llvm-6502/lib/Bytecode/Reader/ReaderInternals.h
Chris Lattner 927b185c17 Major refactoring of the bytecode reader. This includes the following
changes:
  * BytecodeReader::getType(...) used to return a null pointer
    on error.  This was only checked about half the time.  Now we convert
    it to throw an exception, and delete the half that checked for error.
    This was checked in before, but psmith crashed and lost the change :(
  * insertValue no longer returns -1 on error, so callers don't need to
    check for it.
  * Substantial rewrite of InstructionReader.cpp, to use more efficient,
    simpler, data structures.  This provides another 5% speedup.  This also
    makes the code much easier to read and understand.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8984 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-09 20:22:47 +00:00

217 lines
7.6 KiB
C++

//===-- ReaderInternals.h - Definitions internal to the reader ---*- C++ -*--=//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Bytecode/Primitives.h"
#include <utility>
#include <map>
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
#if TRACE_LEVEL // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
struct LazyFunctionInfo {
const unsigned char *Buf, *EndBuf;
unsigned FunctionSlot;
};
class BytecodeParser : public ModuleProvider {
BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT
void operator=(const BytecodeParser &); // DO NOT IMPLEMENT
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
FirstDerivedTyID = Type::FirstDerivedTyID;
}
~BytecodeParser() {
freeState();
}
void freeState() {
freeTable(Values);
freeTable(ModuleValues);
}
Module* releaseModule() {
// Since we're losing control of this Module, we must hand it back complete
Module *M = ModuleProvider::releaseModule();
freeState();
return M;
}
void ParseBytecode(const unsigned char *Buf, unsigned Length,
const std::string &ModuleID);
void dump() const {
std::cerr << "BytecodeParser instance!\n";
}
private:
struct ValueList : public User {
ValueList() : User(Type::TypeTy, Value::TypeVal) {}
// vector compatibility methods
unsigned size() const { return getNumOperands(); }
void push_back(Value *V) { Operands.push_back(Use(V, this)); }
Value *back() const { return Operands.back(); }
void pop_back() { Operands.pop_back(); }
bool empty() const { return Operands.empty(); }
virtual void print(std::ostream& OS) const {
OS << "Bytecode Reader UseHandle!";
}
};
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
unsigned char FirstDerivedTyID; // First variable index to use for type
bool HasImplicitZeroInitializer; // Is entry 0 of every slot implicity zeros?
bool hasInternalMarkerOnly; // Only types of linkage are intern/external
typedef std::vector<ValueList*> ValueTable;
ValueTable Values;
ValueTable ModuleValues;
std::map<std::pair<unsigned,unsigned>, Value*> ForwardReferences;
std::vector<BasicBlock*> ParsedBasicBlocks;
// GlobalRefs - This maintains a mapping between <Type, Slot #>'s and forward
// references to global values or constants. Such values may be referenced
// before they are defined, and if so, the temporary object that they
// represent is held here.
//
typedef std::map<std::pair<const Type *, unsigned>, Value*> GlobalRefsType;
GlobalRefsType GlobalRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef std::vector<PATypeHolder> TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy FunctionTypeValues;
// When the ModuleGlobalInfo section is read, we create a function object for
// each function in the module. When the function is loaded, this function is
// filled in.
//
std::vector<std::pair<Function*, unsigned> > FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
// For lazy reading-in of functions, we need to save away several pieces of
// information about each function: its begin and end pointer in the buffer
// and its FunctionSlot.
//
std::map<Function*, LazyFunctionInfo*> LazyFunctionLoadMap;
private:
void freeTable(ValueTable &Tab) {
while (!Tab.empty()) {
delete Tab.back();
Tab.pop_back();
}
}
public:
void ParseModule(const unsigned char * Buf, const unsigned char *End);
void materializeFunction(Function *F);
private:
void ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End);
void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End,
SymbolTable *, Function *CurrentFunction);
void ParseFunction(const unsigned char *&Buf, const unsigned char *End);
void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);
BasicBlock *ParseBasicBlock(const unsigned char *&Buf,
const unsigned char *End,
unsigned BlockNo);
Instruction *ParseInstruction(const unsigned char *&Buf,
const unsigned char *End);
void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
Constant *parseConstantValue(const unsigned char *&Buf,
const unsigned char *End,
const Type *Ty);
void parseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf);
Value *getValue(const Type *Ty, unsigned num, bool Create = true);
Value *getValue(unsigned TypeID, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
BasicBlock *getBasicBlock(unsigned ID);
Constant *getConstantValue(const Type *Ty, unsigned num);
unsigned insertValue(Value *V, ValueTable &Table);
unsigned getTypeSlot(const Type *Ty);
// resolve all references to the placeholder (if any) for the given value
void ResolveReferencesToValue(Value *Val, unsigned Slot);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct ConstantPlaceHolderHelper : public Constant {
ConstantPlaceHolderHelper(const Type *Ty)
: Constant(Ty) {}
virtual bool isNullValue() const { return false; }
};
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
// Some common errors we find
static const std::string Error_readvbr = "read_vbr(): error reading.";
static const std::string Error_read = "read(): error reading.";
static const std::string Error_inputdata = "input_data(): error reading.";
static const std::string Error_DestSlot = "No destination slot found.";
static inline void readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) {
#if DEBUG_OUTPUT
bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
std::cerr << "StartLoc = " << ((unsigned)Buf & 4095)
<< " Type = " << Type << " Size = " << Size << endl;
if (Result) throw Error_read;
#else
if (read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size)) throw Error_read;
#endif
}
#endif