llvm-6502/lib/CodeGen
Reid Kleckner 192537c4f3 [WinEH] Try to make the MachineFunction CFG more accurate
This avoids emitting code for unreachable landingpad blocks that contain
calls to llvm.eh.actions and indirectbr.

It's also a first step towards unifying the SEH and WinEH lowering
codepaths. I'm keeping the old fan-in lowering of SEH around until the
preparation version works well enough that we can switch over without
breaking existing users.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235037 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-15 18:48:15 +00:00
..
AsmPrinter [WinEH] Try to make the MachineFunction CFG more accurate 2015-04-15 18:48:15 +00:00
SelectionDAG [WinEH] Try to make the MachineFunction CFG more accurate 2015-04-15 18:48:15 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
AtomicExpandPass.cpp Mutate TargetLowering::shouldExpandAtomicRMWInIR to specifically dictate how AtomicRMWInsts are expanded. 2015-03-04 15:47:57 +00:00
BasicTargetTransformInfo.cpp
BranchFolding.cpp BranchFolding: MergePotentialsElt has a total order, just call array_pod_sort. 2015-03-13 21:17:02 +00:00
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp
CMakeLists.txt
CodeGen.cpp Reland r229944: EH: Prune unreachable resume instructions during Dwarf EH preparation 2015-03-09 22:45:16 +00:00
CodeGenPrepare.cpp [ARM] Align global variables passed to memory intrinsics 2015-04-13 10:47:39 +00:00
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp
DwarfEHPrepare.cpp Stop calling DwarfEHPrepare from WinEHPrepare 2015-03-12 00:36:20 +00:00
EarlyIfConversion.cpp Add range iterators for post order and inverse post order. Use them 2015-04-15 17:41:42 +00:00
EdgeBundles.cpp
ErlangGC.cpp
ExecutionDepsFix.cpp remove function names from comments; NFC 2015-03-15 18:16:04 +00:00
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp [gcroot] Remove unused items from an enum 2015-04-02 05:02:16 +00:00
GCMetadataPrinter.cpp
GCRootLowering.cpp Teach gcroot how to handle dynamically realigned frames 2015-04-02 05:00:40 +00:00
GCStrategy.cpp
GlobalMerge.cpp [CodeGen] Split -enable-global-merge into ARM and AArch64 options. 2015-04-11 00:06:36 +00:00
IfConversion.cpp [CodeGen][IfCvt] Don't re-ifcvt blocks with unanalyzable terminators. 2015-03-21 01:23:15 +00:00
InlineSpiller.cpp Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
InterferenceCache.cpp Make static variables const if possible. Makes them go into a read-only section. 2015-03-08 16:07:39 +00:00
InterferenceCache.h Make static variables const if possible. Makes them go into a read-only section. 2015-03-08 16:07:39 +00:00
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp Remove LatencyPriorityQueue::dump because it relies on an implicit copy ctor which is deprecated in C++11 (due to the presence of a user-declare dtor in the base class) 2015-03-03 21:16:56 +00:00
LexicalScopes.cpp DebugInfo: Gut DISubprogram and DILexicalBlock* 2015-04-14 03:40:37 +00:00
LiveDebugVariables.cpp DebugInfo: Move DIVariable::printExtendedName() to its only caller 2015-04-14 02:09:32 +00:00
LiveDebugVariables.h Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
LiveInterval.cpp Oops, didn't mean to commit my debug fprintfs 2015-04-08 02:10:01 +00:00
LiveIntervalAnalysis.cpp Do not track subregister liveness when it brings no benefits 2015-03-19 00:21:58 +00:00
LiveIntervalUnion.cpp
LivePhysRegs.cpp More missing includes only visible to MSVC. 2015-03-23 18:23:08 +00:00
LiveRangeCalc.cpp Do not track subregister liveness when it brings no benefits 2015-03-19 00:21:58 +00:00
LiveRangeCalc.h Do not track subregister liveness when it brings no benefits 2015-03-19 00:21:58 +00:00
LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveStackAnalysis.cpp Recommit r231168: unique_ptrify LiveRange::segmentSet 2015-03-04 01:20:33 +00:00
LiveVariables.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
LLVMBuild.txt
LLVMTargetMachine.cpp Use raw_pwrite_stream in the object writer/streamer. 2015-04-14 22:14:34 +00:00
LocalStackSlotAllocation.cpp [ARM] Fix handling of thumb1 out-of-range frame offsets 2015-03-20 17:20:07 +00:00
MachineBasicBlock.cpp Remove superfluous .str() and replace std::string concatenation with Twine. 2015-03-27 17:51:30 +00:00
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp [MBP] Spell the conditions the same way through out this if statement. 2015-04-15 13:39:42 +00:00
MachineBranchProbabilityInfo.cpp
MachineCombiner.cpp
MachineCopyPropagation.cpp [MachineCopyPropagation] Fix a bug causing incorrect removal for the instruction sequences as follows 2015-03-13 05:15:23 +00:00
MachineCSE.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
MachineDominanceFrontier.cpp
MachineDominators.cpp
MachineFunction.cpp Remove superfluous .str() and replace std::string concatenation with Twine. 2015-03-27 17:51:30 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp DebugInfo: Gut DIVariable and DIGlobalVariable 2015-04-14 02:22:36 +00:00
MachineInstrBundle.cpp
MachineLICM.cpp [MachineLICM] Use newer model of register pressure sets. 2015-04-14 11:56:25 +00:00
MachineLoopInfo.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
MachineModuleInfo.cpp [WinEH] Try to make the MachineFunction CFG more accurate 2015-04-15 18:48:15 +00:00
MachineModuleInfoImpls.cpp Clear the stub map in getSortedStubs. 2015-04-07 12:59:28 +00:00
MachinePassRegistry.cpp
MachinePostDominators.cpp
MachineRegionInfo.cpp
MachineRegisterInfo.cpp Have TargetRegisterInfo::getLargestLegalSuperClass take a 2015-03-10 23:46:01 +00:00
MachineScheduler.cpp Complete the MachineScheduler fix made way back in r210390. 2015-03-27 06:10:13 +00:00
MachineSink.cpp
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp Add range iterators for post order and inverse post order. Use them 2015-04-15 17:41:42 +00:00
MachineVerifier.cpp MachineVerifier: slightly simplify code that is only called with vregs 2015-03-25 21:18:22 +00:00
Makefile
module.modulemap
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
PeepholeOptimizer.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
PHIElimination.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp [WinEH] Run cleanup handlers when an exception is thrown 2015-03-30 22:58:10 +00:00
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp CodeGen: Stop using DIDescriptor::is*() and auto-casting 2015-04-06 23:27:40 +00:00
RegAllocGreedy.cpp RegAllocGreedy: Allow target to specify register class ordering. 2015-03-31 19:57:53 +00:00
RegAllocPBQP.cpp [PBQP] Use a local bit-matrix to speedup searching an edge in the graph. 2015-03-05 09:12:59 +00:00
RegisterClassInfo.cpp Have getRegPressureSetLimit take a MachineFunction so that a 2015-03-11 18:34:58 +00:00
RegisterCoalescer.cpp [RegisterCoalescer] Fix a potential misuse of direct operand index in the 2015-03-30 21:50:44 +00:00
RegisterCoalescer.h
RegisterPressure.cpp Move private classes into anonymous namespaces 2015-03-23 12:30:58 +00:00
RegisterScavenging.cpp
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp DataLayout is mandatory, update the API to reflect it with references. 2015-03-10 02:37:25 +00:00
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShadowStackGCLowering.cpp [opaque pointer type] API migration for GEP constant factories 2015-04-02 18:55:32 +00:00
SjLjEHPrepare.cpp [opaque pointer type] More GEP API migrations 2015-04-04 21:07:10 +00:00
SlotIndexes.cpp [llvm] Replacing asserts with static_asserts where appropriate 2015-03-16 09:53:42 +00:00
Spiller.h
SpillPlacement.cpp
SpillPlacement.h Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
SplitKit.cpp
SplitKit.h
StackColoring.cpp CodeGen: Stop using DIDescriptor::is*() and auto-casting 2015-04-06 23:27:40 +00:00
StackMapLivenessAnalysis.cpp Internalize the StackMapLiveness pass. 2015-03-24 13:20:54 +00:00
StackMaps.cpp Remove dead calls and function arguments dealing with TRI in StackMaps. 2015-03-20 21:05:18 +00:00
StackProtector.cpp
StackSlotColoring.cpp Recommit r231175: Change LiveStackAnalysis::SS2IntervalMap from std::map to std::unordered_map 2015-03-04 01:15:53 +00:00
StatepointExampleGC.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp Use the cached subtarget off of the machine function. 2015-03-19 23:06:21 +00:00
TargetLoweringBase.cpp [CodeGen] "PromoteInteger" f32 to f64 doesn't make sense. 2015-03-28 01:22:37 +00:00
TargetLoweringObjectFileImpl.cpp Implement unique sections with an unique ID. 2015-04-04 18:02:01 +00:00
TargetOptionsImpl.cpp
TargetRegisterInfo.cpp
TargetSchedule.cpp
TwoAddressInstructionPass.cpp Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used. 2015-03-23 19:32:43 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp Do not track subregister liveness when it brings no benefits 2015-03-19 00:21:58 +00:00
WinEHPrepare.cpp Change range-based for-loops to be -Wrange-loop-analysis clean. 2015-04-15 01:21:15 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str r4, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.