mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80766 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			777 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			777 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation analyzes and transforms the induction variables (and
 | |
| // computations derived from them) into simpler forms suitable for subsequent
 | |
| // analysis and transformation.
 | |
| //
 | |
| // This transformation makes the following changes to each loop with an
 | |
| // identifiable induction variable:
 | |
| //   1. All loops are transformed to have a SINGLE canonical induction variable
 | |
| //      which starts at zero and steps by one.
 | |
| //   2. The canonical induction variable is guaranteed to be the first PHI node
 | |
| //      in the loop header block.
 | |
| //   3. The canonical induction variable is guaranteed to be in a wide enough
 | |
| //      type so that IV expressions need not be (directly) zero-extended or
 | |
| //      sign-extended.
 | |
| //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
 | |
| //
 | |
| // If the trip count of a loop is computable, this pass also makes the following
 | |
| // changes:
 | |
| //   1. The exit condition for the loop is canonicalized to compare the
 | |
| //      induction value against the exit value.  This turns loops like:
 | |
| //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | |
| //   2. Any use outside of the loop of an expression derived from the indvar
 | |
| //      is changed to compute the derived value outside of the loop, eliminating
 | |
| //      the dependence on the exit value of the induction variable.  If the only
 | |
| //      purpose of the loop is to compute the exit value of some derived
 | |
| //      expression, this transformation will make the loop dead.
 | |
| //
 | |
| // This transformation should be followed by strength reduction after all of the
 | |
| // desired loop transformations have been performed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "indvars"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/IVUsers.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumRemoved , "Number of aux indvars removed");
 | |
| STATISTIC(NumInserted, "Number of canonical indvars added");
 | |
| STATISTIC(NumReplaced, "Number of exit values replaced");
 | |
| STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
 | |
| 
 | |
| namespace {
 | |
|   class IndVarSimplify : public LoopPass {
 | |
|     IVUsers         *IU;
 | |
|     LoopInfo        *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     DominatorTree   *DT;
 | |
|     bool Changed;
 | |
|   public:
 | |
| 
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     IndVarSimplify() : LoopPass(&ID) {}
 | |
| 
 | |
|     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addRequired<IVUsers>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addPreserved<IVUsers>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     void RewriteNonIntegerIVs(Loop *L);
 | |
| 
 | |
|     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
 | |
|                                    Value *IndVar,
 | |
|                                    BasicBlock *ExitingBlock,
 | |
|                                    BranchInst *BI,
 | |
|                                    SCEVExpander &Rewriter);
 | |
|     void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount,
 | |
|                                SCEVExpander &Rewriter);
 | |
| 
 | |
|     void RewriteIVExpressions(Loop *L, const Type *LargestType,
 | |
|                               SCEVExpander &Rewriter);
 | |
| 
 | |
|     void SinkUnusedInvariants(Loop *L);
 | |
| 
 | |
|     void HandleFloatingPointIV(Loop *L, PHINode *PH);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char IndVarSimplify::ID = 0;
 | |
| static RegisterPass<IndVarSimplify>
 | |
| X("indvars", "Canonicalize Induction Variables");
 | |
| 
 | |
| Pass *llvm::createIndVarSimplifyPass() {
 | |
|   return new IndVarSimplify();
 | |
| }
 | |
| 
 | |
| /// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | |
| /// loop to be a canonical != comparison against the incremented loop induction
 | |
| /// variable.  This pass is able to rewrite the exit tests of any loop where the
 | |
| /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | |
| /// is actually a much broader range than just linear tests.
 | |
| ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
 | |
|                                    const SCEV *BackedgeTakenCount,
 | |
|                                    Value *IndVar,
 | |
|                                    BasicBlock *ExitingBlock,
 | |
|                                    BranchInst *BI,
 | |
|                                    SCEVExpander &Rewriter) {
 | |
|   // If the exiting block is not the same as the backedge block, we must compare
 | |
|   // against the preincremented value, otherwise we prefer to compare against
 | |
|   // the post-incremented value.
 | |
|   Value *CmpIndVar;
 | |
|   const SCEV *RHS = BackedgeTakenCount;
 | |
|   if (ExitingBlock == L->getLoopLatch()) {
 | |
|     // Add one to the "backedge-taken" count to get the trip count.
 | |
|     // If this addition may overflow, we have to be more pessimistic and
 | |
|     // cast the induction variable before doing the add.
 | |
|     const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
 | |
|     const SCEV *N =
 | |
|       SE->getAddExpr(BackedgeTakenCount,
 | |
|                      SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
 | |
|     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
 | |
|         SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
 | |
|       // No overflow. Cast the sum.
 | |
|       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
 | |
|     } else {
 | |
|       // Potential overflow. Cast before doing the add.
 | |
|       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | |
|                                         IndVar->getType());
 | |
|       RHS = SE->getAddExpr(RHS,
 | |
|                            SE->getIntegerSCEV(1, IndVar->getType()));
 | |
|     }
 | |
| 
 | |
|     // The BackedgeTaken expression contains the number of times that the
 | |
|     // backedge branches to the loop header.  This is one less than the
 | |
|     // number of times the loop executes, so use the incremented indvar.
 | |
|     CmpIndVar = L->getCanonicalInductionVariableIncrement();
 | |
|   } else {
 | |
|     // We have to use the preincremented value...
 | |
|     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | |
|                                       IndVar->getType());
 | |
|     CmpIndVar = IndVar;
 | |
|   }
 | |
| 
 | |
|   // Expand the code for the iteration count.
 | |
|   assert(RHS->isLoopInvariant(L) &&
 | |
|          "Computed iteration count is not loop invariant!");
 | |
|   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
 | |
| 
 | |
|   // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | |
|   ICmpInst::Predicate Opcode;
 | |
|   if (L->contains(BI->getSuccessor(0)))
 | |
|     Opcode = ICmpInst::ICMP_NE;
 | |
|   else
 | |
|     Opcode = ICmpInst::ICMP_EQ;
 | |
| 
 | |
|   DEBUG(errs() << "INDVARS: Rewriting loop exit condition to:\n"
 | |
|                << "      LHS:" << *CmpIndVar << '\n'
 | |
|                << "       op:\t"
 | |
|                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
 | |
|                << "      RHS:\t" << *RHS << "\n");
 | |
| 
 | |
|   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
 | |
| 
 | |
|   Instruction *OrigCond = cast<Instruction>(BI->getCondition());
 | |
|   // It's tempting to use replaceAllUsesWith here to fully replace the old
 | |
|   // comparison, but that's not immediately safe, since users of the old
 | |
|   // comparison may not be dominated by the new comparison. Instead, just
 | |
|   // update the branch to use the new comparison; in the common case this
 | |
|   // will make old comparison dead.
 | |
|   BI->setCondition(Cond);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
 | |
| 
 | |
|   ++NumLFTR;
 | |
|   Changed = true;
 | |
|   return Cond;
 | |
| }
 | |
| 
 | |
| /// RewriteLoopExitValues - Check to see if this loop has a computable
 | |
| /// loop-invariant execution count.  If so, this means that we can compute the
 | |
| /// final value of any expressions that are recurrent in the loop, and
 | |
| /// substitute the exit values from the loop into any instructions outside of
 | |
| /// the loop that use the final values of the current expressions.
 | |
| ///
 | |
| /// This is mostly redundant with the regular IndVarSimplify activities that
 | |
| /// happen later, except that it's more powerful in some cases, because it's
 | |
| /// able to brute-force evaluate arbitrary instructions as long as they have
 | |
| /// constant operands at the beginning of the loop.
 | |
| void IndVarSimplify::RewriteLoopExitValues(Loop *L,
 | |
|                                            const SCEV *BackedgeTakenCount,
 | |
|                                            SCEVExpander &Rewriter) {
 | |
|   // Verify the input to the pass in already in LCSSA form.
 | |
|   assert(L->isLCSSAForm());
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Find all values that are computed inside the loop, but used outside of it.
 | |
|   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | |
|   // the exit blocks of the loop to find them.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBB = ExitBlocks[i];
 | |
| 
 | |
|     // If there are no PHI nodes in this exit block, then no values defined
 | |
|     // inside the loop are used on this path, skip it.
 | |
|     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | |
|     if (!PN) continue;
 | |
| 
 | |
|     unsigned NumPreds = PN->getNumIncomingValues();
 | |
| 
 | |
|     // Iterate over all of the PHI nodes.
 | |
|     BasicBlock::iterator BBI = ExitBB->begin();
 | |
|     while ((PN = dyn_cast<PHINode>(BBI++))) {
 | |
|       if (PN->use_empty())
 | |
|         continue; // dead use, don't replace it
 | |
|       // Iterate over all of the values in all the PHI nodes.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         // If the value being merged in is not integer or is not defined
 | |
|         // in the loop, skip it.
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         if (!isa<Instruction>(InVal) ||
 | |
|             // SCEV only supports integer expressions for now.
 | |
|             (!isa<IntegerType>(InVal->getType()) &&
 | |
|              !isa<PointerType>(InVal->getType())))
 | |
|           continue;
 | |
| 
 | |
|         // If this pred is for a subloop, not L itself, skip it.
 | |
|         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | |
|           continue; // The Block is in a subloop, skip it.
 | |
| 
 | |
|         // Check that InVal is defined in the loop.
 | |
|         Instruction *Inst = cast<Instruction>(InVal);
 | |
|         if (!L->contains(Inst->getParent()))
 | |
|           continue;
 | |
| 
 | |
|         // Okay, this instruction has a user outside of the current loop
 | |
|         // and varies predictably *inside* the loop.  Evaluate the value it
 | |
|         // contains when the loop exits, if possible.
 | |
|         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | |
|         if (!ExitValue->isLoopInvariant(L))
 | |
|           continue;
 | |
| 
 | |
|         Changed = true;
 | |
|         ++NumReplaced;
 | |
| 
 | |
|         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
 | |
| 
 | |
|         DEBUG(errs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
 | |
|                      << "  LoopVal = " << *Inst << "\n");
 | |
| 
 | |
|         PN->setIncomingValue(i, ExitVal);
 | |
| 
 | |
|         // If this instruction is dead now, delete it.
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| 
 | |
|         if (NumPreds == 1) {
 | |
|           // Completely replace a single-pred PHI. This is safe, because the
 | |
|           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
 | |
|           // node anymore.
 | |
|           PN->replaceAllUsesWith(ExitVal);
 | |
|           RecursivelyDeleteTriviallyDeadInstructions(PN);
 | |
|         }
 | |
|       }
 | |
|       if (NumPreds != 1) {
 | |
|         // Clone the PHI and delete the original one. This lets IVUsers and
 | |
|         // any other maps purge the original user from their records.
 | |
|         PHINode *NewPN = PN->clone(PN->getContext());
 | |
|         NewPN->takeName(PN);
 | |
|         NewPN->insertBefore(PN);
 | |
|         PN->replaceAllUsesWith(NewPN);
 | |
|         PN->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
 | |
|   // First step.  Check to see if there are any floating-point recurrences.
 | |
|   // If there are, change them into integer recurrences, permitting analysis by
 | |
|   // the SCEV routines.
 | |
|   //
 | |
|   BasicBlock *Header    = L->getHeader();
 | |
| 
 | |
|   SmallVector<WeakVH, 8> PHIs;
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PHIs.push_back(PN);
 | |
| 
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
 | |
|       HandleFloatingPointIV(L, PN);
 | |
| 
 | |
|   // If the loop previously had floating-point IV, ScalarEvolution
 | |
|   // may not have been able to compute a trip count. Now that we've done some
 | |
|   // re-writing, the trip count may be computable.
 | |
|   if (Changed)
 | |
|     SE->forgetLoopBackedgeTakenCount(L);
 | |
| }
 | |
| 
 | |
| bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   IU = &getAnalysis<IVUsers>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   Changed = false;
 | |
| 
 | |
|   // If there are any floating-point recurrences, attempt to
 | |
|   // transform them to use integer recurrences.
 | |
|   RewriteNonIntegerIVs(L);
 | |
| 
 | |
|   BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
 | |
|   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
| 
 | |
|   // Create a rewriter object which we'll use to transform the code with.
 | |
|   SCEVExpander Rewriter(*SE);
 | |
| 
 | |
|   // Check to see if this loop has a computable loop-invariant execution count.
 | |
|   // If so, this means that we can compute the final value of any expressions
 | |
|   // that are recurrent in the loop, and substitute the exit values from the
 | |
|   // loop into any instructions outside of the loop that use the final values of
 | |
|   // the current expressions.
 | |
|   //
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     RewriteLoopExitValues(L, BackedgeTakenCount, Rewriter);
 | |
| 
 | |
|   // Compute the type of the largest recurrence expression, and decide whether
 | |
|   // a canonical induction variable should be inserted.
 | |
|   const Type *LargestType = 0;
 | |
|   bool NeedCannIV = false;
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
 | |
|     LargestType = BackedgeTakenCount->getType();
 | |
|     LargestType = SE->getEffectiveSCEVType(LargestType);
 | |
|     // If we have a known trip count and a single exit block, we'll be
 | |
|     // rewriting the loop exit test condition below, which requires a
 | |
|     // canonical induction variable.
 | |
|     if (ExitingBlock)
 | |
|       NeedCannIV = true;
 | |
|   }
 | |
|   for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | |
|     const SCEV *Stride = IU->StrideOrder[i];
 | |
|     const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
 | |
|     if (!LargestType ||
 | |
|         SE->getTypeSizeInBits(Ty) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|       LargestType = Ty;
 | |
| 
 | |
|     std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | |
|       IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | |
|     assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
| 
 | |
|     if (!SI->second->Users.empty())
 | |
|       NeedCannIV = true;
 | |
|   }
 | |
| 
 | |
|   // Now that we know the largest of of the induction variable expressions
 | |
|   // in this loop, insert a canonical induction variable of the largest size.
 | |
|   Value *IndVar = 0;
 | |
|   if (NeedCannIV) {
 | |
|     // Check to see if the loop already has a canonical-looking induction
 | |
|     // variable. If one is present and it's wider than the planned canonical
 | |
|     // induction variable, temporarily remove it, so that the Rewriter
 | |
|     // doesn't attempt to reuse it.
 | |
|     PHINode *OldCannIV = L->getCanonicalInductionVariable();
 | |
|     if (OldCannIV) {
 | |
|       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|         OldCannIV->removeFromParent();
 | |
|       else
 | |
|         OldCannIV = 0;
 | |
|     }
 | |
| 
 | |
|     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
 | |
| 
 | |
|     ++NumInserted;
 | |
|     Changed = true;
 | |
|     DEBUG(errs() << "INDVARS: New CanIV: " << *IndVar << '\n');
 | |
| 
 | |
|     // Now that the official induction variable is established, reinsert
 | |
|     // the old canonical-looking variable after it so that the IR remains
 | |
|     // consistent. It will be deleted as part of the dead-PHI deletion at
 | |
|     // the end of the pass.
 | |
|     if (OldCannIV)
 | |
|       OldCannIV->insertAfter(cast<Instruction>(IndVar));
 | |
|   }
 | |
| 
 | |
|   // If we have a trip count expression, rewrite the loop's exit condition
 | |
|   // using it.  We can currently only handle loops with a single exit.
 | |
|   ICmpInst *NewICmp = 0;
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
 | |
|     assert(NeedCannIV &&
 | |
|            "LinearFunctionTestReplace requires a canonical induction variable");
 | |
|     // Can't rewrite non-branch yet.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
 | |
|       NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
 | |
|                                           ExitingBlock, BI, Rewriter);
 | |
|   }
 | |
| 
 | |
|   // Rewrite IV-derived expressions. Clears the rewriter cache.
 | |
|   RewriteIVExpressions(L, LargestType, Rewriter);
 | |
| 
 | |
|   // The Rewriter may not be used from this point on.
 | |
| 
 | |
|   // Loop-invariant instructions in the preheader that aren't used in the
 | |
|   // loop may be sunk below the loop to reduce register pressure.
 | |
|   SinkUnusedInvariants(L);
 | |
| 
 | |
|   // For completeness, inform IVUsers of the IV use in the newly-created
 | |
|   // loop exit test instruction.
 | |
|   if (NewICmp)
 | |
|     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
 | |
| 
 | |
|   // Clean up dead instructions.
 | |
|   DeleteDeadPHIs(L->getHeader());
 | |
|   // Check a post-condition.
 | |
|   assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
 | |
|                                           SCEVExpander &Rewriter) {
 | |
|   SmallVector<WeakVH, 16> DeadInsts;
 | |
| 
 | |
|   // Rewrite all induction variable expressions in terms of the canonical
 | |
|   // induction variable.
 | |
|   //
 | |
|   // If there were induction variables of other sizes or offsets, manually
 | |
|   // add the offsets to the primary induction variable and cast, avoiding
 | |
|   // the need for the code evaluation methods to insert induction variables
 | |
|   // of different sizes.
 | |
|   for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | |
|     const SCEV *Stride = IU->StrideOrder[i];
 | |
| 
 | |
|     std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | |
|       IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | |
|     assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
|     ilist<IVStrideUse> &List = SI->second->Users;
 | |
|     for (ilist<IVStrideUse>::iterator UI = List.begin(),
 | |
|          E = List.end(); UI != E; ++UI) {
 | |
|       Value *Op = UI->getOperandValToReplace();
 | |
|       const Type *UseTy = Op->getType();
 | |
|       Instruction *User = UI->getUser();
 | |
| 
 | |
|       // Compute the final addrec to expand into code.
 | |
|       const SCEV *AR = IU->getReplacementExpr(*UI);
 | |
| 
 | |
|       // FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
|       // complex than affine induction variables.  Doing so will put expensive
 | |
|       // polynomial evaluations inside of the loop, and the str reduction pass
 | |
|       // currently can only reduce affine polynomials.  For now just disable
 | |
|       // indvar subst on anything more complex than an affine addrec, unless
 | |
|       // it can be expanded to a trivial value.
 | |
|       if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L))
 | |
|         continue;
 | |
| 
 | |
|       // Determine the insertion point for this user. By default, insert
 | |
|       // immediately before the user. The SCEVExpander class will automatically
 | |
|       // hoist loop invariants out of the loop. For PHI nodes, there may be
 | |
|       // multiple uses, so compute the nearest common dominator for the
 | |
|       // incoming blocks.
 | |
|       Instruction *InsertPt = User;
 | |
|       if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
 | |
|         for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
 | |
|           if (PHI->getIncomingValue(i) == Op) {
 | |
|             if (InsertPt == User)
 | |
|               InsertPt = PHI->getIncomingBlock(i)->getTerminator();
 | |
|             else
 | |
|               InsertPt =
 | |
|                 DT->findNearestCommonDominator(InsertPt->getParent(),
 | |
|                                                PHI->getIncomingBlock(i))
 | |
|                       ->getTerminator();
 | |
|           }
 | |
| 
 | |
|       // Now expand it into actual Instructions and patch it into place.
 | |
|       Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
 | |
| 
 | |
|       // Patch the new value into place.
 | |
|       if (Op->hasName())
 | |
|         NewVal->takeName(Op);
 | |
|       User->replaceUsesOfWith(Op, NewVal);
 | |
|       UI->setOperandValToReplace(NewVal);
 | |
|       DEBUG(errs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
 | |
|                    << "   into = " << *NewVal << "\n");
 | |
|       ++NumRemoved;
 | |
|       Changed = true;
 | |
| 
 | |
|       // The old value may be dead now.
 | |
|       DeadInsts.push_back(Op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Clear the rewriter cache, because values that are in the rewriter's cache
 | |
|   // can be deleted in the loop below, causing the AssertingVH in the cache to
 | |
|   // trigger.
 | |
|   Rewriter.clear();
 | |
|   // Now that we're done iterating through lists, clean up any instructions
 | |
|   // which are now dead.
 | |
|   while (!DeadInsts.empty()) {
 | |
|     Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
 | |
|     if (Inst)
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If there's a single exit block, sink any loop-invariant values that
 | |
| /// were defined in the preheader but not used inside the loop into the
 | |
| /// exit block to reduce register pressure in the loop.
 | |
| void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
 | |
|   BasicBlock *ExitBlock = L->getExitBlock();
 | |
|   if (!ExitBlock) return;
 | |
| 
 | |
|   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock::iterator I = Preheader->getTerminator();
 | |
|   while (I != Preheader->begin()) {
 | |
|     --I;
 | |
|     // New instructions were inserted at the end of the preheader.
 | |
|     if (isa<PHINode>(I))
 | |
|       break;
 | |
|     // Don't move instructions which might have side effects, since the side
 | |
|     // effects need to complete before instructions inside the loop.  Also
 | |
|     // don't move instructions which might read memory, since the loop may
 | |
|     // modify memory. Note that it's okay if the instruction might have
 | |
|     // undefined behavior: LoopSimplify guarantees that the preheader
 | |
|     // dominates the exit block.
 | |
|     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | |
|       continue;
 | |
|     // Don't sink static AllocaInsts out of the entry block, which would
 | |
|     // turn them into dynamic allocas!
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (AI->isStaticAlloca())
 | |
|         continue;
 | |
|     // Determine if there is a use in or before the loop (direct or
 | |
|     // otherwise).
 | |
|     bool UsedInLoop = false;
 | |
|     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
 | |
|       if (PHINode *P = dyn_cast<PHINode>(UI)) {
 | |
|         unsigned i =
 | |
|           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
 | |
|         UseBB = P->getIncomingBlock(i);
 | |
|       }
 | |
|       if (UseBB == Preheader || L->contains(UseBB)) {
 | |
|         UsedInLoop = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // If there is, the def must remain in the preheader.
 | |
|     if (UsedInLoop)
 | |
|       continue;
 | |
|     // Otherwise, sink it to the exit block.
 | |
|     Instruction *ToMove = I;
 | |
|     bool Done = false;
 | |
|     if (I != Preheader->begin())
 | |
|       --I;
 | |
|     else
 | |
|       Done = true;
 | |
|     ToMove->moveBefore(InsertPt);
 | |
|     if (Done)
 | |
|       break;
 | |
|     InsertPt = ToMove;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if it is OK to use SIToFPInst for an inducation variable
 | |
| /// with given inital and exit values.
 | |
| static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
 | |
|                           uint64_t intIV, uint64_t intEV) {
 | |
| 
 | |
|   if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
 | |
|     return true;
 | |
| 
 | |
|   // If the iteration range can be handled by SIToFPInst then use it.
 | |
|   APInt Max = APInt::getSignedMaxValue(32);
 | |
|   if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// convertToInt - Convert APF to an integer, if possible.
 | |
| static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
 | |
| 
 | |
|   bool isExact = false;
 | |
|   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
|   if (APF.convertToInteger(intVal, 32, APF.isNegative(),
 | |
|                            APFloat::rmTowardZero, &isExact)
 | |
|       != APFloat::opOK)
 | |
|     return false;
 | |
|   if (!isExact)
 | |
|     return false;
 | |
|   return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| /// HandleFloatingPointIV - If the loop has floating induction variable
 | |
| /// then insert corresponding integer induction variable if possible.
 | |
| /// For example,
 | |
| /// for(double i = 0; i < 10000; ++i)
 | |
| ///   bar(i)
 | |
| /// is converted into
 | |
| /// for(int i = 0; i < 10000; ++i)
 | |
| ///   bar((double)i);
 | |
| ///
 | |
| void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
 | |
| 
 | |
|   unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
 | |
|   unsigned BackEdge     = IncomingEdge^1;
 | |
| 
 | |
|   // Check incoming value.
 | |
|   ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
 | |
|   if (!InitValue) return;
 | |
|   uint64_t newInitValue =
 | |
|               Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
 | |
|   if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
 | |
|     return;
 | |
| 
 | |
|   // Check IV increment. Reject this PH if increement operation is not
 | |
|   // an add or increment value can not be represented by an integer.
 | |
|   BinaryOperator *Incr =
 | |
|     dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
 | |
|   if (!Incr) return;
 | |
|   if (Incr->getOpcode() != Instruction::FAdd) return;
 | |
|   ConstantFP *IncrValue = NULL;
 | |
|   unsigned IncrVIndex = 1;
 | |
|   if (Incr->getOperand(1) == PH)
 | |
|     IncrVIndex = 0;
 | |
|   IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
 | |
|   if (!IncrValue) return;
 | |
|   uint64_t newIncrValue =
 | |
|               Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
 | |
|   if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
 | |
|     return;
 | |
| 
 | |
|   // Check Incr uses. One user is PH and the other users is exit condition used
 | |
|   // by the conditional terminator.
 | |
|   Value::use_iterator IncrUse = Incr->use_begin();
 | |
|   Instruction *U1 = cast<Instruction>(IncrUse++);
 | |
|   if (IncrUse == Incr->use_end()) return;
 | |
|   Instruction *U2 = cast<Instruction>(IncrUse++);
 | |
|   if (IncrUse != Incr->use_end()) return;
 | |
| 
 | |
|   // Find exit condition.
 | |
|   FCmpInst *EC = dyn_cast<FCmpInst>(U1);
 | |
|   if (!EC)
 | |
|     EC = dyn_cast<FCmpInst>(U2);
 | |
|   if (!EC) return;
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
 | |
|     if (!BI->isConditional()) return;
 | |
|     if (BI->getCondition() != EC) return;
 | |
|   }
 | |
| 
 | |
|   // Find exit value. If exit value can not be represented as an interger then
 | |
|   // do not handle this floating point PH.
 | |
|   ConstantFP *EV = NULL;
 | |
|   unsigned EVIndex = 1;
 | |
|   if (EC->getOperand(1) == Incr)
 | |
|     EVIndex = 0;
 | |
|   EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
 | |
|   if (!EV) return;
 | |
|   uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
 | |
|   if (!convertToInt(EV->getValueAPF(), &intEV))
 | |
|     return;
 | |
| 
 | |
|   // Find new predicate for integer comparison.
 | |
|   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   switch (EC->getPredicate()) {
 | |
|   case CmpInst::FCMP_OEQ:
 | |
|   case CmpInst::FCMP_UEQ:
 | |
|     NewPred = CmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OGT:
 | |
|   case CmpInst::FCMP_UGT:
 | |
|     NewPred = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OGE:
 | |
|   case CmpInst::FCMP_UGE:
 | |
|     NewPred = CmpInst::ICMP_UGE;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OLT:
 | |
|   case CmpInst::FCMP_ULT:
 | |
|     NewPred = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OLE:
 | |
|   case CmpInst::FCMP_ULE:
 | |
|     NewPred = CmpInst::ICMP_ULE;
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
 | |
| 
 | |
|   // Insert new integer induction variable.
 | |
|   PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
 | |
|                                     PH->getName()+".int", PH);
 | |
|   NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
 | |
|                                        newInitValue),
 | |
|                       PH->getIncomingBlock(IncomingEdge));
 | |
| 
 | |
|   Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
 | |
|                            ConstantInt::get(Type::getInt32Ty(PH->getContext()),
 | |
|                                                              newIncrValue),
 | |
|                                             Incr->getName()+".int", Incr);
 | |
|   NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
 | |
| 
 | |
|   // The back edge is edge 1 of newPHI, whatever it may have been in the
 | |
|   // original PHI.
 | |
|   ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
 | |
|                                         intEV);
 | |
|   Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
 | |
|   Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
 | |
|   ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
 | |
|                                  NewPred, LHS, RHS, EC->getName());
 | |
| 
 | |
|   // In the following deltions, PH may become dead and may be deleted.
 | |
|   // Use a WeakVH to observe whether this happens.
 | |
|   WeakVH WeakPH = PH;
 | |
| 
 | |
|   // Delete old, floating point, exit comparision instruction.
 | |
|   NewEC->takeName(EC);
 | |
|   EC->replaceAllUsesWith(NewEC);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(EC);
 | |
| 
 | |
|   // Delete old, floating point, increment instruction.
 | |
|   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(Incr);
 | |
| 
 | |
|   // Replace floating induction variable, if it isn't already deleted.
 | |
|   // Give SIToFPInst preference over UIToFPInst because it is faster on
 | |
|   // platforms that are widely used.
 | |
|   if (WeakPH && !PH->use_empty()) {
 | |
|     if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
 | |
|       SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
 | |
|                                         PH->getParent()->getFirstNonPHI());
 | |
|       PH->replaceAllUsesWith(Conv);
 | |
|     } else {
 | |
|       UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
 | |
|                                         PH->getParent()->getFirstNonPHI());
 | |
|       PH->replaceAllUsesWith(Conv);
 | |
|     }
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(PH);
 | |
|   }
 | |
| 
 | |
|   // Add a new IVUsers entry for the newly-created integer PHI.
 | |
|   IU->AddUsersIfInteresting(NewPHI);
 | |
| }
 |