetInstrDescriptor *Desc) {
 | 
						|
  switch (Desc->TSFlags & X86II::ImmMask) {
 | 
						|
  case X86II::Imm8:   return 1;
 | 
						|
  case X86II::Imm16:  return 2;
 | 
						|
  case X86II::Imm32:  return 4;
 | 
						|
  case X86II::Imm64:  return 8;
 | 
						|
  default: assert(0 && "Immediate size not set!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
 | 
						|
/// e.g. r8, xmm8, etc.
 | 
						|
bool Emitter::isX86_64ExtendedReg(const MachineOperand &MO) {
 | 
						|
  if (!MO.isRegister()) return false;
 | 
						|
  unsigned RegNo = MO.getReg();
 | 
						|
  int DWNum = II->getRegisterInfo().getDwarfRegNum(RegNo);
 | 
						|
  if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::R8) &&
 | 
						|
      DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::R15))
 | 
						|
    return true;
 | 
						|
  if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::XMM8) &&
 | 
						|
      DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::XMM15))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
inline static bool isX86_64NonExtLowByteReg(unsigned reg) {
 | 
						|
  return (reg == X86::SPL || reg == X86::BPL ||
 | 
						|
          reg == X86::SIL || reg == X86::DIL);
 | 
						|
}
 | 
						|
 | 
						|
/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
 | 
						|
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | 
						|
/// size, and 3) use of X86-64 extended registers.
 | 
						|
unsigned Emitter::determineREX(const MachineInstr &MI) {
 | 
						|
  unsigned REX = 0;
 | 
						|
  const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
 | 
						|
 | 
						|
  // Pseudo instructions do not need REX prefix byte.
 | 
						|
  if ((Desc->TSFlags & X86II::FormMask) == X86II::Pseudo)
 | 
						|
    return 0;
 | 
						|
  if (Desc->TSFlags & X86II::REX_W)
 | 
						|
    REX |= 1 << 3;
 | 
						|
 | 
						|
  unsigned NumOps = Desc->numOperands;
 | 
						|
  if (NumOps) {
 | 
						|
    bool isTwoAddr = NumOps > 1 &&
 | 
						|
      Desc->getOperandConstraint(1, TOI::TIED_TO) != -1;
 | 
						|
 | 
						|
    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | 
						|
    unsigned i = isTwoAddr ? 1 : 0;
 | 
						|
    for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
      const MachineOperand& MO = MI.getOperand(i);
 | 
						|
      if (MO.isRegister()) {
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (isX86_64NonExtLowByteReg(Reg))
 | 
						|
          REX |= 0x40;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Desc->TSFlags & X86II::FormMask) {
 | 
						|
    case X86II::MRMInitReg:
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= (1 << 0) | (1 << 2);
 | 
						|
      break;
 | 
						|
    case X86II::MRMSrcReg: {
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= 1 << 2;
 | 
						|
      i = isTwoAddr ? 2 : 1;
 | 
						|
      for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (isX86_64ExtendedReg(MO))
 | 
						|
          REX |= 1 << 0;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86II::MRMSrcMem: {
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= 1 << 2;
 | 
						|
      unsigned Bit = 0;
 | 
						|
      i = isTwoAddr ? 2 : 1;
 | 
						|
      for (; i != NumOps; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (MO.isRegister()) {
 | 
						|
          if (isX86_64ExtendedReg(MO))
 | 
						|
            REX |= 1 << Bit;
 | 
						|
          Bit++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
    case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
    case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
    case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
    case X86II::MRMDestMem: {
 | 
						|
      unsigned e = isTwoAddr ? 5 : 4;
 | 
						|
      i = isTwoAddr ? 1 : 0;
 | 
						|
      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
 | 
						|
        REX |= 1 << 2;
 | 
						|
      unsigned Bit = 0;
 | 
						|
      for (; i != e; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (MO.isRegister()) {
 | 
						|
          if (isX86_64ExtendedReg(MO))
 | 
						|
            REX |= 1 << Bit;
 | 
						|
          Bit++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= 1 << 0;
 | 
						|
      i = isTwoAddr ? 2 : 1;
 | 
						|
      for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (isX86_64ExtendedReg(MO))
 | 
						|
          REX |= 1 << 2;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return REX;
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitInstruction(const MachineInstr &MI) {
 | 
						|
  NumEmitted++;  // Keep track of the # of mi's emitted
 | 
						|
 | 
						|
  const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
 | 
						|
  unsigned Opcode = Desc->Opcode;
 | 
						|
 | 
						|
  // Emit the repeat opcode prefix as needed.
 | 
						|
  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
 | 
						|
 | 
						|
  // Emit the operand size opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
 | 
						|
 | 
						|
  // Emit the address size opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
 | 
						|
 | 
						|
  bool Need0FPrefix = false;
 | 
						|
  switch (Desc->TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::TB:
 | 
						|
    Need0FPrefix = true;   // Two-byte opcode prefix
 | 
						|
    break;
 | 
						|
  case X86II::T8:
 | 
						|
    MCE.emitByte(0x0F);
 | 
						|
    MCE.emitByte(0x38);
 | 
						|
    break;
 | 
						|
  case X86II::TA:
 | 
						|
    MCE.emitByte(0x0F);
 | 
						|
    MCE.emitByte(0x3A);
 | 
						|
    break;
 | 
						|
  case X86II::REP: break; // already handled.
 | 
						|
  case X86II::XS:   // F3 0F
 | 
						|
    MCE.emitByte(0xF3);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::XD:   // F2 0F
 | 
						|
    MCE.emitByte(0xF2);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | 
						|
  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | 
						|
    MCE.emitByte(0xD8+
 | 
						|
                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
 | 
						|
                                   >> X86II::Op0Shift));
 | 
						|
    break; // Two-byte opcode prefix
 | 
						|
  default: assert(0 && "Invalid prefix!");
 | 
						|
  case 0: break;  // No prefix!
 | 
						|
  }
 | 
						|
 | 
						|
  if (Is64BitMode) {
 | 
						|
    // REX prefix
 | 
						|
    unsigned REX = determineREX(MI);
 | 
						|
    if (REX)
 | 
						|
      MCE.emitByte(0x40 | REX);
 | 
						|
  }
 | 
						|
 | 
						|
  // 0x0F escape code must be emitted just before the opcode.
 | 
						|
  if (Need0FPrefix)
 | 
						|
    MCE.emitByte(0x0F);
 | 
						|
 | 
						|
  // If this is a two-address instruction, skip one of the register operands.
 | 
						|
  unsigned NumOps = Desc->numOperands;
 | 
						|
  unsigned CurOp = 0;
 | 
						|
  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
 | 
						|
    CurOp++;
 | 
						|
 | 
						|
  unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
 | 
						|
  switch (Desc->TSFlags & X86II::FormMask) {
 | 
						|
  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
 | 
						|
  case X86II::Pseudo:
 | 
						|
#ifndef NDEBUG
 | 
						|
    switch (Opcode) {
 | 
						|
    default: 
 | 
						|
      assert(0 && "psuedo instructions should be removed before code emission");
 | 
						|
    case TargetInstrInfo::INLINEASM:
 | 
						|
      assert(0 && "JIT does not support inline asm!\n");
 | 
						|
    case TargetInstrInfo::LABEL:
 | 
						|
      assert(0 && "JIT does not support meta labels!\n");
 | 
						|
    case X86::IMPLICIT_USE:
 | 
						|
    case X86::IMPLICIT_DEF:
 | 
						|
    case X86::IMPLICIT_DEF_GR8:
 | 
						|
    case X86::IMPLICIT_DEF_GR16:
 | 
						|
    case X86::IMPLICIT_DEF_GR32:
 | 
						|
    case X86::IMPLICIT_DEF_GR64:
 | 
						|
    case X86::IMPLICIT_DEF_FR32:
 | 
						|
    case X86::IMPLICIT_DEF_FR64:
 | 
						|
    case X86::IMPLICIT_DEF_VR64:
 | 
						|
    case X86::IMPLICIT_DEF_VR128:
 | 
						|
    case X86::FP_REG_KILL:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    CurOp = NumOps;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::RawFrm:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(CurOp++);
 | 
						|
      if (MO.isMachineBasicBlock()) {
 | 
						|
        emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
 | 
						|
      } else if (MO.isGlobalAddress()) {
 | 
						|
        bool NeedStub = Is64BitMode ||
 | 
						|
                        Opcode == X86::TAILJMPd ||
 | 
						|
                        Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
 | 
						|
        emitGlobalAddressForCall(MO.getGlobal(), !NeedStub);
 | 
						|
      } else if (MO.isExternalSymbol()) {
 | 
						|
        emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
 | 
						|
      } else if (MO.isImmediate()) {
 | 
						|
        emitConstant(MO.getImm(), sizeOfImm(Desc));
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown RawFrm operand!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::AddRegFrm:
 | 
						|
    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
 | 
						|
    
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | 
						|
      unsigned Size = sizeOfImm(Desc);
 | 
						|
      if (MO1.isImmediate())
 | 
						|
        emitConstant(MO1.getImm(), Size);
 | 
						|
      else {
 | 
						|
        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
 | 
						|
        if (Opcode == X86::MOV64ri)
 | 
						|
          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
 | 
						|
        if (MO1.isGlobalAddress())
 | 
						|
          emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
 | 
						|
        else if (MO1.isExternalSymbol())
 | 
						|
          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | 
						|
        else if (MO1.isConstantPoolIndex())
 | 
						|
          emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
 | 
						|
        else if (MO1.isJumpTableIndex())
 | 
						|
          emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestReg: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp+1).getReg()));
 | 
						|
    CurOp += 2;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg()));
 | 
						|
    CurOp += 5;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp).getReg()));
 | 
						|
    CurOp += 2;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    unsigned PCAdj = (CurOp+5 != NumOps) ? sizeOfImm(Desc) : 0;
 | 
						|
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
 | 
						|
                     PCAdj);
 | 
						|
    CurOp += 5;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
 | 
						|
                     (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
 | 
						|
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | 
						|
      unsigned Size = sizeOfImm(Desc);
 | 
						|
      if (MO1.isImmediate())
 | 
						|
        emitConstant(MO1.getImm(), Size);
 | 
						|
      else {
 | 
						|
        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | 
						|
          : X86::reloc_absolute_word;
 | 
						|
        if (Opcode == X86::MOV64ri32)
 | 
						|
          rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
 | 
						|
        if (MO1.isGlobalAddress())
 | 
						|
          emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
 | 
						|
        else if (MO1.isExternalSymbol())
 | 
						|
          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | 
						|
        else if (MO1.isConstantPoolIndex())
 | 
						|
          emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
 | 
						|
        else if (MO1.isJumpTableIndex())
 | 
						|
          emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m: {
 | 
						|
    unsigned PCAdj = (CurOp+4 != NumOps) ?
 | 
						|
      (MI.getOperand(CurOp+4).isImmediate() ? sizeOfImm(Desc) : 4) : 0;
 | 
						|
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
 | 
						|
                     PCAdj);
 | 
						|
    CurOp += 4;
 | 
						|
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(CurOp++);
 | 
						|
      unsigned Size = sizeOfImm(Desc);
 | 
						|
      if (MO.isImmediate())
 | 
						|
        emitConstant(MO.getImm(), Size);
 | 
						|
      else {
 | 
						|
        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | 
						|
          : X86::reloc_absolute_word;
 | 
						|
        if (Opcode == X86::MOV64mi32)
 | 
						|
          rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
 | 
						|
        if (MO.isGlobalAddress())
 | 
						|
          emitGlobalAddressForPtr(MO.getGlobal(), rt, MO.getOffset());
 | 
						|
        else if (MO.isExternalSymbol())
 | 
						|
          emitExternalSymbolAddress(MO.getSymbolName(), rt);
 | 
						|
        else if (MO.isConstantPoolIndex())
 | 
						|
          emitConstPoolAddress(MO.getConstantPoolIndex(), rt);
 | 
						|
        else if (MO.isJumpTableIndex())
 | 
						|
          emitJumpTableAddress(MO.getJumpTableIndex(), rt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMInitReg:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp).getReg()));
 | 
						|
    ++CurOp;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((Desc->Flags & M_VARIABLE_OPS) != 0 ||
 | 
						|
         CurOp == NumOps && "Unknown encoding!");
 | 
						|
}
 |