mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	rather than throwing an error. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131322 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			679 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			679 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of the MC-JIT runtime dynamic linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "dyld"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/ExecutionEngine/RuntimeDyld.h"
 | |
| #include "llvm/Object/MachOObject.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/Memory.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/system_error.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::object;
 | |
| 
 | |
| // Empty out-of-line virtual destructor as the key function.
 | |
| RTDyldMemoryManager::~RTDyldMemoryManager() {}
 | |
| 
 | |
| namespace llvm {
 | |
| class RuntimeDyldImpl {
 | |
|   unsigned CPUType;
 | |
|   unsigned CPUSubtype;
 | |
| 
 | |
|   // The MemoryManager to load objects into.
 | |
|   RTDyldMemoryManager *MemMgr;
 | |
| 
 | |
|   // FIXME: This all assumes we're dealing with external symbols for anything
 | |
|   //        explicitly referenced. I.e., we can index by name and things
 | |
|   //        will work out. In practice, this may not be the case, so we
 | |
|   //        should find a way to effectively generalize.
 | |
| 
 | |
|   // For each function, we have a MemoryBlock of it's instruction data.
 | |
|   StringMap<sys::MemoryBlock> Functions;
 | |
| 
 | |
|   // Master symbol table. As modules are loaded and external symbols are
 | |
|   // resolved, their addresses are stored here.
 | |
|   StringMap<uint8_t*> SymbolTable;
 | |
| 
 | |
|   // For each symbol, keep a list of relocations based on it. Anytime
 | |
|   // its address is reassigned (the JIT re-compiled the function, e.g.),
 | |
|   // the relocations get re-resolved.
 | |
|   struct RelocationEntry {
 | |
|     std::string Target;     // Object this relocation is contained in.
 | |
|     uint64_t    Offset;     // Offset into the object for the relocation.
 | |
|     uint32_t    Data;       // Second word of the raw macho relocation entry.
 | |
|     int64_t     Addend;     // Addend encoded in the instruction itself, if any.
 | |
|     bool        isResolved; // Has this relocation been resolved previously?
 | |
| 
 | |
|     RelocationEntry(StringRef t, uint64_t offset, uint32_t data, int64_t addend)
 | |
|       : Target(t), Offset(offset), Data(data), Addend(addend),
 | |
|         isResolved(false) {}
 | |
|   };
 | |
|   typedef SmallVector<RelocationEntry, 4> RelocationList;
 | |
|   StringMap<RelocationList> Relocations;
 | |
| 
 | |
|   // FIXME: Also keep a map of all the relocations contained in an object. Use
 | |
|   // this to dynamically answer whether all of the relocations in it have
 | |
|   // been resolved or not.
 | |
| 
 | |
|   bool HasError;
 | |
|   std::string ErrorStr;
 | |
| 
 | |
|   // Set the error state and record an error string.
 | |
|   bool Error(const Twine &Msg) {
 | |
|     ErrorStr = Msg.str();
 | |
|     HasError = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void extractFunction(StringRef Name, uint8_t *StartAddress,
 | |
|                        uint8_t *EndAddress);
 | |
|   bool resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
 | |
|                          unsigned Type, unsigned Size);
 | |
|   bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
 | |
|                                unsigned Type, unsigned Size);
 | |
|   bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
 | |
|                             unsigned Type, unsigned Size);
 | |
| 
 | |
|   bool loadSegment32(const MachOObject *Obj,
 | |
|                      const MachOObject::LoadCommandInfo *SegmentLCI,
 | |
|                      const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
 | |
|   bool loadSegment64(const MachOObject *Obj,
 | |
|                      const MachOObject::LoadCommandInfo *SegmentLCI,
 | |
|                      const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
 | |
| 
 | |
| public:
 | |
|   RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
 | |
| 
 | |
|   bool loadObject(MemoryBuffer *InputBuffer);
 | |
| 
 | |
|   void *getSymbolAddress(StringRef Name) {
 | |
|     // FIXME: Just look up as a function for now. Overly simple of course.
 | |
|     // Work in progress.
 | |
|     return SymbolTable.lookup(Name);
 | |
|   }
 | |
| 
 | |
|   void resolveRelocations();
 | |
| 
 | |
|   void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
 | |
| 
 | |
|   // Is the linker in an error state?
 | |
|   bool hasError() { return HasError; }
 | |
| 
 | |
|   // Mark the error condition as handled and continue.
 | |
|   void clearError() { HasError = false; }
 | |
| 
 | |
|   // Get the error message.
 | |
|   StringRef getErrorString() { return ErrorStr; }
 | |
| };
 | |
| 
 | |
| void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
 | |
|                                       uint8_t *EndAddress) {
 | |
|   // Allocate memory for the function via the memory manager.
 | |
|   uintptr_t Size = EndAddress - StartAddress + 1;
 | |
|   uintptr_t AllocSize = Size;
 | |
|   uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
 | |
|   assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
 | |
|          "Memory manager failed to allocate enough memory!");
 | |
|   // Copy the function payload into the memory block.
 | |
|   memcpy(Mem, StartAddress, Size);
 | |
|   MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
 | |
|   // Remember where we put it.
 | |
|   Functions[Name] = sys::MemoryBlock(Mem, Size);
 | |
|   // Default the assigned address for this symbol to wherever this
 | |
|   // allocated it.
 | |
|   SymbolTable[Name] = Mem;
 | |
|   DEBUG(dbgs() << "    allocated to [" << Mem << ", " << Mem + Size << "]\n");
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldImpl::
 | |
| resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
 | |
|                   unsigned Type, unsigned Size) {
 | |
|   // This just dispatches to the proper target specific routine.
 | |
|   switch (CPUType) {
 | |
|   default: assert(0 && "Unsupported CPU type!");
 | |
|   case mach::CTM_x86_64:
 | |
|     return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
 | |
|                                    isPCRel, Type, Size);
 | |
|   case mach::CTM_ARM:
 | |
|     return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
 | |
|                                 isPCRel, Type, Size);
 | |
|   }
 | |
|   llvm_unreachable("");
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldImpl::
 | |
| resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
 | |
|                         bool isPCRel, unsigned Type,
 | |
|                         unsigned Size) {
 | |
|   // If the relocation is PC-relative, the value to be encoded is the
 | |
|   // pointer difference.
 | |
|   if (isPCRel)
 | |
|     // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
 | |
|     // address. Is that expected? Only for branches, perhaps?
 | |
|     Value -= Address + 4;
 | |
| 
 | |
|   switch(Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid relocation type!");
 | |
|   case macho::RIT_X86_64_Unsigned:
 | |
|   case macho::RIT_X86_64_Branch: {
 | |
|     // Mask in the target value a byte at a time (we don't have an alignment
 | |
|     // guarantee for the target address, so this is safest).
 | |
|     uint8_t *p = (uint8_t*)Address;
 | |
|     for (unsigned i = 0; i < Size; ++i) {
 | |
|       *p++ = (uint8_t)Value;
 | |
|       Value >>= 8;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case macho::RIT_X86_64_Signed:
 | |
|   case macho::RIT_X86_64_GOTLoad:
 | |
|   case macho::RIT_X86_64_GOT:
 | |
|   case macho::RIT_X86_64_Subtractor:
 | |
|   case macho::RIT_X86_64_Signed1:
 | |
|   case macho::RIT_X86_64_Signed2:
 | |
|   case macho::RIT_X86_64_Signed4:
 | |
|   case macho::RIT_X86_64_TLV:
 | |
|     return Error("Relocation type not implemented yet!");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldImpl::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
 | |
|                                            bool isPCRel, unsigned Type,
 | |
|                                            unsigned Size) {
 | |
|   // If the relocation is PC-relative, the value to be encoded is the
 | |
|   // pointer difference.
 | |
|   if (isPCRel) {
 | |
|     Value -= Address;
 | |
|     // ARM PCRel relocations have an effective-PC offset of two instructions
 | |
|     // (four bytes in Thumb mode, 8 bytes in ARM mode).
 | |
|     // FIXME: For now, assume ARM mode.
 | |
|     Value -= 8;
 | |
|   }
 | |
| 
 | |
|   switch(Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid relocation type!");
 | |
|   case macho::RIT_Vanilla: {
 | |
|     llvm_unreachable("Invalid relocation type!");
 | |
|     // Mask in the target value a byte at a time (we don't have an alignment
 | |
|     // guarantee for the target address, so this is safest).
 | |
|     uint8_t *p = (uint8_t*)Address;
 | |
|     for (unsigned i = 0; i < Size; ++i) {
 | |
|       *p++ = (uint8_t)Value;
 | |
|       Value >>= 8;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case macho::RIT_ARM_Branch24Bit: {
 | |
|     // Mask the value into the target address. We know instructions are
 | |
|     // 32-bit aligned, so we can do it all at once.
 | |
|     uint32_t *p = (uint32_t*)Address;
 | |
|     // The low two bits of the value are not encoded.
 | |
|     Value >>= 2;
 | |
|     // Mask the value to 24 bits.
 | |
|     Value &= 0xffffff;
 | |
|     // FIXME: If the destination is a Thumb function (and the instruction
 | |
|     // is a non-predicated BL instruction), we need to change it to a BLX
 | |
|     // instruction instead.
 | |
| 
 | |
|     // Insert the value into the instruction.
 | |
|     *p = (*p & ~0xffffff) | Value;
 | |
|     break;
 | |
|   }
 | |
|   case macho::RIT_ARM_ThumbBranch22Bit:
 | |
|   case macho::RIT_ARM_ThumbBranch32Bit:
 | |
|   case macho::RIT_ARM_Half:
 | |
|   case macho::RIT_ARM_HalfDifference:
 | |
|   case macho::RIT_Pair:
 | |
|   case macho::RIT_Difference:
 | |
|   case macho::RIT_ARM_LocalDifference:
 | |
|   case macho::RIT_ARM_PreboundLazyPointer:
 | |
|     return Error("Relocation type not implemented yet!");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldImpl::
 | |
| loadSegment32(const MachOObject *Obj,
 | |
|               const MachOObject::LoadCommandInfo *SegmentLCI,
 | |
|               const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
 | |
|   InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
 | |
|   Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
 | |
|   if (!SegmentLC)
 | |
|     return Error("unable to load segment load command");
 | |
| 
 | |
|   for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
 | |
|     InMemoryStruct<macho::Section> Sect;
 | |
|     Obj->ReadSection(*SegmentLCI, SectNum, Sect);
 | |
|     if (!Sect)
 | |
|       return Error("unable to load section: '" + Twine(SectNum) + "'");
 | |
| 
 | |
|     // FIXME: For the time being, we're only loading text segments.
 | |
|     if (Sect->Flags != 0x80000400)
 | |
|       continue;
 | |
| 
 | |
|     // Address and names of symbols in the section.
 | |
|     typedef std::pair<uint64_t, StringRef> SymbolEntry;
 | |
|     SmallVector<SymbolEntry, 64> Symbols;
 | |
|     // Index of all the names, in this section or not. Used when we're
 | |
|     // dealing with relocation entries.
 | |
|     SmallVector<StringRef, 64> SymbolNames;
 | |
|     for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
 | |
|       InMemoryStruct<macho::SymbolTableEntry> STE;
 | |
|       Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
 | |
|       if (!STE)
 | |
|         return Error("unable to read symbol: '" + Twine(i) + "'");
 | |
|       if (STE->SectionIndex > SegmentLC->NumSections)
 | |
|         return Error("invalid section index for symbol: '" + Twine(i) + "'");
 | |
|       // Get the symbol name.
 | |
|       StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
 | |
|       SymbolNames.push_back(Name);
 | |
| 
 | |
|       // Just skip symbols not defined in this section.
 | |
|       if ((unsigned)STE->SectionIndex - 1 != SectNum)
 | |
|         continue;
 | |
| 
 | |
|       // FIXME: Check the symbol type and flags.
 | |
|       if (STE->Type != 0xF)  // external, defined in this section.
 | |
|         continue;
 | |
|       // Flags == 0x8 marks a thumb function for ARM, which is fine as it
 | |
|       // doesn't require any special handling here.
 | |
|       if (STE->Flags != 0x0 && STE->Flags != 0x8)
 | |
|         continue;
 | |
| 
 | |
|       // Remember the symbol.
 | |
|       Symbols.push_back(SymbolEntry(STE->Value, Name));
 | |
| 
 | |
|       DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
 | |
|             (Sect->Address + STE->Value) << "\n");
 | |
|     }
 | |
|     // Sort the symbols by address, just in case they didn't come in that way.
 | |
|     array_pod_sort(Symbols.begin(), Symbols.end());
 | |
| 
 | |
|     // If there weren't any functions (odd, but just in case...)
 | |
|     if (!Symbols.size())
 | |
|       continue;
 | |
| 
 | |
|     // Extract the function data.
 | |
|     uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
 | |
|                                            SegmentLC->FileSize).data();
 | |
|     for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
 | |
|       uint64_t StartOffset = Sect->Address + Symbols[i].first;
 | |
|       uint64_t EndOffset = Symbols[i + 1].first - 1;
 | |
|       DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
 | |
|                    << " from [" << StartOffset << ", " << EndOffset << "]\n");
 | |
|       extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
 | |
|     }
 | |
|     // The last symbol we do after since the end address is calculated
 | |
|     // differently because there is no next symbol to reference.
 | |
|     uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
 | |
|     uint64_t EndOffset = Sect->Size - 1;
 | |
|     DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
 | |
|                  << " from [" << StartOffset << ", " << EndOffset << "]\n");
 | |
|     extractFunction(Symbols[Symbols.size()-1].second,
 | |
|                     Base + StartOffset, Base + EndOffset);
 | |
| 
 | |
|     // Now extract the relocation information for each function and process it.
 | |
|     for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
 | |
|       InMemoryStruct<macho::RelocationEntry> RE;
 | |
|       Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
 | |
|       if (RE->Word0 & macho::RF_Scattered)
 | |
|         return Error("NOT YET IMPLEMENTED: scattered relocations.");
 | |
|       // Word0 of the relocation is the offset into the section where the
 | |
|       // relocation should be applied. We need to translate that into an
 | |
|       // offset into a function since that's our atom.
 | |
|       uint32_t Offset = RE->Word0;
 | |
|       // Look for the function containing the address. This is used for JIT
 | |
|       // code, so the number of functions in section is almost always going
 | |
|       // to be very small (usually just one), so until we have use cases
 | |
|       // where that's not true, just use a trivial linear search.
 | |
|       unsigned SymbolNum;
 | |
|       unsigned NumSymbols = Symbols.size();
 | |
|       assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
 | |
|              "No symbol containing relocation!");
 | |
|       for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
 | |
|         if (Symbols[SymbolNum + 1].first > Offset)
 | |
|           break;
 | |
|       // Adjust the offset to be relative to the symbol.
 | |
|       Offset -= Symbols[SymbolNum].first;
 | |
|       // Get the name of the symbol containing the relocation.
 | |
|       StringRef TargetName = SymbolNames[SymbolNum];
 | |
| 
 | |
|       bool isExtern = (RE->Word1 >> 27) & 1;
 | |
|       // Figure out the source symbol of the relocation. If isExtern is true,
 | |
|       // this relocation references the symbol table, otherwise it references
 | |
|       // a section in the same object, numbered from 1 through NumSections
 | |
|       // (SectionBases is [0, NumSections-1]).
 | |
|       // FIXME: Some targets (ARM) use internal relocations even for
 | |
|       // externally visible symbols, if the definition is in the same
 | |
|       // file as the reference. We need to convert those back to by-name
 | |
|       // references. We can resolve the address based on the section
 | |
|       // offset and see if we have a symbol at that address. If we do,
 | |
|       // use that; otherwise, puke.
 | |
|       if (!isExtern)
 | |
|         return Error("Internal relocations not supported.");
 | |
|       uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
 | |
|       StringRef SourceName = SymbolNames[SourceNum];
 | |
| 
 | |
|       // FIXME: Get the relocation addend from the target address.
 | |
| 
 | |
|       // Now store the relocation information. Associate it with the source
 | |
|       // symbol.
 | |
|       Relocations[SourceName].push_back(RelocationEntry(TargetName,
 | |
|                                                         Offset,
 | |
|                                                         RE->Word1,
 | |
|                                                         0 /*Addend*/));
 | |
|       DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
 | |
|                    << " from '" << SourceName << "(Word1: "
 | |
|                    << format("0x%x", RE->Word1) << ")\n");
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool RuntimeDyldImpl::
 | |
| loadSegment64(const MachOObject *Obj,
 | |
|               const MachOObject::LoadCommandInfo *SegmentLCI,
 | |
|               const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
 | |
|   InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
 | |
|   Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
 | |
|   if (!Segment64LC)
 | |
|     return Error("unable to load segment load command");
 | |
| 
 | |
|   for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
 | |
|     InMemoryStruct<macho::Section64> Sect;
 | |
|     Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
 | |
|     if (!Sect)
 | |
|       return Error("unable to load section: '" + Twine(SectNum) + "'");
 | |
| 
 | |
|     // FIXME: For the time being, we're only loading text segments.
 | |
|     if (Sect->Flags != 0x80000400)
 | |
|       continue;
 | |
| 
 | |
|     // Address and names of symbols in the section.
 | |
|     typedef std::pair<uint64_t, StringRef> SymbolEntry;
 | |
|     SmallVector<SymbolEntry, 64> Symbols;
 | |
|     // Index of all the names, in this section or not. Used when we're
 | |
|     // dealing with relocation entries.
 | |
|     SmallVector<StringRef, 64> SymbolNames;
 | |
|     for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
 | |
|       InMemoryStruct<macho::Symbol64TableEntry> STE;
 | |
|       Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
 | |
|       if (!STE)
 | |
|         return Error("unable to read symbol: '" + Twine(i) + "'");
 | |
|       if (STE->SectionIndex > Segment64LC->NumSections)
 | |
|         return Error("invalid section index for symbol: '" + Twine(i) + "'");
 | |
|       // Get the symbol name.
 | |
|       StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
 | |
|       SymbolNames.push_back(Name);
 | |
| 
 | |
|       // Just skip symbols not defined in this section.
 | |
|       if ((unsigned)STE->SectionIndex - 1 != SectNum)
 | |
|         continue;
 | |
| 
 | |
|       // FIXME: Check the symbol type and flags.
 | |
|       if (STE->Type != 0xF)  // external, defined in this section.
 | |
|         continue;
 | |
|       if (STE->Flags != 0x0)
 | |
|         continue;
 | |
| 
 | |
|       // Remember the symbol.
 | |
|       Symbols.push_back(SymbolEntry(STE->Value, Name));
 | |
| 
 | |
|       DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
 | |
|             (Sect->Address + STE->Value) << "\n");
 | |
|     }
 | |
|     // Sort the symbols by address, just in case they didn't come in that way.
 | |
|     array_pod_sort(Symbols.begin(), Symbols.end());
 | |
| 
 | |
|     // If there weren't any functions (odd, but just in case...)
 | |
|     if (!Symbols.size())
 | |
|       continue;
 | |
| 
 | |
|     // Extract the function data.
 | |
|     uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
 | |
|                                            Segment64LC->FileSize).data();
 | |
|     for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
 | |
|       uint64_t StartOffset = Sect->Address + Symbols[i].first;
 | |
|       uint64_t EndOffset = Symbols[i + 1].first - 1;
 | |
|       DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
 | |
|                    << " from [" << StartOffset << ", " << EndOffset << "]\n");
 | |
|       extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
 | |
|     }
 | |
|     // The last symbol we do after since the end address is calculated
 | |
|     // differently because there is no next symbol to reference.
 | |
|     uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
 | |
|     uint64_t EndOffset = Sect->Size - 1;
 | |
|     DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
 | |
|                  << " from [" << StartOffset << ", " << EndOffset << "]\n");
 | |
|     extractFunction(Symbols[Symbols.size()-1].second,
 | |
|                     Base + StartOffset, Base + EndOffset);
 | |
| 
 | |
|     // Now extract the relocation information for each function and process it.
 | |
|     for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
 | |
|       InMemoryStruct<macho::RelocationEntry> RE;
 | |
|       Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
 | |
|       if (RE->Word0 & macho::RF_Scattered)
 | |
|         return Error("NOT YET IMPLEMENTED: scattered relocations.");
 | |
|       // Word0 of the relocation is the offset into the section where the
 | |
|       // relocation should be applied. We need to translate that into an
 | |
|       // offset into a function since that's our atom.
 | |
|       uint32_t Offset = RE->Word0;
 | |
|       // Look for the function containing the address. This is used for JIT
 | |
|       // code, so the number of functions in section is almost always going
 | |
|       // to be very small (usually just one), so until we have use cases
 | |
|       // where that's not true, just use a trivial linear search.
 | |
|       unsigned SymbolNum;
 | |
|       unsigned NumSymbols = Symbols.size();
 | |
|       assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
 | |
|              "No symbol containing relocation!");
 | |
|       for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
 | |
|         if (Symbols[SymbolNum + 1].first > Offset)
 | |
|           break;
 | |
|       // Adjust the offset to be relative to the symbol.
 | |
|       Offset -= Symbols[SymbolNum].first;
 | |
|       // Get the name of the symbol containing the relocation.
 | |
|       StringRef TargetName = SymbolNames[SymbolNum];
 | |
| 
 | |
|       bool isExtern = (RE->Word1 >> 27) & 1;
 | |
|       // Figure out the source symbol of the relocation. If isExtern is true,
 | |
|       // this relocation references the symbol table, otherwise it references
 | |
|       // a section in the same object, numbered from 1 through NumSections
 | |
|       // (SectionBases is [0, NumSections-1]).
 | |
|       if (!isExtern)
 | |
|         return Error("Internal relocations not supported.");
 | |
|       uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
 | |
|       StringRef SourceName = SymbolNames[SourceNum];
 | |
| 
 | |
|       // FIXME: Get the relocation addend from the target address.
 | |
| 
 | |
|       // Now store the relocation information. Associate it with the source
 | |
|       // symbol.
 | |
|       Relocations[SourceName].push_back(RelocationEntry(TargetName,
 | |
|                                                         Offset,
 | |
|                                                         RE->Word1,
 | |
|                                                         0 /*Addend*/));
 | |
|       DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
 | |
|                    << " from '" << SourceName << "(Word1: "
 | |
|                    << format("0x%x", RE->Word1) << ")\n");
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) {
 | |
|   // If the linker is in an error state, don't do anything.
 | |
|   if (hasError())
 | |
|     return true;
 | |
|   // Load the Mach-O wrapper object.
 | |
|   std::string ErrorStr;
 | |
|   OwningPtr<MachOObject> Obj(
 | |
|     MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
 | |
|   if (!Obj)
 | |
|     return Error("unable to load object: '" + ErrorStr + "'");
 | |
| 
 | |
|   // Get the CPU type information from the header.
 | |
|   const macho::Header &Header = Obj->getHeader();
 | |
| 
 | |
|   // FIXME: Error checking that the loaded object is compatible with
 | |
|   //        the system we're running on.
 | |
|   CPUType = Header.CPUType;
 | |
|   CPUSubtype = Header.CPUSubtype;
 | |
| 
 | |
|   // Validate that the load commands match what we expect.
 | |
|   const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
 | |
|     *DysymtabLCI = 0;
 | |
|   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
 | |
|     const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
 | |
|     switch (LCI.Command.Type) {
 | |
|     case macho::LCT_Segment:
 | |
|     case macho::LCT_Segment64:
 | |
|       if (SegmentLCI)
 | |
|         return Error("unexpected input object (multiple segments)");
 | |
|       SegmentLCI = &LCI;
 | |
|       break;
 | |
|     case macho::LCT_Symtab:
 | |
|       if (SymtabLCI)
 | |
|         return Error("unexpected input object (multiple symbol tables)");
 | |
|       SymtabLCI = &LCI;
 | |
|       break;
 | |
|     case macho::LCT_Dysymtab:
 | |
|       if (DysymtabLCI)
 | |
|         return Error("unexpected input object (multiple symbol tables)");
 | |
|       DysymtabLCI = &LCI;
 | |
|       break;
 | |
|     default:
 | |
|       return Error("unexpected input object (unexpected load command");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SymtabLCI)
 | |
|     return Error("no symbol table found in object");
 | |
|   if (!SegmentLCI)
 | |
|     return Error("no symbol table found in object");
 | |
| 
 | |
|   // Read and register the symbol table data.
 | |
|   InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
 | |
|   Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
 | |
|   if (!SymtabLC)
 | |
|     return Error("unable to load symbol table load command");
 | |
|   Obj->RegisterStringTable(*SymtabLC);
 | |
| 
 | |
|   // Read the dynamic link-edit information, if present (not present in static
 | |
|   // objects).
 | |
|   if (DysymtabLCI) {
 | |
|     InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
 | |
|     Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
 | |
|     if (!DysymtabLC)
 | |
|       return Error("unable to load dynamic link-exit load command");
 | |
| 
 | |
|     // FIXME: We don't support anything interesting yet.
 | |
| //    if (DysymtabLC->LocalSymbolsIndex != 0)
 | |
| //      return Error("NOT YET IMPLEMENTED: local symbol entries");
 | |
| //    if (DysymtabLC->ExternalSymbolsIndex != 0)
 | |
| //      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
 | |
| //    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
 | |
| //      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
 | |
|   }
 | |
| 
 | |
|   // Load the segment load command.
 | |
|   if (SegmentLCI->Command.Type == macho::LCT_Segment) {
 | |
|     if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
 | |
|       return true;
 | |
|   } else {
 | |
|     if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Resolve the relocations for all symbols we currently know about.
 | |
| void RuntimeDyldImpl::resolveRelocations() {
 | |
|   // Just iterate over the symbols in our symbol table and assign their
 | |
|   // addresses.
 | |
|   StringMap<uint8_t*>::iterator i = SymbolTable.begin();
 | |
|   StringMap<uint8_t*>::iterator e = SymbolTable.end();
 | |
|   for (;i != e; ++i)
 | |
|     reassignSymbolAddress(i->getKey(), i->getValue());
 | |
| }
 | |
| 
 | |
| // Assign an address to a symbol name and resolve all the relocations
 | |
| // associated with it.
 | |
| void RuntimeDyldImpl::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
 | |
|   // Assign the address in our symbol table.
 | |
|   SymbolTable[Name] = Addr;
 | |
| 
 | |
|   RelocationList &Relocs = Relocations[Name];
 | |
|   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
 | |
|     RelocationEntry &RE = Relocs[i];
 | |
|     uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
 | |
|     bool isPCRel = (RE.Data >> 24) & 1;
 | |
|     unsigned Type = (RE.Data >> 28) & 0xf;
 | |
|     unsigned Size = 1 << ((RE.Data >> 25) & 3);
 | |
| 
 | |
|     DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
 | |
|           << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
 | |
|           << " from '" << Name << " (" << format("%p", Addr) << ")"
 | |
|           << "(" << (isPCRel ? "pcrel" : "absolute")
 | |
|           << ", type: " << Type << ", Size: " << Size << ").\n");
 | |
| 
 | |
|     resolveRelocation(Target, Addr, isPCRel, Type, Size);
 | |
|     RE.isResolved = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RuntimeDyld class implementation
 | |
| RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) {
 | |
|   Dyld = new RuntimeDyldImpl(MM);
 | |
| }
 | |
| 
 | |
| RuntimeDyld::~RuntimeDyld() {
 | |
|   delete Dyld;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
 | |
|   return Dyld->loadObject(InputBuffer);
 | |
| }
 | |
| 
 | |
| void *RuntimeDyld::getSymbolAddress(StringRef Name) {
 | |
|   return Dyld->getSymbolAddress(Name);
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::resolveRelocations() {
 | |
|   Dyld->resolveRelocations();
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
 | |
|   Dyld->reassignSymbolAddress(Name, Addr);
 | |
| }
 | |
| 
 | |
| StringRef RuntimeDyld::getErrorString() {
 | |
|   return Dyld->getErrorString();
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 |