mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	with BasicAA's DecomposeGEPExpression, which recently began using a TargetData. This fixes PR8968, though the testcase is awkward to reduce. Also, update several off GetUnderlyingObject's users which happen to have a TargetData handy to pass it in. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124134 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			731 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			731 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a trivial dead store elimination that only considers
 | |
| // basic-block local redundant stores.
 | |
| //
 | |
| // FIXME: This should eventually be extended to be a post-dominator tree
 | |
| // traversal.  Doing so would be pretty trivial.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "dse"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFastStores, "Number of stores deleted");
 | |
| STATISTIC(NumFastOther , "Number of other instrs removed");
 | |
| 
 | |
| namespace {
 | |
|   struct DSE : public FunctionPass {
 | |
|     AliasAnalysis *AA;
 | |
|     MemoryDependenceAnalysis *MD;
 | |
| 
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     DSE() : FunctionPass(ID), AA(0), MD(0) {
 | |
|       initializeDSEPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnFunction(Function &F) {
 | |
|       AA = &getAnalysis<AliasAnalysis>();
 | |
|       MD = &getAnalysis<MemoryDependenceAnalysis>();
 | |
|       DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|       
 | |
|       bool Changed = false;
 | |
|       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|         // Only check non-dead blocks.  Dead blocks may have strange pointer
 | |
|         // cycles that will confuse alias analysis.
 | |
|         if (DT.isReachableFromEntry(I))
 | |
|           Changed |= runOnBasicBlock(*I);
 | |
|       
 | |
|       AA = 0; MD = 0;
 | |
|       return Changed;
 | |
|     }
 | |
|     
 | |
|     bool runOnBasicBlock(BasicBlock &BB);
 | |
|     bool HandleFree(CallInst *F);
 | |
|     bool handleEndBlock(BasicBlock &BB);
 | |
|     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
 | |
|                                SmallPtrSet<Value*, 16> &DeadStackObjects);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<MemoryDependenceAnalysis>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<MemoryDependenceAnalysis>();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char DSE::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
 | |
| /// and zero out all the operands of this instruction.  If any of them become
 | |
| /// dead, delete them and the computation tree that feeds them.
 | |
| ///
 | |
| /// If ValueSet is non-null, remove any deleted instructions from it as well.
 | |
| ///
 | |
| static void DeleteDeadInstruction(Instruction *I,
 | |
|                                   MemoryDependenceAnalysis &MD,
 | |
|                                   SmallPtrSet<Value*, 16> *ValueSet = 0) {
 | |
|   SmallVector<Instruction*, 32> NowDeadInsts;
 | |
|   
 | |
|   NowDeadInsts.push_back(I);
 | |
|   --NumFastOther;
 | |
|   
 | |
|   // Before we touch this instruction, remove it from memdep!
 | |
|   do {
 | |
|     Instruction *DeadInst = NowDeadInsts.pop_back_val();
 | |
|     ++NumFastOther;
 | |
|     
 | |
|     // This instruction is dead, zap it, in stages.  Start by removing it from
 | |
|     // MemDep, which needs to know the operands and needs it to be in the
 | |
|     // function.
 | |
|     MD.removeInstruction(DeadInst);
 | |
|     
 | |
|     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
 | |
|       Value *Op = DeadInst->getOperand(op);
 | |
|       DeadInst->setOperand(op, 0);
 | |
|       
 | |
|       // If this operand just became dead, add it to the NowDeadInsts list.
 | |
|       if (!Op->use_empty()) continue;
 | |
|       
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(Op))
 | |
|         if (isInstructionTriviallyDead(OpI))
 | |
|           NowDeadInsts.push_back(OpI);
 | |
|     }
 | |
|     
 | |
|     DeadInst->eraseFromParent();
 | |
|     
 | |
|     if (ValueSet) ValueSet->erase(DeadInst);
 | |
|   } while (!NowDeadInsts.empty());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasMemoryWrite - Does this instruction write some memory?  This only returns
 | |
| /// true for things that we can analyze with other helpers below.
 | |
| static bool hasMemoryWrite(Instruction *I) {
 | |
|   if (isa<StoreInst>(I))
 | |
|     return true;
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Intrinsic::memset:
 | |
|     case Intrinsic::memmove:
 | |
|     case Intrinsic::memcpy:
 | |
|     case Intrinsic::init_trampoline:
 | |
|     case Intrinsic::lifetime_end:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getLocForWrite - Return a Location stored to by the specified instruction.
 | |
| static AliasAnalysis::Location
 | |
| getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|     return AA.getLocation(SI);
 | |
|   
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
 | |
|     // memcpy/memmove/memset.
 | |
|     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
 | |
|     // If we don't have target data around, an unknown size in Location means
 | |
|     // that we should use the size of the pointee type.  This isn't valid for
 | |
|     // memset/memcpy, which writes more than an i8.
 | |
|     if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
 | |
|       return AliasAnalysis::Location();
 | |
|     return Loc;
 | |
|   }
 | |
|   
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
 | |
|   if (II == 0) return AliasAnalysis::Location();
 | |
|   
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
 | |
|   case Intrinsic::init_trampoline:
 | |
|     // If we don't have target data around, an unknown size in Location means
 | |
|     // that we should use the size of the pointee type.  This isn't valid for
 | |
|     // init.trampoline, which writes more than an i8.
 | |
|     if (AA.getTargetData() == 0) return AliasAnalysis::Location();
 | |
|       
 | |
|     // FIXME: We don't know the size of the trampoline, so we can't really
 | |
|     // handle it here.
 | |
|     return AliasAnalysis::Location(II->getArgOperand(0));
 | |
|   case Intrinsic::lifetime_end: {
 | |
|     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
 | |
|     return AliasAnalysis::Location(II->getArgOperand(1), Len);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
 | |
| /// instruction if any.
 | |
| static AliasAnalysis::Location 
 | |
| getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
 | |
|   assert(hasMemoryWrite(Inst) && "Unknown instruction case");
 | |
|   
 | |
|   // The only instructions that both read and write are the mem transfer
 | |
|   // instructions (memcpy/memmove).
 | |
|   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
 | |
|     return AA.getLocationForSource(MTI);
 | |
|   return AliasAnalysis::Location();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isRemovable - If the value of this instruction and the memory it writes to
 | |
| /// is unused, may we delete this instruction?
 | |
| static bool isRemovable(Instruction *I) {
 | |
|   // Don't remove volatile stores.
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return !SI->isVolatile();
 | |
|   
 | |
|   IntrinsicInst *II = cast<IntrinsicInst>(I);
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
 | |
|   case Intrinsic::lifetime_end:
 | |
|     // Never remove dead lifetime_end's, e.g. because it is followed by a
 | |
|     // free.
 | |
|     return false;
 | |
|   case Intrinsic::init_trampoline:
 | |
|     // Always safe to remove init_trampoline.
 | |
|     return true;
 | |
|     
 | |
|   case Intrinsic::memset:
 | |
|   case Intrinsic::memmove:
 | |
|   case Intrinsic::memcpy:
 | |
|     // Don't remove volatile memory intrinsics.
 | |
|     return !cast<MemIntrinsic>(II)->isVolatile();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getStoredPointerOperand - Return the pointer that is being written to.
 | |
| static Value *getStoredPointerOperand(Instruction *I) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->getPointerOperand();
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | |
|     return MI->getDest();
 | |
| 
 | |
|   IntrinsicInst *II = cast<IntrinsicInst>(I);
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: assert(false && "Unexpected intrinsic!");
 | |
|   case Intrinsic::init_trampoline:
 | |
|     return II->getArgOperand(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
 | |
|   const TargetData *TD = AA.getTargetData();
 | |
|   if (TD == 0)
 | |
|     return AliasAnalysis::UnknownSize;
 | |
|   
 | |
|   if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
 | |
|     // Get size information for the alloca
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
 | |
|       return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
 | |
|     return AliasAnalysis::UnknownSize;
 | |
|   }
 | |
|   
 | |
|   assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
 | |
|   const PointerType *PT = cast<PointerType>(V->getType());
 | |
|   return TD->getTypeAllocSize(PT->getElementType());
 | |
| }
 | |
| 
 | |
| /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
 | |
| /// pointing to an object with a pointer size we can trust.
 | |
| static bool isObjectPointerWithTrustworthySize(const Value *V) {
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | |
|     return !AI->isArrayAllocation();
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return !GV->mayBeOverridden();
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasByValAttr();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCompleteOverwrite - Return true if a store to the 'Later' location
 | |
| /// completely overwrites a store to the 'Earlier' location.
 | |
| static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
 | |
|                                 const AliasAnalysis::Location &Earlier,
 | |
|                                 AliasAnalysis &AA) {
 | |
|   const Value *P1 = Earlier.Ptr->stripPointerCasts();
 | |
|   const Value *P2 = Later.Ptr->stripPointerCasts();
 | |
|   
 | |
|   // If the start pointers are the same, we just have to compare sizes to see if
 | |
|   // the later store was larger than the earlier store.
 | |
|   if (P1 == P2) {
 | |
|     // If we don't know the sizes of either access, then we can't do a
 | |
|     // comparison.
 | |
|     if (Later.Size == AliasAnalysis::UnknownSize ||
 | |
|         Earlier.Size == AliasAnalysis::UnknownSize) {
 | |
|       // If we have no TargetData information around, then the size of the store
 | |
|       // is inferrable from the pointee type.  If they are the same type, then
 | |
|       // we know that the store is safe.
 | |
|       if (AA.getTargetData() == 0)
 | |
|         return Later.Ptr->getType() == Earlier.Ptr->getType();
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     // Make sure that the Later size is >= the Earlier size.
 | |
|     if (Later.Size < Earlier.Size)
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we have to have size information, and the later store has to be
 | |
|   // larger than the earlier one.
 | |
|   if (Later.Size == AliasAnalysis::UnknownSize ||
 | |
|       Earlier.Size == AliasAnalysis::UnknownSize ||
 | |
|       Later.Size <= Earlier.Size || AA.getTargetData() == 0)
 | |
|     return false;
 | |
|   
 | |
|   // Check to see if the later store is to the entire object (either a global,
 | |
|   // an alloca, or a byval argument).  If so, then it clearly overwrites any
 | |
|   // other store to the same object.
 | |
|   const TargetData &TD = *AA.getTargetData();
 | |
|   
 | |
|   const Value *UO1 = GetUnderlyingObject(P1, &TD),
 | |
|               *UO2 = GetUnderlyingObject(P2, &TD);
 | |
|   
 | |
|   // If we can't resolve the same pointers to the same object, then we can't
 | |
|   // analyze them at all.
 | |
|   if (UO1 != UO2)
 | |
|     return false;
 | |
|   
 | |
|   // If the "Later" store is to a recognizable object, get its size.
 | |
|   if (isObjectPointerWithTrustworthySize(UO2)) {
 | |
|     uint64_t ObjectSize =
 | |
|       TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
 | |
|     if (ObjectSize == Later.Size)
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   // Okay, we have stores to two completely different pointers.  Try to
 | |
|   // decompose the pointer into a "base + constant_offset" form.  If the base
 | |
|   // pointers are equal, then we can reason about the two stores.
 | |
|   int64_t Off1 = 0, Off2 = 0;
 | |
|   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, Off1, TD);
 | |
|   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, Off2, TD);
 | |
|   
 | |
|   // If the base pointers still differ, we have two completely different stores.
 | |
|   if (BP1 != BP2)
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, we might have a situation like:
 | |
|   //  store i16 -> P + 1 Byte
 | |
|   //  store i32 -> P
 | |
|   // In this case, we see if the later store completely overlaps all bytes
 | |
|   // stored by the previous store.
 | |
|   if (Off1 < Off2 ||                       // Earlier starts before Later.
 | |
|       Off1+Earlier.Size > Off2+Later.Size) // Earlier goes beyond Later.
 | |
|     return false;
 | |
|   // Otherwise, we have complete overlap.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
 | |
| /// memory region into an identical pointer) then it doesn't actually make its
 | |
| /// input dead in the traditional sense.  Consider this case: 
 | |
| ///
 | |
| ///   memcpy(A <- B)
 | |
| ///   memcpy(A <- A)
 | |
| ///
 | |
| /// In this case, the second store to A does not make the first store to A dead.
 | |
| /// The usual situation isn't an explicit A<-A store like this (which can be
 | |
| /// trivially removed) but a case where two pointers may alias.
 | |
| ///
 | |
| /// This function detects when it is unsafe to remove a dependent instruction
 | |
| /// because the DSE inducing instruction may be a self-read.
 | |
| static bool isPossibleSelfRead(Instruction *Inst,
 | |
|                                const AliasAnalysis::Location &InstStoreLoc,
 | |
|                                Instruction *DepWrite, AliasAnalysis &AA) {
 | |
|   // Self reads can only happen for instructions that read memory.  Get the
 | |
|   // location read.
 | |
|   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
 | |
|   if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
 | |
|   
 | |
|   // If the read and written loc obviously don't alias, it isn't a read.
 | |
|   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
 | |
|   
 | |
|   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
 | |
|   // DepWrite instruction if we can prove that it reads from the same location
 | |
|   // as Inst.  This handles useful cases like:
 | |
|   //   memcpy(A <- B)
 | |
|   //   memcpy(A <- B)
 | |
|   // Here we don't know if A/B may alias, but we do know that B/B are must
 | |
|   // aliases, so removing the first memcpy is safe (assuming it writes <= #
 | |
|   // bytes as the second one.
 | |
|   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
 | |
|   
 | |
|   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
 | |
|     return false;
 | |
|   
 | |
|   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
 | |
|   // then it can't be considered dead.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSE Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool DSE::runOnBasicBlock(BasicBlock &BB) {
 | |
|   bool MadeChange = false;
 | |
|   
 | |
|   // Do a top-down walk on the BB.
 | |
|   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
 | |
|     Instruction *Inst = BBI++;
 | |
|     
 | |
|     // Handle 'free' calls specially.
 | |
|     if (CallInst *F = isFreeCall(Inst)) {
 | |
|       MadeChange |= HandleFree(F);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If we find something that writes memory, get its memory dependence.
 | |
|     if (!hasMemoryWrite(Inst))
 | |
|       continue;
 | |
| 
 | |
|     MemDepResult InstDep = MD->getDependency(Inst);
 | |
|     
 | |
|     // Ignore non-local store liveness.
 | |
|     // FIXME: cross-block DSE would be fun. :)
 | |
|     if (InstDep.isNonLocal() || 
 | |
|         // Ignore self dependence, which happens in the entry block of the
 | |
|         // function.
 | |
|         InstDep.getInst() == Inst)
 | |
|       continue;
 | |
|      
 | |
|     // If we're storing the same value back to a pointer that we just
 | |
|     // loaded from, then the store can be removed.
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
 | |
|         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
 | |
|             SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
 | |
|           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
 | |
|                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
 | |
|           
 | |
|           // DeleteDeadInstruction can delete the current instruction.  Save BBI
 | |
|           // in case we need it.
 | |
|           WeakVH NextInst(BBI);
 | |
|           
 | |
|           DeleteDeadInstruction(SI, *MD);
 | |
|           
 | |
|           if (NextInst == 0)  // Next instruction deleted.
 | |
|             BBI = BB.begin();
 | |
|           else if (BBI != BB.begin())  // Revisit this instruction if possible.
 | |
|             --BBI;
 | |
|           ++NumFastStores;
 | |
|           MadeChange = true;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Figure out what location is being stored to.
 | |
|     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
 | |
| 
 | |
|     // If we didn't get a useful location, fail.
 | |
|     if (Loc.Ptr == 0)
 | |
|       continue;
 | |
|     
 | |
|     while (!InstDep.isNonLocal()) {
 | |
|       // Get the memory clobbered by the instruction we depend on.  MemDep will
 | |
|       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
 | |
|       // end up depending on a may- or must-aliased load, then we can't optimize
 | |
|       // away the store and we bail out.  However, if we depend on on something
 | |
|       // that overwrites the memory location we *can* potentially optimize it.
 | |
|       //
 | |
|       // Find out what memory location the dependant instruction stores.
 | |
|       Instruction *DepWrite = InstDep.getInst();
 | |
|       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
 | |
|       // If we didn't get a useful location, or if it isn't a size, bail out.
 | |
|       if (DepLoc.Ptr == 0)
 | |
|         break;
 | |
| 
 | |
|       // If we find a write that is a) removable (i.e., non-volatile), b) is
 | |
|       // completely obliterated by the store to 'Loc', and c) which we know that
 | |
|       // 'Inst' doesn't load from, then we can remove it.
 | |
|       if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
 | |
|           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
 | |
|         DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
 | |
|               << *DepWrite << "\n  KILLER: " << *Inst << '\n');
 | |
|         
 | |
|         // Delete the store and now-dead instructions that feed it.
 | |
|         DeleteDeadInstruction(DepWrite, *MD);
 | |
|         ++NumFastStores;
 | |
|         MadeChange = true;
 | |
|         
 | |
|         // DeleteDeadInstruction can delete the current instruction in loop
 | |
|         // cases, reset BBI.
 | |
|         BBI = Inst;
 | |
|         if (BBI != BB.begin())
 | |
|           --BBI;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       // If this is a may-aliased store that is clobbering the store value, we
 | |
|       // can keep searching past it for another must-aliased pointer that stores
 | |
|       // to the same location.  For example, in:
 | |
|       //   store -> P
 | |
|       //   store -> Q
 | |
|       //   store -> P
 | |
|       // we can remove the first store to P even though we don't know if P and Q
 | |
|       // alias.
 | |
|       if (DepWrite == &BB.front()) break;
 | |
|       
 | |
|       // Can't look past this instruction if it might read 'Loc'.
 | |
|       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
 | |
|         break;
 | |
|         
 | |
|       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this block ends in a return, unwind, or unreachable, all allocas are
 | |
|   // dead at its end, which means stores to them are also dead.
 | |
|   if (BB.getTerminator()->getNumSuccessors() == 0)
 | |
|     MadeChange |= handleEndBlock(BB);
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// HandleFree - Handle frees of entire structures whose dependency is a store
 | |
| /// to a field of that structure.
 | |
| bool DSE::HandleFree(CallInst *F) {
 | |
|   MemDepResult Dep = MD->getDependency(F);
 | |
|   do {
 | |
|     if (Dep.isNonLocal()) return false;
 | |
|     
 | |
|     Instruction *Dependency = Dep.getInst();
 | |
|     if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
 | |
|       return false;
 | |
|   
 | |
|     Value *DepPointer =
 | |
|       GetUnderlyingObject(getStoredPointerOperand(Dependency));
 | |
| 
 | |
|     // Check for aliasing.
 | |
|     if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
 | |
|       return false;
 | |
|   
 | |
|     // DCE instructions only used to calculate that store
 | |
|     DeleteDeadInstruction(Dependency, *MD);
 | |
|     ++NumFastStores;
 | |
| 
 | |
|     // Inst's old Dependency is now deleted. Compute the next dependency,
 | |
|     // which may also be dead, as in
 | |
|     //    s[0] = 0;
 | |
|     //    s[1] = 0; // This has just been deleted.
 | |
|     //    free(s);
 | |
|     Dep = MD->getDependency(F);
 | |
|   } while (!Dep.isNonLocal());
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// handleEndBlock - Remove dead stores to stack-allocated locations in the
 | |
| /// function end block.  Ex:
 | |
| /// %A = alloca i32
 | |
| /// ...
 | |
| /// store i32 1, i32* %A
 | |
| /// ret void
 | |
| bool DSE::handleEndBlock(BasicBlock &BB) {
 | |
|   bool MadeChange = false;
 | |
|   
 | |
|   // Keep track of all of the stack objects that are dead at the end of the
 | |
|   // function.
 | |
|   SmallPtrSet<Value*, 16> DeadStackObjects;
 | |
|   
 | |
|   // Find all of the alloca'd pointers in the entry block.
 | |
|   BasicBlock *Entry = BB.getParent()->begin();
 | |
|   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       DeadStackObjects.insert(AI);
 | |
|   
 | |
|   // Treat byval arguments the same, stores to them are dead at the end of the
 | |
|   // function.
 | |
|   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
 | |
|        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
 | |
|     if (AI->hasByValAttr())
 | |
|       DeadStackObjects.insert(AI);
 | |
|   
 | |
|   // Scan the basic block backwards
 | |
|   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
 | |
|     --BBI;
 | |
|     
 | |
|     // If we find a store, check to see if it points into a dead stack value.
 | |
|     if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
 | |
|       // See through pointer-to-pointer bitcasts
 | |
|       Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
 | |
| 
 | |
|       // Stores to stack values are valid candidates for removal.
 | |
|       if (DeadStackObjects.count(Pointer)) {
 | |
|         Instruction *Dead = BBI++;
 | |
|         
 | |
|         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
 | |
|                      << *Dead << "\n  Object: " << *Pointer << '\n');
 | |
|         
 | |
|         // DCE instructions only used to calculate that store.
 | |
|         DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
 | |
|         ++NumFastStores;
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Remove any dead non-memory-mutating instructions.
 | |
|     if (isInstructionTriviallyDead(BBI)) {
 | |
|       Instruction *Inst = BBI++;
 | |
|       DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
 | |
|       ++NumFastOther;
 | |
|       MadeChange = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
 | |
|       DeadStackObjects.erase(A);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (CallSite CS = cast<Value>(BBI)) {
 | |
|       // If this call does not access memory, it can't be loading any of our
 | |
|       // pointers.
 | |
|       if (AA->doesNotAccessMemory(CS))
 | |
|         continue;
 | |
|       
 | |
|       unsigned NumModRef = 0, NumOther = 0;
 | |
|       
 | |
|       // If the call might load from any of our allocas, then any store above
 | |
|       // the call is live.
 | |
|       SmallVector<Value*, 8> LiveAllocas;
 | |
|       for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
 | |
|            E = DeadStackObjects.end(); I != E; ++I) {
 | |
|         // If we detect that our AA is imprecise, it's not worth it to scan the
 | |
|         // rest of the DeadPointers set.  Just assume that the AA will return
 | |
|         // ModRef for everything, and go ahead and bail out.
 | |
|         if (NumModRef >= 16 && NumOther == 0)
 | |
|           return MadeChange;
 | |
| 
 | |
|         // See if the call site touches it.
 | |
|         AliasAnalysis::ModRefResult A = 
 | |
|           AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
 | |
|         
 | |
|         if (A == AliasAnalysis::ModRef)
 | |
|           ++NumModRef;
 | |
|         else
 | |
|           ++NumOther;
 | |
|         
 | |
|         if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
 | |
|           LiveAllocas.push_back(*I);
 | |
|       }
 | |
|       
 | |
|       for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
 | |
|            E = LiveAllocas.end(); I != E; ++I)
 | |
|         DeadStackObjects.erase(*I);
 | |
|       
 | |
|       // If all of the allocas were clobbered by the call then we're not going
 | |
|       // to find anything else to process.
 | |
|       if (DeadStackObjects.empty())
 | |
|         return MadeChange;
 | |
|       
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     AliasAnalysis::Location LoadedLoc;
 | |
|     
 | |
|     // If we encounter a use of the pointer, it is no longer considered dead
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
 | |
|       LoadedLoc = AA->getLocation(L);
 | |
|     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
 | |
|       LoadedLoc = AA->getLocation(V);
 | |
|     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
 | |
|       LoadedLoc = AA->getLocationForSource(MTI);
 | |
|     } else {
 | |
|       // Not a loading instruction.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Remove any allocas from the DeadPointer set that are loaded, as this
 | |
|     // makes any stores above the access live.
 | |
|     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
 | |
| 
 | |
|     // If all of the allocas were clobbered by the access then we're not going
 | |
|     // to find anything else to process.
 | |
|     if (DeadStackObjects.empty())
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// RemoveAccessedObjects - Check to see if the specified location may alias any
 | |
| /// of the stack objects in the DeadStackObjects set.  If so, they become live
 | |
| /// because the location is being loaded.
 | |
| void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
 | |
|                                 SmallPtrSet<Value*, 16> &DeadStackObjects) {
 | |
|   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
 | |
| 
 | |
|   // A constant can't be in the dead pointer set.
 | |
|   if (isa<Constant>(UnderlyingPointer))
 | |
|     return;
 | |
|   
 | |
|   // If the kill pointer can be easily reduced to an alloca, don't bother doing
 | |
|   // extraneous AA queries.
 | |
|   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
 | |
|     DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   SmallVector<Value*, 16> NowLive;
 | |
|   for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
 | |
|        E = DeadStackObjects.end(); I != E; ++I) {
 | |
|     // See if the loaded location could alias the stack location.
 | |
|     AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
 | |
|     if (!AA->isNoAlias(StackLoc, LoadedLoc))
 | |
|       NowLive.push_back(*I);
 | |
|   }
 | |
| 
 | |
|   for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
 | |
|        I != E; ++I)
 | |
|     DeadStackObjects.erase(*I);
 | |
| }
 | |
| 
 |