Chandler Carruth 4bbfbdf7d7 [Modules] Move CallSite into the IR library where it belogs. It is
abstracting between a CallInst and an InvokeInst, both of which are IR
concepts.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202816 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 11:01:28 +00:00

103 lines
3.9 KiB
C++

//===- CodeGen/Analysis.h - CodeGen LLVM IR Analysis Utilities --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares several CodeGen-specific LLVM IR analysis utilties.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_ANALYSIS_H
#define LLVM_CODEGEN_ANALYSIS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
namespace llvm {
class GlobalVariable;
class TargetLowering;
class TargetLoweringBase;
class SDNode;
class SDValue;
class SelectionDAG;
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
/// of insertvalue or extractvalue indices that identify a member, return
/// the linearized index of the start of the member.
///
unsigned ComputeLinearIndex(Type *Ty,
const unsigned *Indices,
const unsigned *IndicesEnd,
unsigned CurIndex = 0);
inline unsigned ComputeLinearIndex(Type *Ty,
ArrayRef<unsigned> Indices,
unsigned CurIndex = 0) {
return ComputeLinearIndex(Ty, Indices.begin(), Indices.end(), CurIndex);
}
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
/// EVTs that represent all the individual underlying
/// non-aggregate types that comprise it.
///
/// If Offsets is non-null, it points to a vector to be filled in
/// with the in-memory offsets of each of the individual values.
///
void ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets = 0,
uint64_t StartingOffset = 0);
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
GlobalVariable *ExtractTypeInfo(Value *V);
/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
/// processed uses a memory 'm' constraint.
bool hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
const TargetLowering &TLI);
/// getFCmpCondCode - Return the ISD condition code corresponding to
/// the given LLVM IR floating-point condition code. This includes
/// consideration of global floating-point math flags.
///
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred);
/// getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats,
/// return the equivalent code if we're allowed to assume that NaNs won't occur.
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC);
/// getICmpCondCode - Return the ISD condition code corresponding to
/// the given LLVM IR integer condition code.
///
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred);
/// Test if the given instruction is in a position to be optimized
/// with a tail-call. This roughly means that it's in a block with
/// a return and there's nothing that needs to be scheduled
/// between it and the return.
///
/// This function only tests target-independent requirements.
bool isInTailCallPosition(ImmutableCallSite CS, const TargetLowering &TLI);
/// Test if given that the input instruction is in the tail call position if the
/// return type or any attributes of the function will inhibit tail call
/// optimization.
bool returnTypeIsEligibleForTailCall(const Function *F,
const Instruction *I,
const ReturnInst *Ret,
const TargetLoweringBase &TLI);
} // End llvm namespace
#endif