mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
c997d45ae5
Emission for globals, using the correct data sections Function alignment can be computed for each target using TargetELFWriterInfo Some small fixes git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73201 91177308-0d34-0410-b5e6-96231b3b80d8
633 lines
22 KiB
C++
633 lines
22 KiB
C++
//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the target-independent ELF writer. This file writes out
|
|
// the ELF file in the following order:
|
|
//
|
|
// #1. ELF Header
|
|
// #2. '.text' section
|
|
// #3. '.data' section
|
|
// #4. '.bss' section (conceptual position in file)
|
|
// ...
|
|
// #X. '.shstrtab' section
|
|
// #Y. Section Table
|
|
//
|
|
// The entries in the section table are laid out as:
|
|
// #0. Null entry [required]
|
|
// #1. ".text" entry - the program code
|
|
// #2. ".data" entry - global variables with initializers. [ if needed ]
|
|
// #3. ".bss" entry - global variables without initializers. [ if needed ]
|
|
// ...
|
|
// #N. ".shstrtab" entry - String table for the section names.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "elfwriter"
|
|
|
|
#include "ELFWriter.h"
|
|
#include "ELFCodeEmitter.h"
|
|
#include "ELF.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/CodeGen/FileWriters.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <list>
|
|
using namespace llvm;
|
|
|
|
char ELFWriter::ID = 0;
|
|
/// AddELFWriter - Concrete function to add the ELF writer to the function pass
|
|
/// manager.
|
|
MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
|
|
raw_ostream &O,
|
|
TargetMachine &TM) {
|
|
ELFWriter *EW = new ELFWriter(O, TM);
|
|
PM.add(EW);
|
|
return &EW->getMachineCodeEmitter();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ELFWriter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
|
|
: MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() {
|
|
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
|
|
isLittleEndian = TM.getTargetData()->isLittleEndian();
|
|
|
|
ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0,
|
|
is64Bit, isLittleEndian);
|
|
TAI = TM.getTargetAsmInfo();
|
|
|
|
// Create the machine code emitter object for this target.
|
|
MCE = new ELFCodeEmitter(*this);
|
|
NumSections = 0;
|
|
}
|
|
|
|
ELFWriter::~ELFWriter() {
|
|
delete MCE;
|
|
delete ElfHdr;
|
|
}
|
|
|
|
// doInitialization - Emit the file header and all of the global variables for
|
|
// the module to the ELF file.
|
|
bool ELFWriter::doInitialization(Module &M) {
|
|
Mang = new Mangler(M);
|
|
|
|
// Local alias to shortenify coming code.
|
|
std::vector<unsigned char> &FH = FileHeader;
|
|
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
|
|
|
|
// ELF Header
|
|
// ----------
|
|
// Fields e_shnum e_shstrndx are only known after all section have
|
|
// been emitted. They locations in the ouput buffer are recorded so
|
|
// to be patched up later.
|
|
//
|
|
// Note
|
|
// ----
|
|
// FHOut.outaddr method behaves differently for ELF32 and ELF64 writing
|
|
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
|
|
|
|
FHOut.outbyte(0x7f); // e_ident[EI_MAG0]
|
|
FHOut.outbyte('E'); // e_ident[EI_MAG1]
|
|
FHOut.outbyte('L'); // e_ident[EI_MAG2]
|
|
FHOut.outbyte('F'); // e_ident[EI_MAG3]
|
|
|
|
FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS]
|
|
FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA]
|
|
FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION]
|
|
|
|
FH.resize(16); // e_ident[EI_NIDENT-EI_PAD]
|
|
|
|
FHOut.outhalf(ET_REL); // e_type
|
|
FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target
|
|
FHOut.outword(EV_CURRENT); // e_version
|
|
FHOut.outaddr(0); // e_entry = 0, no entry point in .o file
|
|
FHOut.outaddr(0); // e_phoff = 0, no program header for .o
|
|
ELFHdr_e_shoff_Offset = FH.size();
|
|
FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes
|
|
FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants
|
|
FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size
|
|
FHOut.outhalf(0); // e_phentsize = prog header entry size
|
|
FHOut.outhalf(0); // e_phnum = # prog header entries = 0
|
|
|
|
// e_shentsize = Section header entry size
|
|
FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit));
|
|
|
|
// e_shnum = # of section header ents
|
|
ELFHdr_e_shnum_Offset = FH.size();
|
|
FHOut.outhalf(0);
|
|
|
|
// e_shstrndx = Section # of '.shstrtab'
|
|
ELFHdr_e_shstrndx_Offset = FH.size();
|
|
FHOut.outhalf(0);
|
|
|
|
// Add the null section, which is required to be first in the file.
|
|
getSection("", ELFSection::SHT_NULL, 0);
|
|
|
|
// Start up the symbol table. The first entry in the symtab is the null
|
|
// entry.
|
|
SymbolTable.push_back(ELFSym(0));
|
|
|
|
return false;
|
|
}
|
|
|
|
void ELFWriter::EmitGlobal(GlobalVariable *GV) {
|
|
|
|
// XXX: put local symbols *before* global ones!
|
|
const Section *S = TAI->SectionForGlobal(GV);
|
|
DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
|
|
|
|
// If this is an external global, emit it now. TODO: Note that it would be
|
|
// better to ignore the symbol here and only add it to the symbol table if
|
|
// referenced.
|
|
if (!GV->hasInitializer()) {
|
|
ELFSym ExternalSym(GV);
|
|
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
|
|
ExternalSym.SetType(ELFSym::STT_NOTYPE);
|
|
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
|
|
SymbolTable.push_back(ExternalSym);
|
|
return;
|
|
}
|
|
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Align = TD->getPreferredAlignment(GV);
|
|
Constant *CV = GV->getInitializer();
|
|
unsigned Size = TD->getTypeAllocSize(CV->getType());
|
|
|
|
// If this global has a zero initializer, go to .bss or common section.
|
|
if (CV->isNullValue() || isa<UndefValue>(CV)) {
|
|
// If this global is part of the common block, add it now. Variables are
|
|
// part of the common block if they are zero initialized and allowed to be
|
|
// merged with other symbols.
|
|
if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
|
|
GV->hasCommonLinkage()) {
|
|
ELFSym CommonSym(GV);
|
|
// Value for common symbols is the alignment required.
|
|
CommonSym.Value = Align;
|
|
CommonSym.Size = Size;
|
|
CommonSym.SetBind(ELFSym::STB_GLOBAL);
|
|
CommonSym.SetType(ELFSym::STT_OBJECT);
|
|
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
|
|
SymbolTable.push_back(CommonSym);
|
|
getSection(S->getName(), ELFSection::SHT_NOBITS,
|
|
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this symbol is part of the .bss section. Emit it now.
|
|
// Handle alignment. Ensure section is aligned at least as much as required
|
|
// by this symbol.
|
|
ELFSection &BSSSection = getBSSSection();
|
|
BSSSection.Align = std::max(BSSSection.Align, Align);
|
|
|
|
// Within the section, emit enough virtual padding to get us to an alignment
|
|
// boundary.
|
|
if (Align)
|
|
BSSSection.Size = (BSSSection.Size + Align - 1) & ~(Align-1);
|
|
|
|
ELFSym BSSSym(GV);
|
|
BSSSym.Value = BSSSection.Size;
|
|
BSSSym.Size = Size;
|
|
BSSSym.SetType(ELFSym::STT_OBJECT);
|
|
|
|
switch (GV->getLinkage()) {
|
|
default: // weak/linkonce/common handled above
|
|
assert(0 && "Unexpected linkage type!");
|
|
case GlobalValue::AppendingLinkage: // FIXME: This should be improved!
|
|
case GlobalValue::ExternalLinkage:
|
|
BSSSym.SetBind(ELFSym::STB_GLOBAL);
|
|
break;
|
|
case GlobalValue::InternalLinkage:
|
|
BSSSym.SetBind(ELFSym::STB_LOCAL);
|
|
break;
|
|
}
|
|
|
|
// Set the idx of the .bss section
|
|
BSSSym.SectionIdx = BSSSection.SectionIdx;
|
|
if (!GV->hasPrivateLinkage())
|
|
SymbolTable.push_back(BSSSym);
|
|
|
|
// Reserve space in the .bss section for this symbol.
|
|
BSSSection.Size += Size;
|
|
return;
|
|
}
|
|
|
|
/// Emit the Global symbol to the right ELF section
|
|
ELFSym GblSym(GV);
|
|
GblSym.Size = Size;
|
|
GblSym.SetType(ELFSym::STT_OBJECT);
|
|
GblSym.SetBind(ELFSym::STB_GLOBAL);
|
|
unsigned Flags = S->getFlags();
|
|
unsigned SectType = ELFSection::SHT_PROGBITS;
|
|
unsigned SHdrFlags = ELFSection::SHF_ALLOC;
|
|
|
|
if (Flags & SectionFlags::Code)
|
|
SHdrFlags |= ELFSection::SHF_EXECINSTR;
|
|
if (Flags & SectionFlags::Writeable)
|
|
SHdrFlags |= ELFSection::SHF_WRITE;
|
|
if (Flags & SectionFlags::Mergeable)
|
|
SHdrFlags |= ELFSection::SHF_MERGE;
|
|
if (Flags & SectionFlags::TLS)
|
|
SHdrFlags |= ELFSection::SHF_TLS;
|
|
if (Flags & SectionFlags::Strings)
|
|
SHdrFlags |= ELFSection::SHF_STRINGS;
|
|
|
|
// Remove tab from section name prefix
|
|
std::string SectionName(S->getName());
|
|
size_t Pos = SectionName.find("\t");
|
|
if (Pos != std::string::npos)
|
|
SectionName.erase(Pos, 1);
|
|
|
|
// The section alignment should be bound to the element with
|
|
// the largest alignment
|
|
ELFSection &ElfS = getSection(SectionName, SectType, SHdrFlags);
|
|
GblSym.SectionIdx = ElfS.SectionIdx;
|
|
if (Align > ElfS.Align)
|
|
ElfS.Align = Align;
|
|
|
|
DataBuffer &GblCstBuf = ElfS.SectionData;
|
|
OutputBuffer GblCstTab(GblCstBuf, is64Bit, isLittleEndian);
|
|
|
|
// S.Value should contain the symbol index inside the section,
|
|
// and all symbols should start on their required alignment boundary
|
|
GblSym.Value = (GblCstBuf.size() + (Align-1)) & (-Align);
|
|
GblCstBuf.insert(GblCstBuf.end(), GblSym.Value-GblCstBuf.size(), 0);
|
|
|
|
// Emit the constant symbol to its section
|
|
EmitGlobalConstant(CV, GblCstTab);
|
|
SymbolTable.push_back(GblSym);
|
|
}
|
|
|
|
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
|
|
OutputBuffer &GblCstTab) {
|
|
|
|
// Print the fields in successive locations. Pad to align if needed!
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Size = TD->getTypeAllocSize(CVS->getType());
|
|
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
|
|
uint64_t sizeSoFar = 0;
|
|
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
|
|
const Constant* field = CVS->getOperand(i);
|
|
|
|
// Check if padding is needed and insert one or more 0s.
|
|
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
|
|
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
|
|
- cvsLayout->getElementOffset(i)) - fieldSize;
|
|
sizeSoFar += fieldSize + padSize;
|
|
|
|
// Now print the actual field value.
|
|
EmitGlobalConstant(field, GblCstTab);
|
|
|
|
// Insert padding - this may include padding to increase the size of the
|
|
// current field up to the ABI size (if the struct is not packed) as well
|
|
// as padding to ensure that the next field starts at the right offset.
|
|
for (unsigned p=0; p < padSize; p++)
|
|
GblCstTab.outbyte(0);
|
|
}
|
|
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
|
|
"Layout of constant struct may be incorrect!");
|
|
}
|
|
|
|
void ELFWriter::EmitGlobalConstant(const Constant *CV, OutputBuffer &GblCstTab) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Size = TD->getTypeAllocSize(CV->getType());
|
|
|
|
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
|
|
if (CVA->isString()) {
|
|
std::string GblStr = CVA->getAsString();
|
|
GblCstTab.outstring(GblStr, GblStr.length());
|
|
} else { // Not a string. Print the values in successive locations
|
|
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
|
|
EmitGlobalConstant(CVA->getOperand(i), GblCstTab);
|
|
}
|
|
return;
|
|
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
|
|
EmitGlobalConstantStruct(CVS, GblCstTab);
|
|
return;
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
if (CFP->getType() == Type::DoubleTy)
|
|
GblCstTab.outxword(Val);
|
|
else if (CFP->getType() == Type::FloatTy)
|
|
GblCstTab.outword(Val);
|
|
else if (CFP->getType() == Type::X86_FP80Ty) {
|
|
assert(0 && "X86_FP80Ty global emission not implemented");
|
|
} else if (CFP->getType() == Type::PPC_FP128Ty)
|
|
assert(0 && "PPC_FP128Ty global emission not implemented");
|
|
return;
|
|
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
if (Size == 4)
|
|
GblCstTab.outword(CI->getZExtValue());
|
|
else if (Size == 8)
|
|
GblCstTab.outxword(CI->getZExtValue());
|
|
else
|
|
assert(0 && "LargeInt global emission not implemented");
|
|
return;
|
|
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
|
|
const VectorType *PTy = CP->getType();
|
|
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
|
|
EmitGlobalConstant(CP->getOperand(I), GblCstTab);
|
|
return;
|
|
}
|
|
assert(0 && "unknown global constant");
|
|
}
|
|
|
|
|
|
bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
|
|
// Nothing to do here, this is all done through the MCE object above.
|
|
return false;
|
|
}
|
|
|
|
/// doFinalization - Now that the module has been completely processed, emit
|
|
/// the ELF file to 'O'.
|
|
bool ELFWriter::doFinalization(Module &M) {
|
|
/// FIXME: This should be removed when moving to BinaryObjects. Since the
|
|
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.SectionData
|
|
/// vector size for .text sections, so this is a quick dirty fix
|
|
ELFSection &TS = getTextSection();
|
|
if (TS.Size)
|
|
for (unsigned e=0; e<TS.Size; ++e)
|
|
TS.SectionData.push_back(TS.SectionData[e]);
|
|
|
|
// Get .data and .bss section, they should always be present in the binary
|
|
getDataSection();
|
|
getBSSSection();
|
|
|
|
// build data, bss and "common" sections.
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
EmitGlobal(I);
|
|
|
|
// Emit non-executable stack note
|
|
if (TAI->getNonexecutableStackDirective())
|
|
getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
|
|
|
|
// Emit the symbol table now, if non-empty.
|
|
EmitSymbolTable();
|
|
|
|
// Emit the relocation sections.
|
|
EmitRelocations();
|
|
|
|
// Emit the string table for the sections in the ELF file.
|
|
EmitSectionTableStringTable();
|
|
|
|
// Emit the sections to the .o file, and emit the section table for the file.
|
|
OutputSectionsAndSectionTable();
|
|
|
|
// We are done with the abstract symbols.
|
|
SectionList.clear();
|
|
NumSections = 0;
|
|
|
|
// Release the name mangler object.
|
|
delete Mang; Mang = 0;
|
|
return false;
|
|
}
|
|
|
|
/// EmitRelocations - Emit relocations
|
|
void ELFWriter::EmitRelocations() {
|
|
}
|
|
|
|
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymTabOut'
|
|
void ELFWriter::EmitSymbol(OutputBuffer &SymTabOut, ELFSym &Sym) {
|
|
if (is64Bit) {
|
|
SymTabOut.outword(Sym.NameIdx);
|
|
SymTabOut.outbyte(Sym.Info);
|
|
SymTabOut.outbyte(Sym.Other);
|
|
SymTabOut.outhalf(Sym.SectionIdx);
|
|
SymTabOut.outaddr64(Sym.Value);
|
|
SymTabOut.outxword(Sym.Size);
|
|
} else {
|
|
SymTabOut.outword(Sym.NameIdx);
|
|
SymTabOut.outaddr32(Sym.Value);
|
|
SymTabOut.outword(Sym.Size);
|
|
SymTabOut.outbyte(Sym.Info);
|
|
SymTabOut.outbyte(Sym.Other);
|
|
SymTabOut.outhalf(Sym.SectionIdx);
|
|
}
|
|
}
|
|
|
|
/// EmitSectionHeader - Write section 'Section' header in 'TableOut'
|
|
/// Section Header Table
|
|
void ELFWriter::EmitSectionHeader(OutputBuffer &TableOut, const ELFSection &S) {
|
|
TableOut.outword(S.NameIdx);
|
|
TableOut.outword(S.Type);
|
|
if (is64Bit) {
|
|
TableOut.outxword(S.Flags);
|
|
TableOut.outaddr(S.Addr);
|
|
TableOut.outaddr(S.Offset);
|
|
TableOut.outxword(S.Size);
|
|
TableOut.outword(S.Link);
|
|
TableOut.outword(S.Info);
|
|
TableOut.outxword(S.Align);
|
|
TableOut.outxword(S.EntSize);
|
|
} else {
|
|
TableOut.outword(S.Flags);
|
|
TableOut.outaddr(S.Addr);
|
|
TableOut.outaddr(S.Offset);
|
|
TableOut.outword(S.Size);
|
|
TableOut.outword(S.Link);
|
|
TableOut.outword(S.Info);
|
|
TableOut.outword(S.Align);
|
|
TableOut.outword(S.EntSize);
|
|
}
|
|
}
|
|
|
|
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
|
|
/// table for it and then the symbol table itself.
|
|
void ELFWriter::EmitSymbolTable() {
|
|
if (SymbolTable.size() == 1) return; // Only the null entry.
|
|
|
|
// FIXME: compact all local symbols to the start of the symtab.
|
|
unsigned FirstNonLocalSymbol = 1;
|
|
|
|
ELFSection &StrTab = getStringTableSection();
|
|
DataBuffer &StrTabBuf = StrTab.SectionData;
|
|
OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian);
|
|
|
|
// Set the zero'th symbol to a null byte, as required.
|
|
StrTabOut.outbyte(0);
|
|
|
|
unsigned Index = 1;
|
|
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
|
|
// Use the name mangler to uniquify the LLVM symbol.
|
|
std::string Name = Mang->getValueName(SymbolTable[i].GV);
|
|
|
|
if (Name.empty()) {
|
|
SymbolTable[i].NameIdx = 0;
|
|
} else {
|
|
SymbolTable[i].NameIdx = Index;
|
|
|
|
// Add the name to the output buffer, including the null terminator.
|
|
StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end());
|
|
|
|
// Add a null terminator.
|
|
StrTabBuf.push_back(0);
|
|
|
|
// Keep track of the number of bytes emitted to this section.
|
|
Index += Name.size()+1;
|
|
}
|
|
}
|
|
assert(Index == StrTabBuf.size());
|
|
StrTab.Size = Index;
|
|
|
|
// Now that we have emitted the string table and know the offset into the
|
|
// string table of each symbol, emit the symbol table itself.
|
|
ELFSection &SymTab = getSymbolTableSection();
|
|
SymTab.Align = is64Bit ? 8 : 4;
|
|
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
|
|
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
|
|
|
|
// Size of each symtab entry.
|
|
SymTab.EntSize = ELFSym::getEntrySize(is64Bit);
|
|
|
|
DataBuffer &SymTabBuf = SymTab.SectionData;
|
|
OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian);
|
|
|
|
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i)
|
|
EmitSymbol(SymTabOut, SymbolTable[i]);
|
|
|
|
SymTab.Size = SymTabBuf.size();
|
|
}
|
|
|
|
/// EmitSectionTableStringTable - This method adds and emits a section for the
|
|
/// ELF Section Table string table: the string table that holds all of the
|
|
/// section names.
|
|
void ELFWriter::EmitSectionTableStringTable() {
|
|
// First step: add the section for the string table to the list of sections:
|
|
ELFSection &SHStrTab = getSection(".shstrtab", ELFSection::SHT_STRTAB, 0);
|
|
|
|
// Now that we know which section number is the .shstrtab section, update the
|
|
// e_shstrndx entry in the ELF header.
|
|
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
|
|
FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
|
|
|
|
// Set the NameIdx of each section in the string table and emit the bytes for
|
|
// the string table.
|
|
unsigned Index = 0;
|
|
DataBuffer &Buf = SHStrTab.SectionData;
|
|
|
|
for (std::list<ELFSection>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I) {
|
|
// Set the index into the table. Note if we have lots of entries with
|
|
// common suffixes, we could memoize them here if we cared.
|
|
I->NameIdx = Index;
|
|
|
|
// Add the name to the output buffer, including the null terminator.
|
|
Buf.insert(Buf.end(), I->Name.begin(), I->Name.end());
|
|
|
|
// Add a null terminator.
|
|
Buf.push_back(0);
|
|
|
|
// Keep track of the number of bytes emitted to this section.
|
|
Index += I->Name.size()+1;
|
|
}
|
|
|
|
// Set the size of .shstrtab now that we know what it is.
|
|
assert(Index == Buf.size());
|
|
SHStrTab.Size = Index;
|
|
}
|
|
|
|
/// OutputSectionsAndSectionTable - Now that we have constructed the file header
|
|
/// and all of the sections, emit these to the ostream destination and emit the
|
|
/// SectionTable.
|
|
void ELFWriter::OutputSectionsAndSectionTable() {
|
|
// Pass #1: Compute the file offset for each section.
|
|
size_t FileOff = FileHeader.size(); // File header first.
|
|
|
|
// Adjust alignment of all section if needed.
|
|
for (std::list<ELFSection>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I) {
|
|
|
|
// Section idx 0 has 0 offset
|
|
if (!I->SectionIdx)
|
|
continue;
|
|
|
|
if (!I->SectionData.size()) {
|
|
I->Offset = FileOff;
|
|
continue;
|
|
}
|
|
|
|
// Update Section size
|
|
if (!I->Size)
|
|
I->Size = I->SectionData.size();
|
|
|
|
// Align FileOff to whatever the alignment restrictions of the section are.
|
|
if (I->Align)
|
|
FileOff = (FileOff+I->Align-1) & ~(I->Align-1);
|
|
|
|
I->Offset = FileOff;
|
|
FileOff += I->Size;
|
|
}
|
|
|
|
// Align Section Header.
|
|
unsigned TableAlign = is64Bit ? 8 : 4;
|
|
FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
|
|
|
|
// Now that we know where all of the sections will be emitted, set the e_shnum
|
|
// entry in the ELF header.
|
|
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
|
|
FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset);
|
|
|
|
// Now that we know the offset in the file of the section table, update the
|
|
// e_shoff address in the ELF header.
|
|
FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset);
|
|
|
|
// Now that we know all of the data in the file header, emit it and all of the
|
|
// sections!
|
|
O.write((char*)&FileHeader[0], FileHeader.size());
|
|
FileOff = FileHeader.size();
|
|
DataBuffer().swap(FileHeader);
|
|
|
|
DataBuffer Table;
|
|
OutputBuffer TableOut(Table, is64Bit, isLittleEndian);
|
|
|
|
// Emit all of the section data and build the section table itself.
|
|
while (!SectionList.empty()) {
|
|
const ELFSection &S = *SectionList.begin();
|
|
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name
|
|
<< ", Size: " << S.Size << ", Offset: " << S.Offset
|
|
<< ", SectionData Size: " << S.SectionData.size() << "\n";
|
|
|
|
|
|
// Align FileOff to whatever the alignment restrictions of the section are.
|
|
if (S.Align) {
|
|
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
|
|
FileOff != NewFileOff; ++FileOff)
|
|
O << (char)0xAB;
|
|
}
|
|
|
|
if (S.SectionData.size()) {
|
|
O.write((char*)&S.SectionData[0], S.Size);
|
|
FileOff += S.Size;
|
|
}
|
|
|
|
EmitSectionHeader(TableOut, S);
|
|
SectionList.pop_front();
|
|
}
|
|
|
|
// Align output for the section table.
|
|
for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
|
|
FileOff != NewFileOff; ++FileOff)
|
|
O << (char)0xAB;
|
|
|
|
// Emit the section table itself.
|
|
O.write((char*)&Table[0], Table.size());
|
|
}
|