mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	MachineSSAUpdater to avoid duplicating all the code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103060 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			331 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the SSAUpdater class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ssaupdater"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/Support/AlignOf.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
 | 
						|
static AvailableValsTy &getAvailableVals(void *AV) {
 | 
						|
  return *static_cast<AvailableValsTy*>(AV);
 | 
						|
}
 | 
						|
 | 
						|
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
 | 
						|
  : AV(0), PrototypeValue(0), InsertedPHIs(NewPHI) {}
 | 
						|
 | 
						|
SSAUpdater::~SSAUpdater() {
 | 
						|
  delete &getAvailableVals(AV);
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize - Reset this object to get ready for a new set of SSA
 | 
						|
/// updates.  ProtoValue is the value used to name PHI nodes.
 | 
						|
void SSAUpdater::Initialize(Value *ProtoValue) {
 | 
						|
  if (AV == 0)
 | 
						|
    AV = new AvailableValsTy();
 | 
						|
  else
 | 
						|
    getAvailableVals(AV).clear();
 | 
						|
  PrototypeValue = ProtoValue;
 | 
						|
}
 | 
						|
 | 
						|
/// HasValueForBlock - Return true if the SSAUpdater already has a value for
 | 
						|
/// the specified block.
 | 
						|
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
 | 
						|
  return getAvailableVals(AV).count(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// AddAvailableValue - Indicate that a rewritten value is available in the
 | 
						|
/// specified block with the specified value.
 | 
						|
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
 | 
						|
  assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
 | 
						|
  assert(PrototypeValue->getType() == V->getType() &&
 | 
						|
         "All rewritten values must have the same type");
 | 
						|
  getAvailableVals(AV)[BB] = V;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
 | 
						|
/// in ValueMapping for each predecessor block.
 | 
						|
static bool IsEquivalentPHI(PHINode *PHI,
 | 
						|
                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
 | 
						|
  unsigned PHINumValues = PHI->getNumIncomingValues();
 | 
						|
  if (PHINumValues != ValueMapping.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Scan the phi to see if it matches.
 | 
						|
  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
 | 
						|
    if (ValueMapping[PHI->getIncomingBlock(i)] !=
 | 
						|
        PHI->getIncomingValue(i)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
 | 
						|
/// live at the end of the specified block.
 | 
						|
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
 | 
						|
  Value *Res = GetValueAtEndOfBlockInternal(BB);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
 | 
						|
/// is live in the middle of the specified block.
 | 
						|
///
 | 
						|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
 | 
						|
/// important case: if there is a definition of the rewritten value after the
 | 
						|
/// 'use' in BB.  Consider code like this:
 | 
						|
///
 | 
						|
///      X1 = ...
 | 
						|
///   SomeBB:
 | 
						|
///      use(X)
 | 
						|
///      X2 = ...
 | 
						|
///      br Cond, SomeBB, OutBB
 | 
						|
///
 | 
						|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
 | 
						|
/// set by the client of the rewriter, and those values are both live out of
 | 
						|
/// their respective blocks.  However, the use of X happens in the *middle* of
 | 
						|
/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
 | 
						|
/// merge the appropriate values, and this value isn't live out of the block.
 | 
						|
///
 | 
						|
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
 | 
						|
  // If there is no definition of the renamed variable in this block, just use
 | 
						|
  // GetValueAtEndOfBlock to do our work.
 | 
						|
  if (!HasValueForBlock(BB))
 | 
						|
    return GetValueAtEndOfBlock(BB);
 | 
						|
 | 
						|
  // Otherwise, we have the hard case.  Get the live-in values for each
 | 
						|
  // predecessor.
 | 
						|
  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
 | 
						|
  Value *SingularValue = 0;
 | 
						|
 | 
						|
  // We can get our predecessor info by walking the pred_iterator list, but it
 | 
						|
  // is relatively slow.  If we already have PHI nodes in this block, walk one
 | 
						|
  // of them to get the predecessor list instead.
 | 
						|
  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
 | 
						|
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | 
						|
      PredValues.push_back(std::make_pair(PredBB, PredVal));
 | 
						|
 | 
						|
      // Compute SingularValue.
 | 
						|
      if (i == 0)
 | 
						|
        SingularValue = PredVal;
 | 
						|
      else if (PredVal != SingularValue)
 | 
						|
        SingularValue = 0;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    bool isFirstPred = true;
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
      BasicBlock *PredBB = *PI;
 | 
						|
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | 
						|
      PredValues.push_back(std::make_pair(PredBB, PredVal));
 | 
						|
 | 
						|
      // Compute SingularValue.
 | 
						|
      if (isFirstPred) {
 | 
						|
        SingularValue = PredVal;
 | 
						|
        isFirstPred = false;
 | 
						|
      } else if (PredVal != SingularValue)
 | 
						|
        SingularValue = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no predecessors, just return undef.
 | 
						|
  if (PredValues.empty())
 | 
						|
    return UndefValue::get(PrototypeValue->getType());
 | 
						|
 | 
						|
  // Otherwise, if all the merged values are the same, just use it.
 | 
						|
  if (SingularValue != 0)
 | 
						|
    return SingularValue;
 | 
						|
 | 
						|
  // Otherwise, we do need a PHI: check to see if we already have one available
 | 
						|
  // in this block that produces the right value.
 | 
						|
  if (isa<PHINode>(BB->begin())) {
 | 
						|
    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
 | 
						|
                                               PredValues.end());
 | 
						|
    PHINode *SomePHI;
 | 
						|
    for (BasicBlock::iterator It = BB->begin();
 | 
						|
         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
 | 
						|
      if (IsEquivalentPHI(SomePHI, ValueMapping))
 | 
						|
        return SomePHI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we have no way out, insert a new one now.
 | 
						|
  PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
 | 
						|
                                         PrototypeValue->getName(),
 | 
						|
                                         &BB->front());
 | 
						|
  InsertedPHI->reserveOperandSpace(PredValues.size());
 | 
						|
 | 
						|
  // Fill in all the predecessors of the PHI.
 | 
						|
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | 
						|
    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
 | 
						|
 | 
						|
  // See if the PHI node can be merged to a single value.  This can happen in
 | 
						|
  // loop cases when we get a PHI of itself and one other value.
 | 
						|
  if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
 | 
						|
    InsertedPHI->eraseFromParent();
 | 
						|
    return ConstVal;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the client wants to know about all new instructions, tell it.
 | 
						|
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | 
						|
  return InsertedPHI;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
 | 
						|
/// which use their value in the corresponding predecessor.
 | 
						|
void SSAUpdater::RewriteUse(Use &U) {
 | 
						|
  Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
  Value *V;
 | 
						|
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | 
						|
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | 
						|
  else
 | 
						|
    V = GetValueInMiddleOfBlock(User->getParent());
 | 
						|
 | 
						|
  U.set(V);
 | 
						|
}
 | 
						|
 | 
						|
/// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
 | 
						|
/// in the SSAUpdaterImpl template.
 | 
						|
namespace {
 | 
						|
  class PHIiter {
 | 
						|
  private:
 | 
						|
    PHINode *PHI;
 | 
						|
    unsigned idx;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit PHIiter(PHINode *P) // begin iterator
 | 
						|
      : PHI(P), idx(0) {}
 | 
						|
    PHIiter(PHINode *P, bool) // end iterator
 | 
						|
      : PHI(P), idx(PHI->getNumIncomingValues()) {}
 | 
						|
 | 
						|
    PHIiter &operator++() { ++idx; return *this; } 
 | 
						|
    bool operator==(const PHIiter& x) const { return idx == x.idx; }
 | 
						|
    bool operator!=(const PHIiter& x) const { return !operator==(x); }
 | 
						|
    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
 | 
						|
    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
 | 
						|
/// specialized for SSAUpdater.
 | 
						|
namespace llvm {
 | 
						|
template<>
 | 
						|
class SSAUpdaterTraits<SSAUpdater> {
 | 
						|
public:
 | 
						|
  typedef BasicBlock BlkT;
 | 
						|
  typedef Value *ValT;
 | 
						|
  typedef PHINode PhiT;
 | 
						|
 | 
						|
  typedef succ_iterator BlkSucc_iterator;
 | 
						|
  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
 | 
						|
  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
 | 
						|
 | 
						|
  typedef PHIiter PHI_iterator;
 | 
						|
  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
 | 
						|
  static inline PHI_iterator PHI_end(PhiT *PHI) {
 | 
						|
    return PHI_iterator(PHI, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
 | 
						|
  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
 | 
						|
  static void FindPredecessorBlocks(BasicBlock *BB,
 | 
						|
                                    SmallVectorImpl<BasicBlock*> *Preds) {
 | 
						|
    // We can get our predecessor info by walking the pred_iterator list,
 | 
						|
    // but it is relatively slow.  If we already have PHI nodes in this
 | 
						|
    // block, walk one of them to get the predecessor list instead.
 | 
						|
    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
 | 
						|
        Preds->push_back(SomePhi->getIncomingBlock(PI));
 | 
						|
    } else {
 | 
						|
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
        Preds->push_back(*PI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// GetUndefVal - Get an undefined value of the same type as the value
 | 
						|
  /// being handled.
 | 
						|
  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
 | 
						|
    return UndefValue::get(Updater->PrototypeValue->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
 | 
						|
  /// Reserve space for the operands but do not fill them in yet.
 | 
						|
  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
 | 
						|
                               SSAUpdater *Updater) {
 | 
						|
    PHINode *PHI = PHINode::Create(Updater->PrototypeValue->getType(),
 | 
						|
                                   Updater->PrototypeValue->getName(),
 | 
						|
                                   &BB->front());
 | 
						|
    PHI->reserveOperandSpace(NumPreds);
 | 
						|
    return PHI;
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddPHIOperand - Add the specified value as an operand of the PHI for
 | 
						|
  /// the specified predecessor block.
 | 
						|
  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
 | 
						|
    PHI->addIncoming(Val, Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  /// InstrIsPHI - Check if an instruction is a PHI.
 | 
						|
  ///
 | 
						|
  static PHINode *InstrIsPHI(Instruction *I) {
 | 
						|
    return dyn_cast<PHINode>(I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// ValueIsPHI - Check if a value is a PHI.
 | 
						|
  ///
 | 
						|
  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
 | 
						|
    return dyn_cast<PHINode>(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
 | 
						|
  /// operands, i.e., it was just added.
 | 
						|
  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
 | 
						|
    PHINode *PHI = ValueIsPHI(Val, Updater);
 | 
						|
    if (PHI && PHI->getNumIncomingValues() == 0)
 | 
						|
      return PHI;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// GetPHIValue - For the specified PHI instruction, return the value
 | 
						|
  /// that it defines.
 | 
						|
  static Value *GetPHIValue(PHINode *PHI) {
 | 
						|
    return PHI;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
 | 
						|
/// for the specified BB and if so, return it.  If not, construct SSA form by
 | 
						|
/// first calculating the required placement of PHIs and then inserting new
 | 
						|
/// PHIs where needed.
 | 
						|
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
  if (Value *V = AvailableVals[BB])
 | 
						|
    return V;
 | 
						|
 | 
						|
  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
 | 
						|
  return Impl.GetValue(BB);
 | 
						|
}
 |