mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217069 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			905 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the SmallVector class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_SMALLVECTOR_H
 | 
						|
#define LLVM_ADT_SMALLVECTOR_H
 | 
						|
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Support/AlignOf.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/type_traits.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdlib>
 | 
						|
#include <cstring>
 | 
						|
#include <iterator>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// This is all the non-templated stuff common to all SmallVectors.
 | 
						|
class SmallVectorBase {
 | 
						|
protected:
 | 
						|
  void *BeginX, *EndX, *CapacityX;
 | 
						|
 | 
						|
protected:
 | 
						|
  SmallVectorBase(void *FirstEl, size_t Size)
 | 
						|
    : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
 | 
						|
 | 
						|
  /// This is an implementation of the grow() method which only works
 | 
						|
  /// on POD-like data types and is out of line to reduce code duplication.
 | 
						|
  void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
 | 
						|
 | 
						|
public:
 | 
						|
  /// This returns size()*sizeof(T).
 | 
						|
  size_t size_in_bytes() const {
 | 
						|
    return size_t((char*)EndX - (char*)BeginX);
 | 
						|
  }
 | 
						|
 | 
						|
  /// capacity_in_bytes - This returns capacity()*sizeof(T).
 | 
						|
  size_t capacity_in_bytes() const {
 | 
						|
    return size_t((char*)CapacityX - (char*)BeginX);
 | 
						|
  }
 | 
						|
 | 
						|
  bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T, unsigned N> struct SmallVectorStorage;
 | 
						|
 | 
						|
/// This is the part of SmallVectorTemplateBase which does not depend on whether
 | 
						|
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
 | 
						|
/// to avoid unnecessarily requiring T to be complete.
 | 
						|
template <typename T, typename = void>
 | 
						|
class SmallVectorTemplateCommon : public SmallVectorBase {
 | 
						|
private:
 | 
						|
  template <typename, unsigned> friend struct SmallVectorStorage;
 | 
						|
 | 
						|
  // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
 | 
						|
  // don't want it to be automatically run, so we need to represent the space as
 | 
						|
  // something else.  Use an array of char of sufficient alignment.
 | 
						|
  typedef llvm::AlignedCharArrayUnion<T> U;
 | 
						|
  U FirstEl;
 | 
						|
  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
 | 
						|
 | 
						|
protected:
 | 
						|
  SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
 | 
						|
 | 
						|
  void grow_pod(size_t MinSizeInBytes, size_t TSize) {
 | 
						|
    SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return true if this is a smallvector which has not had dynamic
 | 
						|
  /// memory allocated for it.
 | 
						|
  bool isSmall() const {
 | 
						|
    return BeginX == static_cast<const void*>(&FirstEl);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Put this vector in a state of being small.
 | 
						|
  void resetToSmall() {
 | 
						|
    BeginX = EndX = CapacityX = &FirstEl;
 | 
						|
  }
 | 
						|
 | 
						|
  void setEnd(T *P) { this->EndX = P; }
 | 
						|
public:
 | 
						|
  typedef size_t size_type;
 | 
						|
  typedef ptrdiff_t difference_type;
 | 
						|
  typedef T value_type;
 | 
						|
  typedef T *iterator;
 | 
						|
  typedef const T *const_iterator;
 | 
						|
 | 
						|
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 | 
						|
  typedef std::reverse_iterator<iterator> reverse_iterator;
 | 
						|
 | 
						|
  typedef T &reference;
 | 
						|
  typedef const T &const_reference;
 | 
						|
  typedef T *pointer;
 | 
						|
  typedef const T *const_pointer;
 | 
						|
 | 
						|
  // forward iterator creation methods.
 | 
						|
  iterator begin() { return (iterator)this->BeginX; }
 | 
						|
  const_iterator begin() const { return (const_iterator)this->BeginX; }
 | 
						|
  iterator end() { return (iterator)this->EndX; }
 | 
						|
  const_iterator end() const { return (const_iterator)this->EndX; }
 | 
						|
protected:
 | 
						|
  iterator capacity_ptr() { return (iterator)this->CapacityX; }
 | 
						|
  const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
 | 
						|
public:
 | 
						|
 | 
						|
  // reverse iterator creation methods.
 | 
						|
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
 | 
						|
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
 | 
						|
  reverse_iterator rend()              { return reverse_iterator(begin()); }
 | 
						|
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
 | 
						|
 | 
						|
  size_type size() const { return end()-begin(); }
 | 
						|
  size_type max_size() const { return size_type(-1) / sizeof(T); }
 | 
						|
 | 
						|
  /// Return the total number of elements in the currently allocated buffer.
 | 
						|
  size_t capacity() const { return capacity_ptr() - begin(); }
 | 
						|
 | 
						|
  /// Return a pointer to the vector's buffer, even if empty().
 | 
						|
  pointer data() { return pointer(begin()); }
 | 
						|
  /// Return a pointer to the vector's buffer, even if empty().
 | 
						|
  const_pointer data() const { return const_pointer(begin()); }
 | 
						|
 | 
						|
  reference operator[](unsigned idx) {
 | 
						|
    assert(begin() + idx < end());
 | 
						|
    return begin()[idx];
 | 
						|
  }
 | 
						|
  const_reference operator[](unsigned idx) const {
 | 
						|
    assert(begin() + idx < end());
 | 
						|
    return begin()[idx];
 | 
						|
  }
 | 
						|
 | 
						|
  reference front() {
 | 
						|
    assert(!empty());
 | 
						|
    return begin()[0];
 | 
						|
  }
 | 
						|
  const_reference front() const {
 | 
						|
    assert(!empty());
 | 
						|
    return begin()[0];
 | 
						|
  }
 | 
						|
 | 
						|
  reference back() {
 | 
						|
    assert(!empty());
 | 
						|
    return end()[-1];
 | 
						|
  }
 | 
						|
  const_reference back() const {
 | 
						|
    assert(!empty());
 | 
						|
    return end()[-1];
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
 | 
						|
/// implementations that are designed to work with non-POD-like T's.
 | 
						|
template <typename T, bool isPodLike>
 | 
						|
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
 | 
						|
protected:
 | 
						|
  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
 | 
						|
 | 
						|
  static void destroy_range(T *S, T *E) {
 | 
						|
    while (S != E) {
 | 
						|
      --E;
 | 
						|
      E->~T();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Use move-assignment to move the range [I, E) onto the
 | 
						|
  /// objects starting with "Dest".  This is just <memory>'s
 | 
						|
  /// std::move, but not all stdlibs actually provide that.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static It2 move(It1 I, It1 E, It2 Dest) {
 | 
						|
    for (; I != E; ++I, ++Dest)
 | 
						|
      *Dest = ::std::move(*I);
 | 
						|
    return Dest;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Use move-assignment to move the range
 | 
						|
  /// [I, E) onto the objects ending at "Dest", moving objects
 | 
						|
  /// in reverse order.  This is just <algorithm>'s
 | 
						|
  /// std::move_backward, but not all stdlibs actually provide that.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static It2 move_backward(It1 I, It1 E, It2 Dest) {
 | 
						|
    while (I != E)
 | 
						|
      *--Dest = ::std::move(*--E);
 | 
						|
    return Dest;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Move the range [I, E) into the uninitialized memory starting with "Dest",
 | 
						|
  /// constructing elements as needed.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
 | 
						|
    for (; I != E; ++I, ++Dest)
 | 
						|
      ::new ((void*) &*Dest) T(::std::move(*I));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
 | 
						|
  /// constructing elements as needed.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
 | 
						|
    std::uninitialized_copy(I, E, Dest);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Grow the allocated memory (without initializing new elements), doubling
 | 
						|
  /// the size of the allocated memory. Guarantees space for at least one more
 | 
						|
  /// element, or MinSize more elements if specified.
 | 
						|
  void grow(size_t MinSize = 0);
 | 
						|
 | 
						|
public:
 | 
						|
  void push_back(const T &Elt) {
 | 
						|
    if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
 | 
						|
      this->grow();
 | 
						|
    ::new ((void*) this->end()) T(Elt);
 | 
						|
    this->setEnd(this->end()+1);
 | 
						|
  }
 | 
						|
 | 
						|
  void push_back(T &&Elt) {
 | 
						|
    if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
 | 
						|
      this->grow();
 | 
						|
    ::new ((void*) this->end()) T(::std::move(Elt));
 | 
						|
    this->setEnd(this->end()+1);
 | 
						|
  }
 | 
						|
 | 
						|
  void pop_back() {
 | 
						|
    this->setEnd(this->end()-1);
 | 
						|
    this->end()->~T();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
 | 
						|
template <typename T, bool isPodLike>
 | 
						|
void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
 | 
						|
  size_t CurCapacity = this->capacity();
 | 
						|
  size_t CurSize = this->size();
 | 
						|
  // Always grow, even from zero.
 | 
						|
  size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
 | 
						|
  if (NewCapacity < MinSize)
 | 
						|
    NewCapacity = MinSize;
 | 
						|
  T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
 | 
						|
 | 
						|
  // Move the elements over.
 | 
						|
  this->uninitialized_move(this->begin(), this->end(), NewElts);
 | 
						|
 | 
						|
  // Destroy the original elements.
 | 
						|
  destroy_range(this->begin(), this->end());
 | 
						|
 | 
						|
  // If this wasn't grown from the inline copy, deallocate the old space.
 | 
						|
  if (!this->isSmall())
 | 
						|
    free(this->begin());
 | 
						|
 | 
						|
  this->setEnd(NewElts+CurSize);
 | 
						|
  this->BeginX = NewElts;
 | 
						|
  this->CapacityX = this->begin()+NewCapacity;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
 | 
						|
/// implementations that are designed to work with POD-like T's.
 | 
						|
template <typename T>
 | 
						|
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
 | 
						|
protected:
 | 
						|
  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
 | 
						|
 | 
						|
  // No need to do a destroy loop for POD's.
 | 
						|
  static void destroy_range(T *, T *) {}
 | 
						|
 | 
						|
  /// Use move-assignment to move the range [I, E) onto the
 | 
						|
  /// objects starting with "Dest".  For PODs, this is just memcpy.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static It2 move(It1 I, It1 E, It2 Dest) {
 | 
						|
    return ::std::copy(I, E, Dest);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Use move-assignment to move the range [I, E) onto the objects ending at
 | 
						|
  /// "Dest", moving objects in reverse order.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static It2 move_backward(It1 I, It1 E, It2 Dest) {
 | 
						|
    return ::std::copy_backward(I, E, Dest);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Move the range [I, E) onto the uninitialized memory
 | 
						|
  /// starting with "Dest", constructing elements into it as needed.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
 | 
						|
    // Just do a copy.
 | 
						|
    uninitialized_copy(I, E, Dest);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Copy the range [I, E) onto the uninitialized memory
 | 
						|
  /// starting with "Dest", constructing elements into it as needed.
 | 
						|
  template<typename It1, typename It2>
 | 
						|
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
 | 
						|
    // Arbitrary iterator types; just use the basic implementation.
 | 
						|
    std::uninitialized_copy(I, E, Dest);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Copy the range [I, E) onto the uninitialized memory
 | 
						|
  /// starting with "Dest", constructing elements into it as needed.
 | 
						|
  template<typename T1, typename T2>
 | 
						|
  static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
 | 
						|
    // Use memcpy for PODs iterated by pointers (which includes SmallVector
 | 
						|
    // iterators): std::uninitialized_copy optimizes to memmove, but we can
 | 
						|
    // use memcpy here.
 | 
						|
    memcpy(Dest, I, (E-I)*sizeof(T));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Double the size of the allocated memory, guaranteeing space for at
 | 
						|
  /// least one more element or MinSize if specified.
 | 
						|
  void grow(size_t MinSize = 0) {
 | 
						|
    this->grow_pod(MinSize*sizeof(T), sizeof(T));
 | 
						|
  }
 | 
						|
public:
 | 
						|
  void push_back(const T &Elt) {
 | 
						|
    if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
 | 
						|
      this->grow();
 | 
						|
    memcpy(this->end(), &Elt, sizeof(T));
 | 
						|
    this->setEnd(this->end()+1);
 | 
						|
  }
 | 
						|
 | 
						|
  void pop_back() {
 | 
						|
    this->setEnd(this->end()-1);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// This class consists of common code factored out of the SmallVector class to
 | 
						|
/// reduce code duplication based on the SmallVector 'N' template parameter.
 | 
						|
template <typename T>
 | 
						|
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
 | 
						|
  typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
 | 
						|
 | 
						|
  SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
 | 
						|
public:
 | 
						|
  typedef typename SuperClass::iterator iterator;
 | 
						|
  typedef typename SuperClass::size_type size_type;
 | 
						|
 | 
						|
protected:
 | 
						|
  // Default ctor - Initialize to empty.
 | 
						|
  explicit SmallVectorImpl(unsigned N)
 | 
						|
    : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  ~SmallVectorImpl() {
 | 
						|
    // Destroy the constructed elements in the vector.
 | 
						|
    this->destroy_range(this->begin(), this->end());
 | 
						|
 | 
						|
    // If this wasn't grown from the inline copy, deallocate the old space.
 | 
						|
    if (!this->isSmall())
 | 
						|
      free(this->begin());
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    this->destroy_range(this->begin(), this->end());
 | 
						|
    this->EndX = this->BeginX;
 | 
						|
  }
 | 
						|
 | 
						|
  void resize(unsigned N) {
 | 
						|
    if (N < this->size()) {
 | 
						|
      this->destroy_range(this->begin()+N, this->end());
 | 
						|
      this->setEnd(this->begin()+N);
 | 
						|
    } else if (N > this->size()) {
 | 
						|
      if (this->capacity() < N)
 | 
						|
        this->grow(N);
 | 
						|
      for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
 | 
						|
        new (&*I) T();
 | 
						|
      this->setEnd(this->begin()+N);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void resize(unsigned N, const T &NV) {
 | 
						|
    if (N < this->size()) {
 | 
						|
      this->destroy_range(this->begin()+N, this->end());
 | 
						|
      this->setEnd(this->begin()+N);
 | 
						|
    } else if (N > this->size()) {
 | 
						|
      if (this->capacity() < N)
 | 
						|
        this->grow(N);
 | 
						|
      std::uninitialized_fill(this->end(), this->begin()+N, NV);
 | 
						|
      this->setEnd(this->begin()+N);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void reserve(unsigned N) {
 | 
						|
    if (this->capacity() < N)
 | 
						|
      this->grow(N);
 | 
						|
  }
 | 
						|
 | 
						|
  T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
 | 
						|
    T Result = ::std::move(this->back());
 | 
						|
    this->pop_back();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  void swap(SmallVectorImpl &RHS);
 | 
						|
 | 
						|
  /// Add the specified range to the end of the SmallVector.
 | 
						|
  template<typename in_iter>
 | 
						|
  void append(in_iter in_start, in_iter in_end) {
 | 
						|
    size_type NumInputs = std::distance(in_start, in_end);
 | 
						|
    // Grow allocated space if needed.
 | 
						|
    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
 | 
						|
      this->grow(this->size()+NumInputs);
 | 
						|
 | 
						|
    // Copy the new elements over.
 | 
						|
    // TODO: NEED To compile time dispatch on whether in_iter is a random access
 | 
						|
    // iterator to use the fast uninitialized_copy.
 | 
						|
    std::uninitialized_copy(in_start, in_end, this->end());
 | 
						|
    this->setEnd(this->end() + NumInputs);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Add the specified range to the end of the SmallVector.
 | 
						|
  void append(size_type NumInputs, const T &Elt) {
 | 
						|
    // Grow allocated space if needed.
 | 
						|
    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
 | 
						|
      this->grow(this->size()+NumInputs);
 | 
						|
 | 
						|
    // Copy the new elements over.
 | 
						|
    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
 | 
						|
    this->setEnd(this->end() + NumInputs);
 | 
						|
  }
 | 
						|
 | 
						|
  void assign(unsigned NumElts, const T &Elt) {
 | 
						|
    clear();
 | 
						|
    if (this->capacity() < NumElts)
 | 
						|
      this->grow(NumElts);
 | 
						|
    this->setEnd(this->begin()+NumElts);
 | 
						|
    std::uninitialized_fill(this->begin(), this->end(), Elt);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator erase(iterator I) {
 | 
						|
    assert(I >= this->begin() && "Iterator to erase is out of bounds.");
 | 
						|
    assert(I < this->end() && "Erasing at past-the-end iterator.");
 | 
						|
 | 
						|
    iterator N = I;
 | 
						|
    // Shift all elts down one.
 | 
						|
    this->move(I+1, this->end(), I);
 | 
						|
    // Drop the last elt.
 | 
						|
    this->pop_back();
 | 
						|
    return(N);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator erase(iterator S, iterator E) {
 | 
						|
    assert(S >= this->begin() && "Range to erase is out of bounds.");
 | 
						|
    assert(S <= E && "Trying to erase invalid range.");
 | 
						|
    assert(E <= this->end() && "Trying to erase past the end.");
 | 
						|
 | 
						|
    iterator N = S;
 | 
						|
    // Shift all elts down.
 | 
						|
    iterator I = this->move(E, this->end(), S);
 | 
						|
    // Drop the last elts.
 | 
						|
    this->destroy_range(I, this->end());
 | 
						|
    this->setEnd(I);
 | 
						|
    return(N);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(iterator I, T &&Elt) {
 | 
						|
    if (I == this->end()) {  // Important special case for empty vector.
 | 
						|
      this->push_back(::std::move(Elt));
 | 
						|
      return this->end()-1;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
 | 
						|
    assert(I <= this->end() && "Inserting past the end of the vector.");
 | 
						|
 | 
						|
    if (this->EndX >= this->CapacityX) {
 | 
						|
      size_t EltNo = I-this->begin();
 | 
						|
      this->grow();
 | 
						|
      I = this->begin()+EltNo;
 | 
						|
    }
 | 
						|
 | 
						|
    ::new ((void*) this->end()) T(::std::move(this->back()));
 | 
						|
    // Push everything else over.
 | 
						|
    this->move_backward(I, this->end()-1, this->end());
 | 
						|
    this->setEnd(this->end()+1);
 | 
						|
 | 
						|
    // If we just moved the element we're inserting, be sure to update
 | 
						|
    // the reference.
 | 
						|
    T *EltPtr = &Elt;
 | 
						|
    if (I <= EltPtr && EltPtr < this->EndX)
 | 
						|
      ++EltPtr;
 | 
						|
 | 
						|
    *I = ::std::move(*EltPtr);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(iterator I, const T &Elt) {
 | 
						|
    if (I == this->end()) {  // Important special case for empty vector.
 | 
						|
      this->push_back(Elt);
 | 
						|
      return this->end()-1;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
 | 
						|
    assert(I <= this->end() && "Inserting past the end of the vector.");
 | 
						|
 | 
						|
    if (this->EndX >= this->CapacityX) {
 | 
						|
      size_t EltNo = I-this->begin();
 | 
						|
      this->grow();
 | 
						|
      I = this->begin()+EltNo;
 | 
						|
    }
 | 
						|
    ::new ((void*) this->end()) T(std::move(this->back()));
 | 
						|
    // Push everything else over.
 | 
						|
    this->move_backward(I, this->end()-1, this->end());
 | 
						|
    this->setEnd(this->end()+1);
 | 
						|
 | 
						|
    // If we just moved the element we're inserting, be sure to update
 | 
						|
    // the reference.
 | 
						|
    const T *EltPtr = &Elt;
 | 
						|
    if (I <= EltPtr && EltPtr < this->EndX)
 | 
						|
      ++EltPtr;
 | 
						|
 | 
						|
    *I = *EltPtr;
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
 | 
						|
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
 | 
						|
    size_t InsertElt = I - this->begin();
 | 
						|
 | 
						|
    if (I == this->end()) {  // Important special case for empty vector.
 | 
						|
      append(NumToInsert, Elt);
 | 
						|
      return this->begin()+InsertElt;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
 | 
						|
    assert(I <= this->end() && "Inserting past the end of the vector.");
 | 
						|
 | 
						|
    // Ensure there is enough space.
 | 
						|
    reserve(static_cast<unsigned>(this->size() + NumToInsert));
 | 
						|
 | 
						|
    // Uninvalidate the iterator.
 | 
						|
    I = this->begin()+InsertElt;
 | 
						|
 | 
						|
    // If there are more elements between the insertion point and the end of the
 | 
						|
    // range than there are being inserted, we can use a simple approach to
 | 
						|
    // insertion.  Since we already reserved space, we know that this won't
 | 
						|
    // reallocate the vector.
 | 
						|
    if (size_t(this->end()-I) >= NumToInsert) {
 | 
						|
      T *OldEnd = this->end();
 | 
						|
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
 | 
						|
             std::move_iterator<iterator>(this->end()));
 | 
						|
 | 
						|
      // Copy the existing elements that get replaced.
 | 
						|
      this->move_backward(I, OldEnd-NumToInsert, OldEnd);
 | 
						|
 | 
						|
      std::fill_n(I, NumToInsert, Elt);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we're inserting more elements than exist already, and we're
 | 
						|
    // not inserting at the end.
 | 
						|
 | 
						|
    // Move over the elements that we're about to overwrite.
 | 
						|
    T *OldEnd = this->end();
 | 
						|
    this->setEnd(this->end() + NumToInsert);
 | 
						|
    size_t NumOverwritten = OldEnd-I;
 | 
						|
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
 | 
						|
 | 
						|
    // Replace the overwritten part.
 | 
						|
    std::fill_n(I, NumOverwritten, Elt);
 | 
						|
 | 
						|
    // Insert the non-overwritten middle part.
 | 
						|
    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename ItTy>
 | 
						|
  iterator insert(iterator I, ItTy From, ItTy To) {
 | 
						|
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
 | 
						|
    size_t InsertElt = I - this->begin();
 | 
						|
 | 
						|
    if (I == this->end()) {  // Important special case for empty vector.
 | 
						|
      append(From, To);
 | 
						|
      return this->begin()+InsertElt;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
 | 
						|
    assert(I <= this->end() && "Inserting past the end of the vector.");
 | 
						|
 | 
						|
    size_t NumToInsert = std::distance(From, To);
 | 
						|
 | 
						|
    // Ensure there is enough space.
 | 
						|
    reserve(static_cast<unsigned>(this->size() + NumToInsert));
 | 
						|
 | 
						|
    // Uninvalidate the iterator.
 | 
						|
    I = this->begin()+InsertElt;
 | 
						|
 | 
						|
    // If there are more elements between the insertion point and the end of the
 | 
						|
    // range than there are being inserted, we can use a simple approach to
 | 
						|
    // insertion.  Since we already reserved space, we know that this won't
 | 
						|
    // reallocate the vector.
 | 
						|
    if (size_t(this->end()-I) >= NumToInsert) {
 | 
						|
      T *OldEnd = this->end();
 | 
						|
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
 | 
						|
             std::move_iterator<iterator>(this->end()));
 | 
						|
 | 
						|
      // Copy the existing elements that get replaced.
 | 
						|
      this->move_backward(I, OldEnd-NumToInsert, OldEnd);
 | 
						|
 | 
						|
      std::copy(From, To, I);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we're inserting more elements than exist already, and we're
 | 
						|
    // not inserting at the end.
 | 
						|
 | 
						|
    // Move over the elements that we're about to overwrite.
 | 
						|
    T *OldEnd = this->end();
 | 
						|
    this->setEnd(this->end() + NumToInsert);
 | 
						|
    size_t NumOverwritten = OldEnd-I;
 | 
						|
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
 | 
						|
 | 
						|
    // Replace the overwritten part.
 | 
						|
    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
 | 
						|
      *J = *From;
 | 
						|
      ++J; ++From;
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert the non-overwritten middle part.
 | 
						|
    this->uninitialized_copy(From, To, OldEnd);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
 | 
						|
 | 
						|
  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
 | 
						|
 | 
						|
  bool operator==(const SmallVectorImpl &RHS) const {
 | 
						|
    if (this->size() != RHS.size()) return false;
 | 
						|
    return std::equal(this->begin(), this->end(), RHS.begin());
 | 
						|
  }
 | 
						|
  bool operator!=(const SmallVectorImpl &RHS) const {
 | 
						|
    return !(*this == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator<(const SmallVectorImpl &RHS) const {
 | 
						|
    return std::lexicographical_compare(this->begin(), this->end(),
 | 
						|
                                        RHS.begin(), RHS.end());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Set the array size to \p N, which the current array must have enough
 | 
						|
  /// capacity for.
 | 
						|
  ///
 | 
						|
  /// This does not construct or destroy any elements in the vector.
 | 
						|
  ///
 | 
						|
  /// Clients can use this in conjunction with capacity() to write past the end
 | 
						|
  /// of the buffer when they know that more elements are available, and only
 | 
						|
  /// update the size later. This avoids the cost of value initializing elements
 | 
						|
  /// which will only be overwritten.
 | 
						|
  void set_size(unsigned N) {
 | 
						|
    assert(N <= this->capacity());
 | 
						|
    this->setEnd(this->begin() + N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
 | 
						|
  if (this == &RHS) return;
 | 
						|
 | 
						|
  // We can only avoid copying elements if neither vector is small.
 | 
						|
  if (!this->isSmall() && !RHS.isSmall()) {
 | 
						|
    std::swap(this->BeginX, RHS.BeginX);
 | 
						|
    std::swap(this->EndX, RHS.EndX);
 | 
						|
    std::swap(this->CapacityX, RHS.CapacityX);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (RHS.size() > this->capacity())
 | 
						|
    this->grow(RHS.size());
 | 
						|
  if (this->size() > RHS.capacity())
 | 
						|
    RHS.grow(this->size());
 | 
						|
 | 
						|
  // Swap the shared elements.
 | 
						|
  size_t NumShared = this->size();
 | 
						|
  if (NumShared > RHS.size()) NumShared = RHS.size();
 | 
						|
  for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
 | 
						|
    std::swap((*this)[i], RHS[i]);
 | 
						|
 | 
						|
  // Copy over the extra elts.
 | 
						|
  if (this->size() > RHS.size()) {
 | 
						|
    size_t EltDiff = this->size() - RHS.size();
 | 
						|
    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
 | 
						|
    RHS.setEnd(RHS.end()+EltDiff);
 | 
						|
    this->destroy_range(this->begin()+NumShared, this->end());
 | 
						|
    this->setEnd(this->begin()+NumShared);
 | 
						|
  } else if (RHS.size() > this->size()) {
 | 
						|
    size_t EltDiff = RHS.size() - this->size();
 | 
						|
    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
 | 
						|
    this->setEnd(this->end() + EltDiff);
 | 
						|
    this->destroy_range(RHS.begin()+NumShared, RHS.end());
 | 
						|
    RHS.setEnd(RHS.begin()+NumShared);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
SmallVectorImpl<T> &SmallVectorImpl<T>::
 | 
						|
  operator=(const SmallVectorImpl<T> &RHS) {
 | 
						|
  // Avoid self-assignment.
 | 
						|
  if (this == &RHS) return *this;
 | 
						|
 | 
						|
  // If we already have sufficient space, assign the common elements, then
 | 
						|
  // destroy any excess.
 | 
						|
  size_t RHSSize = RHS.size();
 | 
						|
  size_t CurSize = this->size();
 | 
						|
  if (CurSize >= RHSSize) {
 | 
						|
    // Assign common elements.
 | 
						|
    iterator NewEnd;
 | 
						|
    if (RHSSize)
 | 
						|
      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
 | 
						|
    else
 | 
						|
      NewEnd = this->begin();
 | 
						|
 | 
						|
    // Destroy excess elements.
 | 
						|
    this->destroy_range(NewEnd, this->end());
 | 
						|
 | 
						|
    // Trim.
 | 
						|
    this->setEnd(NewEnd);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have to grow to have enough elements, destroy the current elements.
 | 
						|
  // This allows us to avoid copying them during the grow.
 | 
						|
  // FIXME: don't do this if they're efficiently moveable.
 | 
						|
  if (this->capacity() < RHSSize) {
 | 
						|
    // Destroy current elements.
 | 
						|
    this->destroy_range(this->begin(), this->end());
 | 
						|
    this->setEnd(this->begin());
 | 
						|
    CurSize = 0;
 | 
						|
    this->grow(RHSSize);
 | 
						|
  } else if (CurSize) {
 | 
						|
    // Otherwise, use assignment for the already-constructed elements.
 | 
						|
    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy construct the new elements in place.
 | 
						|
  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
 | 
						|
                           this->begin()+CurSize);
 | 
						|
 | 
						|
  // Set end.
 | 
						|
  this->setEnd(this->begin()+RHSSize);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
 | 
						|
  // Avoid self-assignment.
 | 
						|
  if (this == &RHS) return *this;
 | 
						|
 | 
						|
  // If the RHS isn't small, clear this vector and then steal its buffer.
 | 
						|
  if (!RHS.isSmall()) {
 | 
						|
    this->destroy_range(this->begin(), this->end());
 | 
						|
    if (!this->isSmall()) free(this->begin());
 | 
						|
    this->BeginX = RHS.BeginX;
 | 
						|
    this->EndX = RHS.EndX;
 | 
						|
    this->CapacityX = RHS.CapacityX;
 | 
						|
    RHS.resetToSmall();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we already have sufficient space, assign the common elements, then
 | 
						|
  // destroy any excess.
 | 
						|
  size_t RHSSize = RHS.size();
 | 
						|
  size_t CurSize = this->size();
 | 
						|
  if (CurSize >= RHSSize) {
 | 
						|
    // Assign common elements.
 | 
						|
    iterator NewEnd = this->begin();
 | 
						|
    if (RHSSize)
 | 
						|
      NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
 | 
						|
 | 
						|
    // Destroy excess elements and trim the bounds.
 | 
						|
    this->destroy_range(NewEnd, this->end());
 | 
						|
    this->setEnd(NewEnd);
 | 
						|
 | 
						|
    // Clear the RHS.
 | 
						|
    RHS.clear();
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have to grow to have enough elements, destroy the current elements.
 | 
						|
  // This allows us to avoid copying them during the grow.
 | 
						|
  // FIXME: this may not actually make any sense if we can efficiently move
 | 
						|
  // elements.
 | 
						|
  if (this->capacity() < RHSSize) {
 | 
						|
    // Destroy current elements.
 | 
						|
    this->destroy_range(this->begin(), this->end());
 | 
						|
    this->setEnd(this->begin());
 | 
						|
    CurSize = 0;
 | 
						|
    this->grow(RHSSize);
 | 
						|
  } else if (CurSize) {
 | 
						|
    // Otherwise, use assignment for the already-constructed elements.
 | 
						|
    this->move(RHS.begin(), RHS.begin()+CurSize, this->begin());
 | 
						|
  }
 | 
						|
 | 
						|
  // Move-construct the new elements in place.
 | 
						|
  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
 | 
						|
                           this->begin()+CurSize);
 | 
						|
 | 
						|
  // Set end.
 | 
						|
  this->setEnd(this->begin()+RHSSize);
 | 
						|
 | 
						|
  RHS.clear();
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// Storage for the SmallVector elements which aren't contained in
 | 
						|
/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
 | 
						|
/// element is in the base class. This is specialized for the N=1 and N=0 cases
 | 
						|
/// to avoid allocating unnecessary storage.
 | 
						|
template <typename T, unsigned N>
 | 
						|
struct SmallVectorStorage {
 | 
						|
  typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
 | 
						|
};
 | 
						|
template <typename T> struct SmallVectorStorage<T, 1> {};
 | 
						|
template <typename T> struct SmallVectorStorage<T, 0> {};
 | 
						|
 | 
						|
/// This is a 'vector' (really, a variable-sized array), optimized
 | 
						|
/// for the case when the array is small.  It contains some number of elements
 | 
						|
/// in-place, which allows it to avoid heap allocation when the actual number of
 | 
						|
/// elements is below that threshold.  This allows normal "small" cases to be
 | 
						|
/// fast without losing generality for large inputs.
 | 
						|
///
 | 
						|
/// Note that this does not attempt to be exception safe.
 | 
						|
///
 | 
						|
template <typename T, unsigned N>
 | 
						|
class SmallVector : public SmallVectorImpl<T> {
 | 
						|
  /// Inline space for elements which aren't stored in the base class.
 | 
						|
  SmallVectorStorage<T, N> Storage;
 | 
						|
public:
 | 
						|
  SmallVector() : SmallVectorImpl<T>(N) {
 | 
						|
  }
 | 
						|
 | 
						|
  explicit SmallVector(unsigned Size, const T &Value = T())
 | 
						|
    : SmallVectorImpl<T>(N) {
 | 
						|
    this->assign(Size, Value);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename ItTy>
 | 
						|
  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
 | 
						|
    this->append(S, E);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename RangeTy>
 | 
						|
  explicit SmallVector(const llvm::iterator_range<RangeTy> R)
 | 
						|
      : SmallVectorImpl<T>(N) {
 | 
						|
    this->append(R.begin(), R.end());
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
 | 
						|
    if (!RHS.empty())
 | 
						|
      SmallVectorImpl<T>::operator=(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  const SmallVector &operator=(const SmallVector &RHS) {
 | 
						|
    SmallVectorImpl<T>::operator=(RHS);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
 | 
						|
    if (!RHS.empty())
 | 
						|
      SmallVectorImpl<T>::operator=(::std::move(RHS));
 | 
						|
  }
 | 
						|
 | 
						|
  const SmallVector &operator=(SmallVector &&RHS) {
 | 
						|
    SmallVectorImpl<T>::operator=(::std::move(RHS));
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename T, unsigned N>
 | 
						|
static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
 | 
						|
  return X.capacity_in_bytes();
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
namespace std {
 | 
						|
  /// Implement std::swap in terms of SmallVector swap.
 | 
						|
  template<typename T>
 | 
						|
  inline void
 | 
						|
  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
 | 
						|
    LHS.swap(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement std::swap in terms of SmallVector swap.
 | 
						|
  template<typename T, unsigned N>
 | 
						|
  inline void
 | 
						|
  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
 | 
						|
    LHS.swap(RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |