mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This fixes a pathological compile time problem with very large blocks and lots of scheduling boundaries. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189116 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			786 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			786 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a top-down list scheduler, using standard algorithms.
 | 
						|
// The basic approach uses a priority queue of available nodes to schedule.
 | 
						|
// One at a time, nodes are taken from the priority queue (thus in priority
 | 
						|
// order), checked for legality to schedule, and emitted if legal.
 | 
						|
//
 | 
						|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
 | 
						|
// pipeline or resource constraints) or because an input to the instruction has
 | 
						|
// not completed execution.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "post-RA-sched"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "AggressiveAntiDepBreaker.h"
 | 
						|
#include "AntiDepBreaker.h"
 | 
						|
#include "CriticalAntiDepBreaker.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumNoops, "Number of noops inserted");
 | 
						|
STATISTIC(NumStalls, "Number of pipeline stalls");
 | 
						|
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
 | 
						|
 | 
						|
// Post-RA scheduling is enabled with
 | 
						|
// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
 | 
						|
// override the target.
 | 
						|
static cl::opt<bool>
 | 
						|
EnablePostRAScheduler("post-RA-scheduler",
 | 
						|
                       cl::desc("Enable scheduling after register allocation"),
 | 
						|
                       cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<std::string>
 | 
						|
EnableAntiDepBreaking("break-anti-dependencies",
 | 
						|
                      cl::desc("Break post-RA scheduling anti-dependencies: "
 | 
						|
                               "\"critical\", \"all\", or \"none\""),
 | 
						|
                      cl::init("none"), cl::Hidden);
 | 
						|
 | 
						|
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
 | 
						|
static cl::opt<int>
 | 
						|
DebugDiv("postra-sched-debugdiv",
 | 
						|
                      cl::desc("Debug control MBBs that are scheduled"),
 | 
						|
                      cl::init(0), cl::Hidden);
 | 
						|
static cl::opt<int>
 | 
						|
DebugMod("postra-sched-debugmod",
 | 
						|
                      cl::desc("Debug control MBBs that are scheduled"),
 | 
						|
                      cl::init(0), cl::Hidden);
 | 
						|
 | 
						|
AntiDepBreaker::~AntiDepBreaker() { }
 | 
						|
 | 
						|
namespace {
 | 
						|
  class PostRAScheduler : public MachineFunctionPass {
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    RegisterClassInfo RegClassInfo;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    PostRAScheduler() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<TargetPassConfig>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
  };
 | 
						|
  char PostRAScheduler::ID = 0;
 | 
						|
 | 
						|
  class SchedulePostRATDList : public ScheduleDAGInstrs {
 | 
						|
    /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
    ///
 | 
						|
    LatencyPriorityQueue AvailableQueue;
 | 
						|
 | 
						|
    /// PendingQueue - This contains all of the instructions whose operands have
 | 
						|
    /// been issued, but their results are not ready yet (due to the latency of
 | 
						|
    /// the operation).  Once the operands becomes available, the instruction is
 | 
						|
    /// added to the AvailableQueue.
 | 
						|
    std::vector<SUnit*> PendingQueue;
 | 
						|
 | 
						|
    /// HazardRec - The hazard recognizer to use.
 | 
						|
    ScheduleHazardRecognizer *HazardRec;
 | 
						|
 | 
						|
    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
 | 
						|
    AntiDepBreaker *AntiDepBreak;
 | 
						|
 | 
						|
    /// AA - AliasAnalysis for making memory reference queries.
 | 
						|
    AliasAnalysis *AA;
 | 
						|
 | 
						|
    /// LiveRegs - true if the register is live.
 | 
						|
    BitVector LiveRegs;
 | 
						|
 | 
						|
    /// The schedule. Null SUnit*'s represent noop instructions.
 | 
						|
    std::vector<SUnit*> Sequence;
 | 
						|
 | 
						|
    /// The index in BB of RegionEnd.
 | 
						|
    ///
 | 
						|
    /// This is the instruction number from the top of the current block, not
 | 
						|
    /// the SlotIndex. It is only used by the AntiDepBreaker.
 | 
						|
    unsigned EndIndex;
 | 
						|
 | 
						|
  public:
 | 
						|
    SchedulePostRATDList(
 | 
						|
      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
 | 
						|
      AliasAnalysis *AA, const RegisterClassInfo&,
 | 
						|
      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
 | 
						|
      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
 | 
						|
 | 
						|
    ~SchedulePostRATDList();
 | 
						|
 | 
						|
    /// startBlock - Initialize register live-range state for scheduling in
 | 
						|
    /// this block.
 | 
						|
    ///
 | 
						|
    void startBlock(MachineBasicBlock *BB);
 | 
						|
 | 
						|
    // Set the index of RegionEnd within the current BB.
 | 
						|
    void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
 | 
						|
 | 
						|
    /// Initialize the scheduler state for the next scheduling region.
 | 
						|
    virtual void enterRegion(MachineBasicBlock *bb,
 | 
						|
                             MachineBasicBlock::iterator begin,
 | 
						|
                             MachineBasicBlock::iterator end,
 | 
						|
                             unsigned regioninstrs);
 | 
						|
 | 
						|
    /// Notify that the scheduler has finished scheduling the current region.
 | 
						|
    virtual void exitRegion();
 | 
						|
 | 
						|
    /// Schedule - Schedule the instruction range using list scheduling.
 | 
						|
    ///
 | 
						|
    void schedule();
 | 
						|
 | 
						|
    void EmitSchedule();
 | 
						|
 | 
						|
    /// Observe - Update liveness information to account for the current
 | 
						|
    /// instruction, which will not be scheduled.
 | 
						|
    ///
 | 
						|
    void Observe(MachineInstr *MI, unsigned Count);
 | 
						|
 | 
						|
    /// finishBlock - Clean up register live-range state.
 | 
						|
    ///
 | 
						|
    void finishBlock();
 | 
						|
 | 
						|
    /// FixupKills - Fix register kill flags that have been made
 | 
						|
    /// invalid due to scheduling
 | 
						|
    ///
 | 
						|
    void FixupKills(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
  private:
 | 
						|
    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
 | 
						|
    void ReleaseSuccessors(SUnit *SU);
 | 
						|
    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | 
						|
    void ListScheduleTopDown();
 | 
						|
    void StartBlockForKills(MachineBasicBlock *BB);
 | 
						|
 | 
						|
    // ToggleKillFlag - Toggle a register operand kill flag. Other
 | 
						|
    // adjustments may be made to the instruction if necessary. Return
 | 
						|
    // true if the operand has been deleted, false if not.
 | 
						|
    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
 | 
						|
 | 
						|
    void dumpSchedule() const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char &llvm::PostRASchedulerID = PostRAScheduler::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
 | 
						|
                "Post RA top-down list latency scheduler", false, false)
 | 
						|
 | 
						|
SchedulePostRATDList::SchedulePostRATDList(
 | 
						|
  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
 | 
						|
  AliasAnalysis *AA, const RegisterClassInfo &RCI,
 | 
						|
  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
 | 
						|
  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
 | 
						|
  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
 | 
						|
    LiveRegs(TRI->getNumRegs()), EndIndex(0)
 | 
						|
{
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
 | 
						|
  HazardRec =
 | 
						|
    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
 | 
						|
 | 
						|
  assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
 | 
						|
          MRI.tracksLiveness()) &&
 | 
						|
         "Live-ins must be accurate for anti-dependency breaking");
 | 
						|
  AntiDepBreak =
 | 
						|
    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
 | 
						|
     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
 | 
						|
     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
 | 
						|
      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
 | 
						|
}
 | 
						|
 | 
						|
SchedulePostRATDList::~SchedulePostRATDList() {
 | 
						|
  delete HazardRec;
 | 
						|
  delete AntiDepBreak;
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize state associated with the next scheduling region.
 | 
						|
void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
 | 
						|
                 MachineBasicBlock::iterator begin,
 | 
						|
                 MachineBasicBlock::iterator end,
 | 
						|
                 unsigned regioninstrs) {
 | 
						|
  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
 | 
						|
  Sequence.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Print the schedule before exiting the region.
 | 
						|
void SchedulePostRATDList::exitRegion() {
 | 
						|
  DEBUG({
 | 
						|
      dbgs() << "*** Final schedule ***\n";
 | 
						|
      dumpSchedule();
 | 
						|
      dbgs() << '\n';
 | 
						|
    });
 | 
						|
  ScheduleDAGInstrs::exitRegion();
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
/// dumpSchedule - dump the scheduled Sequence.
 | 
						|
void SchedulePostRATDList::dumpSchedule() const {
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i])
 | 
						|
      SU->dump(this);
 | 
						|
    else
 | 
						|
      dbgs() << "**** NOOP ****\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  TII = Fn.getTarget().getInstrInfo();
 | 
						|
  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | 
						|
  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
 | 
						|
  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
 | 
						|
 | 
						|
  RegClassInfo.runOnMachineFunction(Fn);
 | 
						|
 | 
						|
  // Check for explicit enable/disable of post-ra scheduling.
 | 
						|
  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
 | 
						|
    TargetSubtargetInfo::ANTIDEP_NONE;
 | 
						|
  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
 | 
						|
  if (EnablePostRAScheduler.getPosition() > 0) {
 | 
						|
    if (!EnablePostRAScheduler)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // Check that post-RA scheduling is enabled for this target.
 | 
						|
    // This may upgrade the AntiDepMode.
 | 
						|
    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
 | 
						|
    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
 | 
						|
                                  CriticalPathRCs))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for antidep breaking override...
 | 
						|
  if (EnableAntiDepBreaking.getPosition() > 0) {
 | 
						|
    AntiDepMode = (EnableAntiDepBreaking == "all")
 | 
						|
      ? TargetSubtargetInfo::ANTIDEP_ALL
 | 
						|
      : ((EnableAntiDepBreaking == "critical")
 | 
						|
         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
 | 
						|
         : TargetSubtargetInfo::ANTIDEP_NONE);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "PostRAScheduler\n");
 | 
						|
 | 
						|
  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
 | 
						|
                                 CriticalPathRCs);
 | 
						|
 | 
						|
  // Loop over all of the basic blocks
 | 
						|
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | 
						|
       MBB != MBBe; ++MBB) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
 | 
						|
    if (DebugDiv > 0) {
 | 
						|
      static int bbcnt = 0;
 | 
						|
      if (bbcnt++ % DebugDiv != DebugMod)
 | 
						|
        continue;
 | 
						|
      dbgs() << "*** DEBUG scheduling " << Fn.getName()
 | 
						|
             << ":BB#" << MBB->getNumber() << " ***\n";
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Initialize register live-range state for scheduling in this block.
 | 
						|
    Scheduler.startBlock(MBB);
 | 
						|
 | 
						|
    // Schedule each sequence of instructions not interrupted by a label
 | 
						|
    // or anything else that effectively needs to shut down scheduling.
 | 
						|
    MachineBasicBlock::iterator Current = MBB->end();
 | 
						|
    unsigned Count = MBB->size(), CurrentCount = Count;
 | 
						|
    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
 | 
						|
      MachineInstr *MI = llvm::prior(I);
 | 
						|
      --Count;
 | 
						|
      // Calls are not scheduling boundaries before register allocation, but
 | 
						|
      // post-ra we don't gain anything by scheduling across calls since we
 | 
						|
      // don't need to worry about register pressure.
 | 
						|
      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
 | 
						|
        Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
 | 
						|
        Scheduler.setEndIndex(CurrentCount);
 | 
						|
        Scheduler.schedule();
 | 
						|
        Scheduler.exitRegion();
 | 
						|
        Scheduler.EmitSchedule();
 | 
						|
        Current = MI;
 | 
						|
        CurrentCount = Count;
 | 
						|
        Scheduler.Observe(MI, CurrentCount);
 | 
						|
      }
 | 
						|
      I = MI;
 | 
						|
      if (MI->isBundle())
 | 
						|
        Count -= MI->getBundleSize();
 | 
						|
    }
 | 
						|
    assert(Count == 0 && "Instruction count mismatch!");
 | 
						|
    assert((MBB->begin() == Current || CurrentCount != 0) &&
 | 
						|
           "Instruction count mismatch!");
 | 
						|
    Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
 | 
						|
    Scheduler.setEndIndex(CurrentCount);
 | 
						|
    Scheduler.schedule();
 | 
						|
    Scheduler.exitRegion();
 | 
						|
    Scheduler.EmitSchedule();
 | 
						|
 | 
						|
    // Clean up register live-range state.
 | 
						|
    Scheduler.finishBlock();
 | 
						|
 | 
						|
    // Update register kills
 | 
						|
    Scheduler.FixupKills(MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// StartBlock - Initialize register live-range state for scheduling in
 | 
						|
/// this block.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
 | 
						|
  // Call the superclass.
 | 
						|
  ScheduleDAGInstrs::startBlock(BB);
 | 
						|
 | 
						|
  // Reset the hazard recognizer and anti-dep breaker.
 | 
						|
  HazardRec->Reset();
 | 
						|
  if (AntiDepBreak != NULL)
 | 
						|
    AntiDepBreak->StartBlock(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// Schedule - Schedule the instruction range using list scheduling.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::schedule() {
 | 
						|
  // Build the scheduling graph.
 | 
						|
  buildSchedGraph(AA);
 | 
						|
 | 
						|
  if (AntiDepBreak != NULL) {
 | 
						|
    unsigned Broken =
 | 
						|
      AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
 | 
						|
                                          EndIndex, DbgValues);
 | 
						|
 | 
						|
    if (Broken != 0) {
 | 
						|
      // We made changes. Update the dependency graph.
 | 
						|
      // Theoretically we could update the graph in place:
 | 
						|
      // When a live range is changed to use a different register, remove
 | 
						|
      // the def's anti-dependence *and* output-dependence edges due to
 | 
						|
      // that register, and add new anti-dependence and output-dependence
 | 
						|
      // edges based on the next live range of the register.
 | 
						|
      ScheduleDAG::clearDAG();
 | 
						|
      buildSchedGraph(AA);
 | 
						|
 | 
						|
      NumFixedAnti += Broken;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "********** List Scheduling **********\n");
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
 | 
						|
  AvailableQueue.initNodes(SUnits);
 | 
						|
  ListScheduleTopDown();
 | 
						|
  AvailableQueue.releaseState();
 | 
						|
}
 | 
						|
 | 
						|
/// Observe - Update liveness information to account for the current
 | 
						|
/// instruction, which will not be scheduled.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
 | 
						|
  if (AntiDepBreak != NULL)
 | 
						|
    AntiDepBreak->Observe(MI, Count, EndIndex);
 | 
						|
}
 | 
						|
 | 
						|
/// FinishBlock - Clean up register live-range state.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::finishBlock() {
 | 
						|
  if (AntiDepBreak != NULL)
 | 
						|
    AntiDepBreak->FinishBlock();
 | 
						|
 | 
						|
  // Call the superclass.
 | 
						|
  ScheduleDAGInstrs::finishBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// StartBlockForKills - Initialize register live-range state for updating kills
 | 
						|
///
 | 
						|
void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
 | 
						|
  // Start with no live registers.
 | 
						|
  LiveRegs.reset();
 | 
						|
 | 
						|
  // Examine the live-in regs of all successors.
 | 
						|
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
       SE = BB->succ_end(); SI != SE; ++SI) {
 | 
						|
    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
         E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = *I;
 | 
						|
      // Repeat, for reg and all subregs.
 | 
						|
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        LiveRegs.set(*SubRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
 | 
						|
                                          MachineOperand &MO) {
 | 
						|
  // Setting kill flag...
 | 
						|
  if (!MO.isKill()) {
 | 
						|
    MO.setIsKill(true);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If MO itself is live, clear the kill flag...
 | 
						|
  if (LiveRegs.test(MO.getReg())) {
 | 
						|
    MO.setIsKill(false);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If any subreg of MO is live, then create an imp-def for that
 | 
						|
  // subreg and keep MO marked as killed.
 | 
						|
  MO.setIsKill(false);
 | 
						|
  bool AllDead = true;
 | 
						|
  const unsigned SuperReg = MO.getReg();
 | 
						|
  MachineInstrBuilder MIB(MF, MI);
 | 
						|
  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
 | 
						|
    if (LiveRegs.test(*SubRegs)) {
 | 
						|
      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
 | 
						|
      AllDead = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(AllDead)
 | 
						|
    MO.setIsKill(true);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FixupKills - Fix the register kill flags, they may have been made
 | 
						|
/// incorrect by instruction reordering.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
 | 
						|
 | 
						|
  BitVector killedRegs(TRI->getNumRegs());
 | 
						|
 | 
						|
  StartBlockForKills(MBB);
 | 
						|
 | 
						|
  // Examine block from end to start...
 | 
						|
  unsigned Count = MBB->size();
 | 
						|
  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
 | 
						|
       I != E; --Count) {
 | 
						|
    MachineInstr *MI = --I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Update liveness.  Registers that are defed but not used in this
 | 
						|
    // instruction are now dead. Mark register and all subregs as they
 | 
						|
    // are completely defined.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isRegMask())
 | 
						|
        LiveRegs.clearBitsNotInMask(MO.getRegMask());
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
      if (!MO.isDef()) continue;
 | 
						|
      // Ignore two-addr defs.
 | 
						|
      if (MI->isRegTiedToUseOperand(i)) continue;
 | 
						|
 | 
						|
      // Repeat for reg and all subregs.
 | 
						|
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        LiveRegs.reset(*SubRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    // Examine all used registers and set/clear kill flag. When a
 | 
						|
    // register is used multiple times we only set the kill flag on
 | 
						|
    // the first use.
 | 
						|
    killedRegs.reset();
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
 | 
						|
 | 
						|
      bool kill = false;
 | 
						|
      if (!killedRegs.test(Reg)) {
 | 
						|
        kill = true;
 | 
						|
        // A register is not killed if any subregs are live...
 | 
						|
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
 | 
						|
          if (LiveRegs.test(*SubRegs)) {
 | 
						|
            kill = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If subreg is not live, then register is killed if it became
 | 
						|
        // live in this instruction
 | 
						|
        if (kill)
 | 
						|
          kill = !LiveRegs.test(Reg);
 | 
						|
      }
 | 
						|
 | 
						|
      if (MO.isKill() != kill) {
 | 
						|
        DEBUG(dbgs() << "Fixing " << MO << " in ");
 | 
						|
        // Warning: ToggleKillFlag may invalidate MO.
 | 
						|
        ToggleKillFlag(MI, MO);
 | 
						|
        DEBUG(MI->dump());
 | 
						|
      }
 | 
						|
 | 
						|
      killedRegs.set(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Mark any used register (that is not using undef) and subregs as
 | 
						|
    // now live...
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
 | 
						|
 | 
						|
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        LiveRegs.set(*SubRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the PendingQueue if the count reaches zero.
 | 
						|
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
  if (SuccEdge->isWeak()) {
 | 
						|
    --SuccSU->WeakPredsLeft;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
 | 
						|
  // Standard scheduler algorithms will recompute the depth of the successor
 | 
						|
  // here as such:
 | 
						|
  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
 | 
						|
  //
 | 
						|
  // However, we lazily compute node depth instead. Note that
 | 
						|
  // ScheduleNodeTopDown has already updated the depth of this node which causes
 | 
						|
  // all descendents to be marked dirty. Setting the successor depth explicitly
 | 
						|
  // here would cause depth to be recomputed for all its ancestors. If the
 | 
						|
  // successor is not yet ready (because of a transitively redundant edge) then
 | 
						|
  // this causes depth computation to be quadratic in the size of the DAG.
 | 
						|
 | 
						|
  // If all the node's predecessors are scheduled, this node is ready
 | 
						|
  // to be scheduled. Ignore the special ExitSU node.
 | 
						|
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | 
						|
    PendingQueue.push_back(SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
 | 
						|
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    ReleaseSucc(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(this));
 | 
						|
 | 
						|
  Sequence.push_back(SU);
 | 
						|
  assert(CurCycle >= SU->getDepth() &&
 | 
						|
         "Node scheduled above its depth!");
 | 
						|
  SU->setDepthToAtLeast(CurCycle);
 | 
						|
 | 
						|
  ReleaseSuccessors(SU);
 | 
						|
  SU->isScheduled = true;
 | 
						|
  AvailableQueue.scheduledNode(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
 | 
						|
/// schedulers.
 | 
						|
void SchedulePostRATDList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
 | 
						|
  // We're scheduling top-down but we're visiting the regions in
 | 
						|
  // bottom-up order, so we don't know the hazards at the start of a
 | 
						|
  // region. So assume no hazards (this should usually be ok as most
 | 
						|
  // blocks are a single region).
 | 
						|
  HazardRec->Reset();
 | 
						|
 | 
						|
  // Release any successors of the special Entry node.
 | 
						|
  ReleaseSuccessors(&EntrySU);
 | 
						|
 | 
						|
  // Add all leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
 | 
						|
      AvailableQueue.push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In any cycle where we can't schedule any instructions, we must
 | 
						|
  // stall or emit a noop, depending on the target.
 | 
						|
  bool CycleHasInsts = false;
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  Sequence.reserve(SUnits.size());
 | 
						|
  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
 | 
						|
    // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
    // so, add them to the available queue.
 | 
						|
    unsigned MinDepth = ~0u;
 | 
						|
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | 
						|
      if (PendingQueue[i]->getDepth() <= CurCycle) {
 | 
						|
        AvailableQueue.push(PendingQueue[i]);
 | 
						|
        PendingQueue[i]->isAvailable = true;
 | 
						|
        PendingQueue[i] = PendingQueue.back();
 | 
						|
        PendingQueue.pop_back();
 | 
						|
        --i; --e;
 | 
						|
      } else if (PendingQueue[i]->getDepth() < MinDepth)
 | 
						|
        MinDepth = PendingQueue[i]->getDepth();
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
 | 
						|
 | 
						|
    SUnit *FoundSUnit = 0;
 | 
						|
    bool HasNoopHazards = false;
 | 
						|
    while (!AvailableQueue.empty()) {
 | 
						|
      SUnit *CurSUnit = AvailableQueue.pop();
 | 
						|
 | 
						|
      ScheduleHazardRecognizer::HazardType HT =
 | 
						|
        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
 | 
						|
      if (HT == ScheduleHazardRecognizer::NoHazard) {
 | 
						|
        FoundSUnit = CurSUnit;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Remember if this is a noop hazard.
 | 
						|
      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
 | 
						|
 | 
						|
      NotReady.push_back(CurSUnit);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    if (!NotReady.empty()) {
 | 
						|
      AvailableQueue.push_all(NotReady);
 | 
						|
      NotReady.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a node to schedule...
 | 
						|
    if (FoundSUnit) {
 | 
						|
      // ... schedule the node...
 | 
						|
      ScheduleNodeTopDown(FoundSUnit, CurCycle);
 | 
						|
      HazardRec->EmitInstruction(FoundSUnit);
 | 
						|
      CycleHasInsts = true;
 | 
						|
      if (HazardRec->atIssueLimit()) {
 | 
						|
        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
        ++CurCycle;
 | 
						|
        CycleHasInsts = false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (CycleHasInsts) {
 | 
						|
        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
      } else if (!HasNoopHazards) {
 | 
						|
        // Otherwise, we have a pipeline stall, but no other problem,
 | 
						|
        // just advance the current cycle and try again.
 | 
						|
        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
        ++NumStalls;
 | 
						|
      } else {
 | 
						|
        // Otherwise, we have no instructions to issue and we have instructions
 | 
						|
        // that will fault if we don't do this right.  This is the case for
 | 
						|
        // processors without pipeline interlocks and other cases.
 | 
						|
        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->EmitNoop();
 | 
						|
        Sequence.push_back(0);   // NULL here means noop
 | 
						|
        ++NumNoops;
 | 
						|
      }
 | 
						|
 | 
						|
      ++CurCycle;
 | 
						|
      CycleHasInsts = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
 | 
						|
  unsigned Noops = 0;
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | 
						|
    if (!Sequence[i])
 | 
						|
      ++Noops;
 | 
						|
  assert(Sequence.size() - Noops == ScheduledNodes &&
 | 
						|
         "The number of nodes scheduled doesn't match the expected number!");
 | 
						|
#endif // NDEBUG
 | 
						|
}
 | 
						|
 | 
						|
// EmitSchedule - Emit the machine code in scheduled order.
 | 
						|
void SchedulePostRATDList::EmitSchedule() {
 | 
						|
  RegionBegin = RegionEnd;
 | 
						|
 | 
						|
  // If first instruction was a DBG_VALUE then put it back.
 | 
						|
  if (FirstDbgValue)
 | 
						|
    BB->splice(RegionEnd, BB, FirstDbgValue);
 | 
						|
 | 
						|
  // Then re-insert them according to the given schedule.
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i])
 | 
						|
      BB->splice(RegionEnd, BB, SU->getInstr());
 | 
						|
    else
 | 
						|
      // Null SUnit* is a noop.
 | 
						|
      TII->insertNoop(*BB, RegionEnd);
 | 
						|
 | 
						|
    // Update the Begin iterator, as the first instruction in the block
 | 
						|
    // may have been scheduled later.
 | 
						|
    if (i == 0)
 | 
						|
      RegionBegin = prior(RegionEnd);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reinsert any remaining debug_values.
 | 
						|
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | 
						|
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | 
						|
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
 | 
						|
    MachineInstr *DbgValue = P.first;
 | 
						|
    MachineBasicBlock::iterator OrigPrivMI = P.second;
 | 
						|
    BB->splice(++OrigPrivMI, BB, DbgValue);
 | 
						|
  }
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = NULL;
 | 
						|
}
 |