mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80766 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1001 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1001 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Jump Threading pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jump-threading"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumThreads, "Number of jumps threaded");
 | |
| STATISTIC(NumFolds,   "Number of terminators folded");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| Threshold("jump-threading-threshold", 
 | |
|           cl::desc("Max block size to duplicate for jump threading"),
 | |
|           cl::init(6), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
|   /// This pass performs 'jump threading', which looks at blocks that have
 | |
|   /// multiple predecessors and multiple successors.  If one or more of the
 | |
|   /// predecessors of the block can be proven to always jump to one of the
 | |
|   /// successors, we forward the edge from the predecessor to the successor by
 | |
|   /// duplicating the contents of this block.
 | |
|   ///
 | |
|   /// An example of when this can occur is code like this:
 | |
|   ///
 | |
|   ///   if () { ...
 | |
|   ///     X = 4;
 | |
|   ///   }
 | |
|   ///   if (X < 3) {
 | |
|   ///
 | |
|   /// In this case, the unconditional branch at the end of the first if can be
 | |
|   /// revectored to the false side of the second if.
 | |
|   ///
 | |
|   class JumpThreading : public FunctionPass {
 | |
|     TargetData *TD;
 | |
| #ifdef NDEBUG
 | |
|     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
 | |
| #else
 | |
|     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
 | |
| #endif
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     JumpThreading() : FunctionPass(&ID) {}
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
|     void FindLoopHeaders(Function &F);
 | |
|     
 | |
|     bool ProcessBlock(BasicBlock *BB);
 | |
|     bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
 | |
|                     unsigned JumpThreadCost);
 | |
|     BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
 | |
|     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 | |
|     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 | |
| 
 | |
|     bool ProcessJumpOnPHI(PHINode *PN);
 | |
|     bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
 | |
|     bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
 | |
|     
 | |
|     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char JumpThreading::ID = 0;
 | |
| static RegisterPass<JumpThreading>
 | |
| X("jump-threading", "Jump Threading");
 | |
| 
 | |
| // Public interface to the Jump Threading pass
 | |
| FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
 | |
| 
 | |
| /// runOnFunction - Top level algorithm.
 | |
| ///
 | |
| bool JumpThreading::runOnFunction(Function &F) {
 | |
|   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   
 | |
|   FindLoopHeaders(F);
 | |
|   
 | |
|   bool AnotherIteration = true, EverChanged = false;
 | |
|   while (AnotherIteration) {
 | |
|     AnotherIteration = false;
 | |
|     bool Changed = false;
 | |
|     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
 | |
|       BasicBlock *BB = I;
 | |
|       while (ProcessBlock(BB))
 | |
|         Changed = true;
 | |
|       
 | |
|       ++I;
 | |
|       
 | |
|       // If the block is trivially dead, zap it.  This eliminates the successor
 | |
|       // edges which simplifies the CFG.
 | |
|       if (pred_begin(BB) == pred_end(BB) &&
 | |
|           BB != &BB->getParent()->getEntryBlock()) {
 | |
|         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
 | |
|               << "' with terminator: " << *BB->getTerminator());
 | |
|         LoopHeaders.erase(BB);
 | |
|         DeleteDeadBlock(BB);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|     AnotherIteration = Changed;
 | |
|     EverChanged |= Changed;
 | |
|   }
 | |
|   
 | |
|   LoopHeaders.clear();
 | |
|   return EverChanged;
 | |
| }
 | |
| 
 | |
| /// FindLoopHeaders - We do not want jump threading to turn proper loop
 | |
| /// structures into irreducible loops.  Doing this breaks up the loop nesting
 | |
| /// hierarchy and pessimizes later transformations.  To prevent this from
 | |
| /// happening, we first have to find the loop headers.  Here we approximate this
 | |
| /// by finding targets of backedges in the CFG.
 | |
| ///
 | |
| /// Note that there definitely are cases when we want to allow threading of
 | |
| /// edges across a loop header.  For example, threading a jump from outside the
 | |
| /// loop (the preheader) to an exit block of the loop is definitely profitable.
 | |
| /// It is also almost always profitable to thread backedges from within the loop
 | |
| /// to exit blocks, and is often profitable to thread backedges to other blocks
 | |
| /// within the loop (forming a nested loop).  This simple analysis is not rich
 | |
| /// enough to track all of these properties and keep it up-to-date as the CFG
 | |
| /// mutates, so we don't allow any of these transformations.
 | |
| ///
 | |
| void JumpThreading::FindLoopHeaders(Function &F) {
 | |
|   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
 | |
|   FindFunctionBackedges(F, Edges);
 | |
|   
 | |
|   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
 | |
|     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FactorCommonPHIPreds - If there are multiple preds with the same incoming
 | |
| /// value for the PHI, factor them together so we get one block to thread for
 | |
| /// the whole group.
 | |
| /// This is important for things like "phi i1 [true, true, false, true, x]"
 | |
| /// where we only need to clone the block for the true blocks once.
 | |
| ///
 | |
| BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
 | |
|   SmallVector<BasicBlock*, 16> CommonPreds;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) == Val)
 | |
|       CommonPreds.push_back(PN->getIncomingBlock(i));
 | |
|   
 | |
|   if (CommonPreds.size() == 1)
 | |
|     return CommonPreds[0];
 | |
|     
 | |
|   DEBUG(errs() << "  Factoring out " << CommonPreds.size()
 | |
|         << " common predecessors.\n");
 | |
|   return SplitBlockPredecessors(PN->getParent(),
 | |
|                                 &CommonPreds[0], CommonPreds.size(),
 | |
|                                 ".thr_comm", this);
 | |
| }
 | |
|   
 | |
| 
 | |
| /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
 | |
| /// thread across it.
 | |
| static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
 | |
|   /// Ignore PHI nodes, these will be flattened when duplication happens.
 | |
|   BasicBlock::const_iterator I = BB->getFirstNonPHI();
 | |
| 
 | |
|   // Sum up the cost of each instruction until we get to the terminator.  Don't
 | |
|   // include the terminator because the copy won't include it.
 | |
|   unsigned Size = 0;
 | |
|   for (; !isa<TerminatorInst>(I); ++I) {
 | |
|     // Debugger intrinsics don't incur code size.
 | |
|     if (isa<DbgInfoIntrinsic>(I)) continue;
 | |
|     
 | |
|     // If this is a pointer->pointer bitcast, it is free.
 | |
|     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
 | |
|       continue;
 | |
|     
 | |
|     // All other instructions count for at least one unit.
 | |
|     ++Size;
 | |
|     
 | |
|     // Calls are more expensive.  If they are non-intrinsic calls, we model them
 | |
|     // as having cost of 4.  If they are a non-vector intrinsic, we model them
 | |
|     // as having cost of 2 total, and if they are a vector intrinsic, we model
 | |
|     // them as having cost 1.
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|       if (!isa<IntrinsicInst>(CI))
 | |
|         Size += 3;
 | |
|       else if (!isa<VectorType>(CI->getType()))
 | |
|         Size += 1;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Threading through a switch statement is particularly profitable.  If this
 | |
|   // block ends in a switch, decrease its cost to make it more likely to happen.
 | |
|   if (isa<SwitchInst>(I))
 | |
|     Size = Size > 6 ? Size-6 : 0;
 | |
|   
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// ProcessBlock - If there are any predecessors whose control can be threaded
 | |
| /// through to a successor, transform them now.
 | |
| bool JumpThreading::ProcessBlock(BasicBlock *BB) {
 | |
|   // If this block has a single predecessor, and if that pred has a single
 | |
|   // successor, merge the blocks.  This encourages recursive jump threading
 | |
|   // because now the condition in this block can be threaded through
 | |
|   // predecessors of our predecessor block.
 | |
|   if (BasicBlock *SinglePred = BB->getSinglePredecessor())
 | |
|     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
 | |
|         SinglePred != BB) {
 | |
|       // If SinglePred was a loop header, BB becomes one.
 | |
|       if (LoopHeaders.erase(SinglePred))
 | |
|         LoopHeaders.insert(BB);
 | |
|       
 | |
|       // Remember if SinglePred was the entry block of the function.  If so, we
 | |
|       // will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(BB);
 | |
|       
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
|       return true;
 | |
|     }
 | |
|   
 | |
|   // See if this block ends with a branch or switch.  If so, see if the
 | |
|   // condition is a phi node.  If so, and if an entry of the phi node is a
 | |
|   // constant, we can thread the block.
 | |
|   Value *Condition;
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|     // Can't thread an unconditional jump.
 | |
|     if (BI->isUnconditional()) return false;
 | |
|     Condition = BI->getCondition();
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
 | |
|     Condition = SI->getCondition();
 | |
|   else
 | |
|     return false; // Must be an invoke.
 | |
|   
 | |
|   // If the terminator of this block is branching on a constant, simplify the
 | |
|   // terminator to an unconditional branch.  This can occur due to threading in
 | |
|   // other blocks.
 | |
|   if (isa<ConstantInt>(Condition)) {
 | |
|     DEBUG(errs() << "  In block '" << BB->getName()
 | |
|           << "' folding terminator: " << *BB->getTerminator());
 | |
|     ++NumFolds;
 | |
|     ConstantFoldTerminator(BB);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If the terminator is branching on an undef, we can pick any of the
 | |
|   // successors to branch to.  Since this is arbitrary, we pick the successor
 | |
|   // with the fewest predecessors.  This should reduce the in-degree of the
 | |
|   // others.
 | |
|   if (isa<UndefValue>(Condition)) {
 | |
|     TerminatorInst *BBTerm = BB->getTerminator();
 | |
|     unsigned MinSucc = 0;
 | |
|     BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
 | |
|     // Compute the successor with the minimum number of predecessors.
 | |
|     unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | |
|     for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | |
|       TestBB = BBTerm->getSuccessor(i);
 | |
|       unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | |
|       if (NumPreds < MinNumPreds)
 | |
|         MinSucc = i;
 | |
|     }
 | |
|     
 | |
|     // Fold the branch/switch.
 | |
|     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | |
|       if (i == MinSucc) continue;
 | |
|       BBTerm->getSuccessor(i)->removePredecessor(BB);
 | |
|     }
 | |
|     
 | |
|     DEBUG(errs() << "  In block '" << BB->getName()
 | |
|           << "' folding undef terminator: " << *BBTerm);
 | |
|     BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
 | |
|     BBTerm->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   Instruction *CondInst = dyn_cast<Instruction>(Condition);
 | |
| 
 | |
|   // If the condition is an instruction defined in another block, see if a
 | |
|   // predecessor has the same condition:
 | |
|   //     br COND, BBX, BBY
 | |
|   //  BBX:
 | |
|   //     br COND, BBZ, BBW
 | |
|   if (!Condition->hasOneUse() && // Multiple uses.
 | |
|       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
 | |
|     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
 | |
|     if (isa<BranchInst>(BB->getTerminator())) {
 | |
|       for (; PI != E; ++PI)
 | |
|         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|           if (PBI->isConditional() && PBI->getCondition() == Condition &&
 | |
|               ProcessBranchOnDuplicateCond(*PI, BB))
 | |
|             return true;
 | |
|     } else {
 | |
|       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
 | |
|       for (; PI != E; ++PI)
 | |
|         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
 | |
|           if (PSI->getCondition() == Condition &&
 | |
|               ProcessSwitchOnDuplicateCond(*PI, BB))
 | |
|             return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All the rest of our checks depend on the condition being an instruction.
 | |
|   if (CondInst == 0)
 | |
|     return false;
 | |
|   
 | |
|   // See if this is a phi node in the current block.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
 | |
|     if (PN->getParent() == BB)
 | |
|       return ProcessJumpOnPHI(PN);
 | |
|   
 | |
|   // If this is a conditional branch whose condition is and/or of a phi, try to
 | |
|   // simplify it.
 | |
|   if ((CondInst->getOpcode() == Instruction::And || 
 | |
|        CondInst->getOpcode() == Instruction::Or) &&
 | |
|       isa<BranchInst>(BB->getTerminator()) &&
 | |
|       ProcessBranchOnLogical(CondInst, BB,
 | |
|                              CondInst->getOpcode() == Instruction::And))
 | |
|     return true;
 | |
|   
 | |
|   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
 | |
|     if (isa<PHINode>(CondCmp->getOperand(0))) {
 | |
|       // If we have "br (phi != 42)" and the phi node has any constant values
 | |
|       // as operands, we can thread through this block.
 | |
|       // 
 | |
|       // If we have "br (cmp phi, x)" and the phi node contains x such that the
 | |
|       // comparison uniquely identifies the branch target, we can thread
 | |
|       // through this block.
 | |
| 
 | |
|       if (ProcessBranchOnCompare(CondCmp, BB))
 | |
|         return true;      
 | |
|     }
 | |
|     
 | |
|     // If we have a comparison, loop over the predecessors to see if there is
 | |
|     // a condition with the same value.
 | |
|     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
 | |
|     for (; PI != E; ++PI)
 | |
|       if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|         if (PBI->isConditional() && *PI != BB) {
 | |
|           if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
 | |
|             if (CI->getOperand(0) == CondCmp->getOperand(0) &&
 | |
|                 CI->getOperand(1) == CondCmp->getOperand(1) &&
 | |
|                 CI->getPredicate() == CondCmp->getPredicate()) {
 | |
|               // TODO: Could handle things like (x != 4) --> (x == 17)
 | |
|               if (ProcessBranchOnDuplicateCond(*PI, BB))
 | |
|                 return true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Check for some cases that are worth simplifying.  Right now we want to look
 | |
|   // for loads that are used by a switch or by the condition for the branch.  If
 | |
|   // we see one, check to see if it's partially redundant.  If so, insert a PHI
 | |
|   // which can then be used to thread the values.
 | |
|   //
 | |
|   // This is particularly important because reg2mem inserts loads and stores all
 | |
|   // over the place, and this blocks jump threading if we don't zap them.
 | |
|   Value *SimplifyValue = CondInst;
 | |
|   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
 | |
|     if (isa<Constant>(CondCmp->getOperand(1)))
 | |
|       SimplifyValue = CondCmp->getOperand(0);
 | |
|   
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
 | |
|     if (SimplifyPartiallyRedundantLoad(LI))
 | |
|       return true;
 | |
|   
 | |
|   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
 | |
|   // "(X == 4)" thread through this block.
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
 | |
| /// block that jump on exactly the same condition.  This means that we almost
 | |
| /// always know the direction of the edge in the DESTBB:
 | |
| ///  PREDBB:
 | |
| ///     br COND, DESTBB, BBY
 | |
| ///  DESTBB:
 | |
| ///     br COND, BBZ, BBW
 | |
| ///
 | |
| /// If DESTBB has multiple predecessors, we can't just constant fold the branch
 | |
| /// in DESTBB, we have to thread over it.
 | |
| bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
 | |
|                                                  BasicBlock *BB) {
 | |
|   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
 | |
|   
 | |
|   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
 | |
|   // fold the branch to an unconditional one, which allows other recursive
 | |
|   // simplifications.
 | |
|   bool BranchDir;
 | |
|   if (PredBI->getSuccessor(1) != BB)
 | |
|     BranchDir = true;
 | |
|   else if (PredBI->getSuccessor(0) != BB)
 | |
|     BranchDir = false;
 | |
|   else {
 | |
|     DEBUG(errs() << "  In block '" << PredBB->getName()
 | |
|           << "' folding terminator: " << *PredBB->getTerminator());
 | |
|     ++NumFolds;
 | |
|     ConstantFoldTerminator(PredBB);
 | |
|     return true;
 | |
|   }
 | |
|    
 | |
|   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
 | |
| 
 | |
|   // If the dest block has one predecessor, just fix the branch condition to a
 | |
|   // constant and fold it.
 | |
|   if (BB->getSinglePredecessor()) {
 | |
|     DEBUG(errs() << "  In block '" << BB->getName()
 | |
|           << "' folding condition to '" << BranchDir << "': "
 | |
|           << *BB->getTerminator());
 | |
|     ++NumFolds;
 | |
|     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
 | |
|                                           BranchDir));
 | |
|     ConstantFoldTerminator(BB);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise we need to thread from PredBB to DestBB's successor which
 | |
|   // involves code duplication.  Check to see if it is worth it.
 | |
|   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
 | |
|   if (JumpThreadCost > Threshold) {
 | |
|     DEBUG(errs() << "  Not threading BB '" << BB->getName()
 | |
|           << "' - Cost is too high: " << JumpThreadCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Next, figure out which successor we are threading to.
 | |
|   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
 | |
|   
 | |
|   // Ok, try to thread it!
 | |
|   return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
 | |
| }
 | |
| 
 | |
| /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
 | |
| /// block that switch on exactly the same condition.  This means that we almost
 | |
| /// always know the direction of the edge in the DESTBB:
 | |
| ///  PREDBB:
 | |
| ///     switch COND [... DESTBB, BBY ... ]
 | |
| ///  DESTBB:
 | |
| ///     switch COND [... BBZ, BBW ]
 | |
| ///
 | |
| /// Optimizing switches like this is very important, because simplifycfg builds
 | |
| /// switches out of repeated 'if' conditions.
 | |
| bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
 | |
|                                                  BasicBlock *DestBB) {
 | |
|   // Can't thread edge to self.
 | |
|   if (PredBB == DestBB)
 | |
|     return false;
 | |
|   
 | |
|   
 | |
|   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
 | |
|   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
 | |
| 
 | |
|   // There are a variety of optimizations that we can potentially do on these
 | |
|   // blocks: we order them from most to least preferable.
 | |
|   
 | |
|   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
 | |
|   // directly to their destination.  This does not introduce *any* code size
 | |
|   // growth.  Skip debug info first.
 | |
|   BasicBlock::iterator BBI = DestBB->begin();
 | |
|   while (isa<DbgInfoIntrinsic>(BBI))
 | |
|     BBI++;
 | |
|   
 | |
|   // FIXME: Thread if it just contains a PHI.
 | |
|   if (isa<SwitchInst>(BBI)) {
 | |
|     bool MadeChange = false;
 | |
|     // Ignore the default edge for now.
 | |
|     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
 | |
|       ConstantInt *DestVal = DestSI->getCaseValue(i);
 | |
|       BasicBlock *DestSucc = DestSI->getSuccessor(i);
 | |
|       
 | |
|       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
 | |
|       // PredSI has an explicit case for it.  If so, forward.  If it is covered
 | |
|       // by the default case, we can't update PredSI.
 | |
|       unsigned PredCase = PredSI->findCaseValue(DestVal);
 | |
|       if (PredCase == 0) continue;
 | |
|       
 | |
|       // If PredSI doesn't go to DestBB on this value, then it won't reach the
 | |
|       // case on this condition.
 | |
|       if (PredSI->getSuccessor(PredCase) != DestBB &&
 | |
|           DestSI->getSuccessor(i) != DestBB)
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, we're safe to make the change.  Make sure that the edge from
 | |
|       // DestSI to DestSucc is not critical and has no PHI nodes.
 | |
|       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
 | |
|       DEBUG(errs() << "THROUGH: " << *DestSI);
 | |
| 
 | |
|       // If the destination has PHI nodes, just split the edge for updating
 | |
|       // simplicity.
 | |
|       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
 | |
|         SplitCriticalEdge(DestSI, i, this);
 | |
|         DestSucc = DestSI->getSuccessor(i);
 | |
|       }
 | |
|       FoldSingleEntryPHINodes(DestSucc);
 | |
|       PredSI->setSuccessor(PredCase, DestSucc);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     
 | |
|     if (MadeChange)
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 | |
| /// load instruction, eliminate it by replacing it with a PHI node.  This is an
 | |
| /// important optimization that encourages jump threading, and needs to be run
 | |
| /// interlaced with other jump threading tasks.
 | |
| bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 | |
|   // Don't hack volatile loads.
 | |
|   if (LI->isVolatile()) return false;
 | |
|   
 | |
|   // If the load is defined in a block with exactly one predecessor, it can't be
 | |
|   // partially redundant.
 | |
|   BasicBlock *LoadBB = LI->getParent();
 | |
|   if (LoadBB->getSinglePredecessor())
 | |
|     return false;
 | |
|   
 | |
|   Value *LoadedPtr = LI->getOperand(0);
 | |
| 
 | |
|   // If the loaded operand is defined in the LoadBB, it can't be available.
 | |
|   // FIXME: Could do PHI translation, that would be fun :)
 | |
|   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
 | |
|     if (PtrOp->getParent() == LoadBB)
 | |
|       return false;
 | |
|   
 | |
|   // Scan a few instructions up from the load, to see if it is obviously live at
 | |
|   // the entry to its block.
 | |
|   BasicBlock::iterator BBIt = LI;
 | |
| 
 | |
|   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 
 | |
|                                                      BBIt, 6)) {
 | |
|     // If the value if the load is locally available within the block, just use
 | |
|     // it.  This frequently occurs for reg2mem'd allocas.
 | |
|     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
 | |
|     
 | |
|     // If the returned value is the load itself, replace with an undef. This can
 | |
|     // only happen in dead loops.
 | |
|     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
 | |
|     LI->replaceAllUsesWith(AvailableVal);
 | |
|     LI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if we scanned the whole block and got to the top of the block,
 | |
|   // we know the block is locally transparent to the load.  If not, something
 | |
|   // might clobber its value.
 | |
|   if (BBIt != LoadBB->begin())
 | |
|     return false;
 | |
|   
 | |
|   
 | |
|   SmallPtrSet<BasicBlock*, 8> PredsScanned;
 | |
|   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
 | |
|   AvailablePredsTy AvailablePreds;
 | |
|   BasicBlock *OneUnavailablePred = 0;
 | |
|   
 | |
|   // If we got here, the loaded value is transparent through to the start of the
 | |
|   // block.  Check to see if it is available in any of the predecessor blocks.
 | |
|   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | |
|        PI != PE; ++PI) {
 | |
|     BasicBlock *PredBB = *PI;
 | |
| 
 | |
|     // If we already scanned this predecessor, skip it.
 | |
|     if (!PredsScanned.insert(PredBB))
 | |
|       continue;
 | |
| 
 | |
|     // Scan the predecessor to see if the value is available in the pred.
 | |
|     BBIt = PredBB->end();
 | |
|     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
 | |
|     if (!PredAvailable) {
 | |
|       OneUnavailablePred = PredBB;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If so, this load is partially redundant.  Remember this info so that we
 | |
|     // can create a PHI node.
 | |
|     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
 | |
|   }
 | |
|   
 | |
|   // If the loaded value isn't available in any predecessor, it isn't partially
 | |
|   // redundant.
 | |
|   if (AvailablePreds.empty()) return false;
 | |
|   
 | |
|   // Okay, the loaded value is available in at least one (and maybe all!)
 | |
|   // predecessors.  If the value is unavailable in more than one unique
 | |
|   // predecessor, we want to insert a merge block for those common predecessors.
 | |
|   // This ensures that we only have to insert one reload, thus not increasing
 | |
|   // code size.
 | |
|   BasicBlock *UnavailablePred = 0;
 | |
|   
 | |
|   // If there is exactly one predecessor where the value is unavailable, the
 | |
|   // already computed 'OneUnavailablePred' block is it.  If it ends in an
 | |
|   // unconditional branch, we know that it isn't a critical edge.
 | |
|   if (PredsScanned.size() == AvailablePreds.size()+1 &&
 | |
|       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
 | |
|     UnavailablePred = OneUnavailablePred;
 | |
|   } else if (PredsScanned.size() != AvailablePreds.size()) {
 | |
|     // Otherwise, we had multiple unavailable predecessors or we had a critical
 | |
|     // edge from the one.
 | |
|     SmallVector<BasicBlock*, 8> PredsToSplit;
 | |
|     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
 | |
| 
 | |
|     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
 | |
|       AvailablePredSet.insert(AvailablePreds[i].first);
 | |
| 
 | |
|     // Add all the unavailable predecessors to the PredsToSplit list.
 | |
|     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | |
|          PI != PE; ++PI)
 | |
|       if (!AvailablePredSet.count(*PI))
 | |
|         PredsToSplit.push_back(*PI);
 | |
|     
 | |
|     // Split them out to their own block.
 | |
|     UnavailablePred =
 | |
|       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
 | |
|                              "thread-split", this);
 | |
|   }
 | |
|   
 | |
|   // If the value isn't available in all predecessors, then there will be
 | |
|   // exactly one where it isn't available.  Insert a load on that edge and add
 | |
|   // it to the AvailablePreds list.
 | |
|   if (UnavailablePred) {
 | |
|     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Can't handle critical edge here!");
 | |
|     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
 | |
|                                  UnavailablePred->getTerminator());
 | |
|     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
 | |
|   }
 | |
|   
 | |
|   // Now we know that each predecessor of this block has a value in
 | |
|   // AvailablePreds, sort them for efficient access as we're walking the preds.
 | |
|   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 | |
|   
 | |
|   // Create a PHI node at the start of the block for the PRE'd load value.
 | |
|   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
 | |
|   PN->takeName(LI);
 | |
|   
 | |
|   // Insert new entries into the PHI for each predecessor.  A single block may
 | |
|   // have multiple entries here.
 | |
|   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
 | |
|        ++PI) {
 | |
|     AvailablePredsTy::iterator I = 
 | |
|       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
 | |
|                        std::make_pair(*PI, (Value*)0));
 | |
|     
 | |
|     assert(I != AvailablePreds.end() && I->first == *PI &&
 | |
|            "Didn't find entry for predecessor!");
 | |
|     
 | |
|     PN->addIncoming(I->second, I->first);
 | |
|   }
 | |
|   
 | |
|   //cerr << "PRE: " << *LI << *PN << "\n";
 | |
|   
 | |
|   LI->replaceAllUsesWith(PN);
 | |
|   LI->eraseFromParent();
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
 | |
| /// the current block.  See if there are any simplifications we can do based on
 | |
| /// inputs to the phi node.
 | |
| /// 
 | |
| bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
 | |
|   // See if the phi node has any constant values.  If so, we can determine where
 | |
|   // the corresponding predecessor will branch.
 | |
|   ConstantInt *PredCst = 0;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
 | |
|       break;
 | |
|   
 | |
|   // If no incoming value has a constant, we don't know the destination of any
 | |
|   // predecessors.
 | |
|   if (PredCst == 0)
 | |
|     return false;
 | |
|   
 | |
|   // See if the cost of duplicating this block is low enough.
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
 | |
|   if (JumpThreadCost > Threshold) {
 | |
|     DEBUG(errs() << "  Not threading BB '" << BB->getName()
 | |
|           << "' - Cost is too high: " << JumpThreadCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // If so, we can actually do this threading.  Merge any common predecessors
 | |
|   // that will act the same.
 | |
|   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
 | |
|   
 | |
|   // Next, figure out which successor we are threading to.
 | |
|   BasicBlock *SuccBB;
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
 | |
|     SuccBB = BI->getSuccessor(PredCst ==
 | |
|                                    ConstantInt::getFalse(PredBB->getContext()));
 | |
|   else {
 | |
|     SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
 | |
|     SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
 | |
|   }
 | |
|   
 | |
|   // Ok, try to thread it!
 | |
|   return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
 | |
| }
 | |
| 
 | |
| /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
 | |
| /// whose condition is an AND/OR where one side is PN.  If PN has constant
 | |
| /// operands that permit us to evaluate the condition for some operand, thread
 | |
| /// through the block.  For example with:
 | |
| ///   br (and X, phi(Y, Z, false))
 | |
| /// the predecessor corresponding to the 'false' will always jump to the false
 | |
| /// destination of the branch.
 | |
| ///
 | |
| bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
 | |
|                                            bool isAnd) {
 | |
|   // If this is a binary operator tree of the same AND/OR opcode, check the
 | |
|   // LHS/RHS.
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
 | |
|     if ((isAnd && BO->getOpcode() == Instruction::And) ||
 | |
|         (!isAnd && BO->getOpcode() == Instruction::Or)) {
 | |
|       if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
 | |
|         return true;
 | |
|       if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
 | |
|         return true;
 | |
|     }
 | |
|       
 | |
|   // If this isn't a PHI node, we can't handle it.
 | |
|   PHINode *PN = dyn_cast<PHINode>(V);
 | |
|   if (!PN || PN->getParent() != BB) return false;
 | |
|                                              
 | |
|   // We can only do the simplification for phi nodes of 'false' with AND or
 | |
|   // 'true' with OR.  See if we have any entries in the phi for this.
 | |
|   unsigned PredNo = ~0U;
 | |
|   ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
 | |
|                                           !isAnd);
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     if (PN->getIncomingValue(i) == PredCst) {
 | |
|       PredNo = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If no match, bail out.
 | |
|   if (PredNo == ~0U)
 | |
|     return false;
 | |
|   
 | |
|   // See if the cost of duplicating this block is low enough.
 | |
|   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
 | |
|   if (JumpThreadCost > Threshold) {
 | |
|     DEBUG(errs() << "  Not threading BB '" << BB->getName()
 | |
|           << "' - Cost is too high: " << JumpThreadCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If so, we can actually do this threading.  Merge any common predecessors
 | |
|   // that will act the same.
 | |
|   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
 | |
|   
 | |
|   // Next, figure out which successor we are threading to.  If this was an AND,
 | |
|   // the constant must be FALSE, and we must be targeting the 'false' block.
 | |
|   // If this is an OR, the constant must be TRUE, and we must be targeting the
 | |
|   // 'true' block.
 | |
|   BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
 | |
|   
 | |
|   // Ok, try to thread it!
 | |
|   return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
 | |
| }
 | |
| 
 | |
| /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
 | |
| /// hand sides of the compare instruction, try to determine the result. If the
 | |
| /// result can not be determined, a null pointer is returned.
 | |
| static Constant *GetResultOfComparison(CmpInst::Predicate pred,
 | |
|                                        Value *LHS, Value *RHS,
 | |
|                                        LLVMContext &Context) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantExpr::getCompare(pred, CLHS, CRHS);
 | |
| 
 | |
|   if (LHS == RHS)
 | |
|     if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
 | |
|       return ICmpInst::isTrueWhenEqual(pred) ? 
 | |
|                  ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ProcessBranchOnCompare - We found a branch on a comparison between a phi
 | |
| /// node and a value.  If we can identify when the comparison is true between
 | |
| /// the phi inputs and the value, we can fold the compare for that edge and
 | |
| /// thread through it.
 | |
| bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
 | |
|   PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
 | |
|   Value *RHS = Cmp->getOperand(1);
 | |
|   
 | |
|   // If the phi isn't in the current block, an incoming edge to this block
 | |
|   // doesn't control the destination.
 | |
|   if (PN->getParent() != BB)
 | |
|     return false;
 | |
|   
 | |
|   // We can do this simplification if any comparisons fold to true or false.
 | |
|   // See if any do.
 | |
|   Value *PredVal = 0;
 | |
|   bool TrueDirection = false;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     PredVal = PN->getIncomingValue(i);
 | |
|     
 | |
|     Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
 | |
|                                           RHS, Cmp->getContext());
 | |
|     if (!Res) {
 | |
|       PredVal = 0;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this folded to a constant expr, we can't do anything.
 | |
|     if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
 | |
|       TrueDirection = ResC->getZExtValue();
 | |
|       break;
 | |
|     }
 | |
|     // If this folded to undef, just go the false way.
 | |
|     if (isa<UndefValue>(Res)) {
 | |
|       TrueDirection = false;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we can't fold this input.
 | |
|     PredVal = 0;
 | |
|   }
 | |
|   
 | |
|   // If no match, bail out.
 | |
|   if (PredVal == 0)
 | |
|     return false;
 | |
|   
 | |
|   // See if the cost of duplicating this block is low enough.
 | |
|   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
 | |
|   if (JumpThreadCost > Threshold) {
 | |
|     DEBUG(errs() << "  Not threading BB '" << BB->getName()
 | |
|           << "' - Cost is too high: " << JumpThreadCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // If so, we can actually do this threading.  Merge any common predecessors
 | |
|   // that will act the same.
 | |
|   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
 | |
|   
 | |
|   // Next, get our successor.
 | |
|   BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
 | |
|   
 | |
|   // Ok, try to thread it!
 | |
|   return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ThreadEdge - We have decided that it is safe and profitable to thread an
 | |
| /// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
 | |
| /// change.
 | |
| bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, 
 | |
|                                BasicBlock *SuccBB, unsigned JumpThreadCost) {
 | |
| 
 | |
|   // If threading to the same block as we come from, we would infinite loop.
 | |
|   if (SuccBB == BB) {
 | |
|     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
 | |
|           << "' - would thread to self!\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // If threading this would thread across a loop header, don't thread the edge.
 | |
|   // See the comments above FindLoopHeaders for justifications and caveats.
 | |
|   if (LoopHeaders.count(BB)) {
 | |
|     DEBUG(errs() << "  Not threading from '" << PredBB->getName()
 | |
|           << "' across loop header BB '" << BB->getName()
 | |
|           << "' to dest BB '" << SuccBB->getName()
 | |
|           << "' - it might create an irreducible loop!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // And finally, do it!
 | |
|   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
 | |
|         << SuccBB->getName() << "' with cost: " << JumpThreadCost
 | |
|         << ", across block:\n    "
 | |
|         << *BB << "\n");
 | |
|   
 | |
|   // Jump Threading can not update SSA properties correctly if the values
 | |
|   // defined in the duplicated block are used outside of the block itself.  For
 | |
|   // this reason, we spill all values that are used outside of BB to the stack.
 | |
|   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | |
|     if (!I->isUsedOutsideOfBlock(BB))
 | |
|       continue;
 | |
|     
 | |
|     // We found a use of I outside of BB.  Create a new stack slot to
 | |
|     // break this inter-block usage pattern.
 | |
|     DemoteRegToStack(*I);
 | |
|   }
 | |
|  
 | |
|   // We are going to have to map operands from the original BB block to the new
 | |
|   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
 | |
|   // account for entry from PredBB.
 | |
|   DenseMap<Instruction*, Value*> ValueMapping;
 | |
|   
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 
 | |
|                                          BB->getName()+".thread", 
 | |
|                                          BB->getParent(), BB);
 | |
|   NewBB->moveAfter(PredBB);
 | |
|   
 | |
|   BasicBlock::iterator BI = BB->begin();
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
|   
 | |
|   // Clone the non-phi instructions of BB into NewBB, keeping track of the
 | |
|   // mapping and using it to remap operands in the cloned instructions.
 | |
|   for (; !isa<TerminatorInst>(BI); ++BI) {
 | |
|     Instruction *New = BI->clone(BI->getContext());
 | |
|     New->setName(BI->getName());
 | |
|     NewBB->getInstList().push_back(New);
 | |
|     ValueMapping[BI] = New;
 | |
|    
 | |
|     // Remap operands to patch up intra-block references.
 | |
|     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | |
|       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | |
|         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | |
|         if (I != ValueMapping.end())
 | |
|           New->setOperand(i, I->second);
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   // We didn't copy the terminator from BB over to NewBB, because there is now
 | |
|   // an unconditional jump to SuccBB.  Insert the unconditional jump.
 | |
|   BranchInst::Create(SuccBB, NewBB);
 | |
|   
 | |
|   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
 | |
|   // PHI nodes for NewBB now.
 | |
|   for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
 | |
|     PHINode *PN = cast<PHINode>(PNI);
 | |
|     // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | |
|     // DestBlock.
 | |
|     Value *IV = PN->getIncomingValueForBlock(BB);
 | |
|     
 | |
|     // Remap the value if necessary.
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
 | |
|       DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | |
|       if (I != ValueMapping.end())
 | |
|         IV = I->second;
 | |
|     }
 | |
|     PN->addIncoming(IV, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
 | |
|   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
 | |
|   // us to simplify any PHI nodes in BB.
 | |
|   TerminatorInst *PredTerm = PredBB->getTerminator();
 | |
|   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
 | |
|     if (PredTerm->getSuccessor(i) == BB) {
 | |
|       BB->removePredecessor(PredBB);
 | |
|       PredTerm->setSuccessor(i, NewBB);
 | |
|     }
 | |
|   
 | |
|   // At this point, the IR is fully up to date and consistent.  Do a quick scan
 | |
|   // over the new instructions and zap any that are constants or dead.  This
 | |
|   // frequently happens because of phi translation.
 | |
|   BI = NewBB->begin();
 | |
|   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
 | |
|     Instruction *Inst = BI++;
 | |
|     if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
 | |
|       Inst->replaceAllUsesWith(C);
 | |
|       Inst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
|   }
 | |
|   
 | |
|   // Threaded an edge!
 | |
|   ++NumThreads;
 | |
|   return true;
 | |
| }
 |