mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219365 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1182 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1182 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Shared implementation of BlockFrequency for IR and Machine Instructions.
 | 
						|
// See the documentation below for BlockFrequencyInfoImpl for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
 | 
						|
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ScaledNumber.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <deque>
 | 
						|
#include <list>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define DEBUG_TYPE "block-freq"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class BasicBlock;
 | 
						|
class BranchProbabilityInfo;
 | 
						|
class Function;
 | 
						|
class Loop;
 | 
						|
class LoopInfo;
 | 
						|
class MachineBasicBlock;
 | 
						|
class MachineBranchProbabilityInfo;
 | 
						|
class MachineFunction;
 | 
						|
class MachineLoop;
 | 
						|
class MachineLoopInfo;
 | 
						|
 | 
						|
namespace bfi_detail {
 | 
						|
 | 
						|
struct IrreducibleGraph;
 | 
						|
 | 
						|
// This is part of a workaround for a GCC 4.7 crash on lambdas.
 | 
						|
template <class BT> struct BlockEdgesAdder;
 | 
						|
 | 
						|
/// \brief Mass of a block.
 | 
						|
///
 | 
						|
/// This class implements a sort of fixed-point fraction always between 0.0 and
 | 
						|
/// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
 | 
						|
///
 | 
						|
/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
 | 
						|
/// so arithmetic operations never overflow or underflow.
 | 
						|
///
 | 
						|
/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
 | 
						|
/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
 | 
						|
/// quite, maximum precision).
 | 
						|
///
 | 
						|
/// Masses can be scaled by \a BranchProbability at maximum precision.
 | 
						|
class BlockMass {
 | 
						|
  uint64_t Mass;
 | 
						|
 | 
						|
public:
 | 
						|
  BlockMass() : Mass(0) {}
 | 
						|
  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
 | 
						|
 | 
						|
  static BlockMass getEmpty() { return BlockMass(); }
 | 
						|
  static BlockMass getFull() { return BlockMass(UINT64_MAX); }
 | 
						|
 | 
						|
  uint64_t getMass() const { return Mass; }
 | 
						|
 | 
						|
  bool isFull() const { return Mass == UINT64_MAX; }
 | 
						|
  bool isEmpty() const { return !Mass; }
 | 
						|
 | 
						|
  bool operator!() const { return isEmpty(); }
 | 
						|
 | 
						|
  /// \brief Add another mass.
 | 
						|
  ///
 | 
						|
  /// Adds another mass, saturating at \a isFull() rather than overflowing.
 | 
						|
  BlockMass &operator+=(const BlockMass &X) {
 | 
						|
    uint64_t Sum = Mass + X.Mass;
 | 
						|
    Mass = Sum < Mass ? UINT64_MAX : Sum;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Subtract another mass.
 | 
						|
  ///
 | 
						|
  /// Subtracts another mass, saturating at \a isEmpty() rather than
 | 
						|
  /// undeflowing.
 | 
						|
  BlockMass &operator-=(const BlockMass &X) {
 | 
						|
    uint64_t Diff = Mass - X.Mass;
 | 
						|
    Mass = Diff > Mass ? 0 : Diff;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BlockMass &operator*=(const BranchProbability &P) {
 | 
						|
    Mass = P.scale(Mass);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
 | 
						|
  bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
 | 
						|
  bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
 | 
						|
  bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
 | 
						|
  bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
 | 
						|
  bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
 | 
						|
 | 
						|
  /// \brief Convert to scaled number.
 | 
						|
  ///
 | 
						|
  /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
 | 
						|
  /// gives slightly above 0.0.
 | 
						|
  ScaledNumber<uint64_t> toScaled() const;
 | 
						|
 | 
						|
  void dump() const;
 | 
						|
  raw_ostream &print(raw_ostream &OS) const;
 | 
						|
};
 | 
						|
 | 
						|
inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
 | 
						|
  return BlockMass(L) += R;
 | 
						|
}
 | 
						|
inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
 | 
						|
  return BlockMass(L) -= R;
 | 
						|
}
 | 
						|
inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
 | 
						|
  return BlockMass(L) *= R;
 | 
						|
}
 | 
						|
inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
 | 
						|
  return BlockMass(R) *= L;
 | 
						|
}
 | 
						|
 | 
						|
inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
 | 
						|
  return X.print(OS);
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace bfi_detail
 | 
						|
 | 
						|
template <> struct isPodLike<bfi_detail::BlockMass> {
 | 
						|
  static const bool value = true;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Base class for BlockFrequencyInfoImpl
 | 
						|
///
 | 
						|
/// BlockFrequencyInfoImplBase has supporting data structures and some
 | 
						|
/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
 | 
						|
/// the block type (or that call such algorithms) are skipped here.
 | 
						|
///
 | 
						|
/// Nevertheless, the majority of the overall algorithm documention lives with
 | 
						|
/// BlockFrequencyInfoImpl.  See there for details.
 | 
						|
class BlockFrequencyInfoImplBase {
 | 
						|
public:
 | 
						|
  typedef ScaledNumber<uint64_t> Scaled64;
 | 
						|
  typedef bfi_detail::BlockMass BlockMass;
 | 
						|
 | 
						|
  /// \brief Representative of a block.
 | 
						|
  ///
 | 
						|
  /// This is a simple wrapper around an index into the reverse-post-order
 | 
						|
  /// traversal of the blocks.
 | 
						|
  ///
 | 
						|
  /// Unlike a block pointer, its order has meaning (location in the
 | 
						|
  /// topological sort) and it's class is the same regardless of block type.
 | 
						|
  struct BlockNode {
 | 
						|
    typedef uint32_t IndexType;
 | 
						|
    IndexType Index;
 | 
						|
 | 
						|
    bool operator==(const BlockNode &X) const { return Index == X.Index; }
 | 
						|
    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
 | 
						|
    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
 | 
						|
    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
 | 
						|
    bool operator<(const BlockNode &X) const { return Index < X.Index; }
 | 
						|
    bool operator>(const BlockNode &X) const { return Index > X.Index; }
 | 
						|
 | 
						|
    BlockNode() : Index(UINT32_MAX) {}
 | 
						|
    BlockNode(IndexType Index) : Index(Index) {}
 | 
						|
 | 
						|
    bool isValid() const { return Index <= getMaxIndex(); }
 | 
						|
    static size_t getMaxIndex() { return UINT32_MAX - 1; }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Stats about a block itself.
 | 
						|
  struct FrequencyData {
 | 
						|
    Scaled64 Scaled;
 | 
						|
    uint64_t Integer;
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Data about a loop.
 | 
						|
  ///
 | 
						|
  /// Contains the data necessary to represent represent a loop as a
 | 
						|
  /// pseudo-node once it's packaged.
 | 
						|
  struct LoopData {
 | 
						|
    typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
 | 
						|
    typedef SmallVector<BlockNode, 4> NodeList;
 | 
						|
    LoopData *Parent;       ///< The parent loop.
 | 
						|
    bool IsPackaged;        ///< Whether this has been packaged.
 | 
						|
    uint32_t NumHeaders;    ///< Number of headers.
 | 
						|
    ExitMap Exits;          ///< Successor edges (and weights).
 | 
						|
    NodeList Nodes;         ///< Header and the members of the loop.
 | 
						|
    BlockMass BackedgeMass; ///< Mass returned to loop header.
 | 
						|
    BlockMass Mass;
 | 
						|
    Scaled64 Scale;
 | 
						|
 | 
						|
    LoopData(LoopData *Parent, const BlockNode &Header)
 | 
						|
        : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
 | 
						|
    template <class It1, class It2>
 | 
						|
    LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
 | 
						|
             It2 LastOther)
 | 
						|
        : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
 | 
						|
      NumHeaders = Nodes.size();
 | 
						|
      Nodes.insert(Nodes.end(), FirstOther, LastOther);
 | 
						|
    }
 | 
						|
    bool isHeader(const BlockNode &Node) const {
 | 
						|
      if (isIrreducible())
 | 
						|
        return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
 | 
						|
                                  Node);
 | 
						|
      return Node == Nodes[0];
 | 
						|
    }
 | 
						|
    BlockNode getHeader() const { return Nodes[0]; }
 | 
						|
    bool isIrreducible() const { return NumHeaders > 1; }
 | 
						|
 | 
						|
    NodeList::const_iterator members_begin() const {
 | 
						|
      return Nodes.begin() + NumHeaders;
 | 
						|
    }
 | 
						|
    NodeList::const_iterator members_end() const { return Nodes.end(); }
 | 
						|
    iterator_range<NodeList::const_iterator> members() const {
 | 
						|
      return make_range(members_begin(), members_end());
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Index of loop information.
 | 
						|
  struct WorkingData {
 | 
						|
    BlockNode Node; ///< This node.
 | 
						|
    LoopData *Loop; ///< The loop this block is inside.
 | 
						|
    BlockMass Mass; ///< Mass distribution from the entry block.
 | 
						|
 | 
						|
    WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
 | 
						|
 | 
						|
    bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
 | 
						|
    bool isDoubleLoopHeader() const {
 | 
						|
      return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
 | 
						|
             Loop->Parent->isHeader(Node);
 | 
						|
    }
 | 
						|
 | 
						|
    LoopData *getContainingLoop() const {
 | 
						|
      if (!isLoopHeader())
 | 
						|
        return Loop;
 | 
						|
      if (!isDoubleLoopHeader())
 | 
						|
        return Loop->Parent;
 | 
						|
      return Loop->Parent->Parent;
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Resolve a node to its representative.
 | 
						|
    ///
 | 
						|
    /// Get the node currently representing Node, which could be a containing
 | 
						|
    /// loop.
 | 
						|
    ///
 | 
						|
    /// This function should only be called when distributing mass.  As long as
 | 
						|
    /// there are no irreducible edges to Node, then it will have complexity
 | 
						|
    /// O(1) in this context.
 | 
						|
    ///
 | 
						|
    /// In general, the complexity is O(L), where L is the number of loop
 | 
						|
    /// headers Node has been packaged into.  Since this method is called in
 | 
						|
    /// the context of distributing mass, L will be the number of loop headers
 | 
						|
    /// an early exit edge jumps out of.
 | 
						|
    BlockNode getResolvedNode() const {
 | 
						|
      auto L = getPackagedLoop();
 | 
						|
      return L ? L->getHeader() : Node;
 | 
						|
    }
 | 
						|
    LoopData *getPackagedLoop() const {
 | 
						|
      if (!Loop || !Loop->IsPackaged)
 | 
						|
        return nullptr;
 | 
						|
      auto L = Loop;
 | 
						|
      while (L->Parent && L->Parent->IsPackaged)
 | 
						|
        L = L->Parent;
 | 
						|
      return L;
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Get the appropriate mass for a node.
 | 
						|
    ///
 | 
						|
    /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
 | 
						|
    /// has been packaged), returns the mass of its pseudo-node.  If it's a
 | 
						|
    /// node inside a packaged loop, it returns the loop's mass.
 | 
						|
    BlockMass &getMass() {
 | 
						|
      if (!isAPackage())
 | 
						|
        return Mass;
 | 
						|
      if (!isADoublePackage())
 | 
						|
        return Loop->Mass;
 | 
						|
      return Loop->Parent->Mass;
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Has ContainingLoop been packaged up?
 | 
						|
    bool isPackaged() const { return getResolvedNode() != Node; }
 | 
						|
    /// \brief Has Loop been packaged up?
 | 
						|
    bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
 | 
						|
    /// \brief Has Loop been packaged up twice?
 | 
						|
    bool isADoublePackage() const {
 | 
						|
      return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Unscaled probability weight.
 | 
						|
  ///
 | 
						|
  /// Probability weight for an edge in the graph (including the
 | 
						|
  /// successor/target node).
 | 
						|
  ///
 | 
						|
  /// All edges in the original function are 32-bit.  However, exit edges from
 | 
						|
  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
 | 
						|
  /// space in general.
 | 
						|
  ///
 | 
						|
  /// In addition to the raw weight amount, Weight stores the type of the edge
 | 
						|
  /// in the current context (i.e., the context of the loop being processed).
 | 
						|
  /// Is this a local edge within the loop, an exit from the loop, or a
 | 
						|
  /// backedge to the loop header?
 | 
						|
  struct Weight {
 | 
						|
    enum DistType { Local, Exit, Backedge };
 | 
						|
    DistType Type;
 | 
						|
    BlockNode TargetNode;
 | 
						|
    uint64_t Amount;
 | 
						|
    Weight() : Type(Local), Amount(0) {}
 | 
						|
    Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
 | 
						|
        : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Distribution of unscaled probability weight.
 | 
						|
  ///
 | 
						|
  /// Distribution of unscaled probability weight to a set of successors.
 | 
						|
  ///
 | 
						|
  /// This class collates the successor edge weights for later processing.
 | 
						|
  ///
 | 
						|
  /// \a DidOverflow indicates whether \a Total did overflow while adding to
 | 
						|
  /// the distribution.  It should never overflow twice.
 | 
						|
  struct Distribution {
 | 
						|
    typedef SmallVector<Weight, 4> WeightList;
 | 
						|
    WeightList Weights;    ///< Individual successor weights.
 | 
						|
    uint64_t Total;        ///< Sum of all weights.
 | 
						|
    bool DidOverflow;      ///< Whether \a Total did overflow.
 | 
						|
 | 
						|
    Distribution() : Total(0), DidOverflow(false) {}
 | 
						|
    void addLocal(const BlockNode &Node, uint64_t Amount) {
 | 
						|
      add(Node, Amount, Weight::Local);
 | 
						|
    }
 | 
						|
    void addExit(const BlockNode &Node, uint64_t Amount) {
 | 
						|
      add(Node, Amount, Weight::Exit);
 | 
						|
    }
 | 
						|
    void addBackedge(const BlockNode &Node, uint64_t Amount) {
 | 
						|
      add(Node, Amount, Weight::Backedge);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Normalize the distribution.
 | 
						|
    ///
 | 
						|
    /// Combines multiple edges to the same \a Weight::TargetNode and scales
 | 
						|
    /// down so that \a Total fits into 32-bits.
 | 
						|
    ///
 | 
						|
    /// This is linear in the size of \a Weights.  For the vast majority of
 | 
						|
    /// cases, adjacent edge weights are combined by sorting WeightList and
 | 
						|
    /// combining adjacent weights.  However, for very large edge lists an
 | 
						|
    /// auxiliary hash table is used.
 | 
						|
    void normalize();
 | 
						|
 | 
						|
  private:
 | 
						|
    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Data about each block.  This is used downstream.
 | 
						|
  std::vector<FrequencyData> Freqs;
 | 
						|
 | 
						|
  /// \brief Loop data: see initializeLoops().
 | 
						|
  std::vector<WorkingData> Working;
 | 
						|
 | 
						|
  /// \brief Indexed information about loops.
 | 
						|
  std::list<LoopData> Loops;
 | 
						|
 | 
						|
  /// \brief Add all edges out of a packaged loop to the distribution.
 | 
						|
  ///
 | 
						|
  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
 | 
						|
  /// successor edge.
 | 
						|
  ///
 | 
						|
  /// \return \c true unless there's an irreducible backedge.
 | 
						|
  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
 | 
						|
                               Distribution &Dist);
 | 
						|
 | 
						|
  /// \brief Add an edge to the distribution.
 | 
						|
  ///
 | 
						|
  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
 | 
						|
  /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
 | 
						|
  /// every edge should be a local edge (since all the loops are packaged up).
 | 
						|
  ///
 | 
						|
  /// \return \c true unless aborted due to an irreducible backedge.
 | 
						|
  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
 | 
						|
                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
 | 
						|
 | 
						|
  LoopData &getLoopPackage(const BlockNode &Head) {
 | 
						|
    assert(Head.Index < Working.size());
 | 
						|
    assert(Working[Head.Index].isLoopHeader());
 | 
						|
    return *Working[Head.Index].Loop;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Analyze irreducible SCCs.
 | 
						|
  ///
 | 
						|
  /// Separate irreducible SCCs from \c G, which is an explict graph of \c
 | 
						|
  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
 | 
						|
  /// Insert them into \a Loops before \c Insert.
 | 
						|
  ///
 | 
						|
  /// \return the \c LoopData nodes representing the irreducible SCCs.
 | 
						|
  iterator_range<std::list<LoopData>::iterator>
 | 
						|
  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
 | 
						|
                     std::list<LoopData>::iterator Insert);
 | 
						|
 | 
						|
  /// \brief Update a loop after packaging irreducible SCCs inside of it.
 | 
						|
  ///
 | 
						|
  /// Update \c OuterLoop.  Before finding irreducible control flow, it was
 | 
						|
  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
 | 
						|
  /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
 | 
						|
  /// up need to be removed from \a OuterLoop::Nodes.
 | 
						|
  void updateLoopWithIrreducible(LoopData &OuterLoop);
 | 
						|
 | 
						|
  /// \brief Distribute mass according to a distribution.
 | 
						|
  ///
 | 
						|
  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
 | 
						|
  /// backedges and exits are stored in its entry in Loops.
 | 
						|
  ///
 | 
						|
  /// Mass is distributed in parallel from two copies of the source mass.
 | 
						|
  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
 | 
						|
                      Distribution &Dist);
 | 
						|
 | 
						|
  /// \brief Compute the loop scale for a loop.
 | 
						|
  void computeLoopScale(LoopData &Loop);
 | 
						|
 | 
						|
  /// \brief Package up a loop.
 | 
						|
  void packageLoop(LoopData &Loop);
 | 
						|
 | 
						|
  /// \brief Unwrap loops.
 | 
						|
  void unwrapLoops();
 | 
						|
 | 
						|
  /// \brief Finalize frequency metrics.
 | 
						|
  ///
 | 
						|
  /// Calculates final frequencies and cleans up no-longer-needed data
 | 
						|
  /// structures.
 | 
						|
  void finalizeMetrics();
 | 
						|
 | 
						|
  /// \brief Clear all memory.
 | 
						|
  void clear();
 | 
						|
 | 
						|
  virtual std::string getBlockName(const BlockNode &Node) const;
 | 
						|
  std::string getLoopName(const LoopData &Loop) const;
 | 
						|
 | 
						|
  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
 | 
						|
  void dump() const { print(dbgs()); }
 | 
						|
 | 
						|
  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
 | 
						|
 | 
						|
  BlockFrequency getBlockFreq(const BlockNode &Node) const;
 | 
						|
 | 
						|
  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
 | 
						|
  raw_ostream &printBlockFreq(raw_ostream &OS,
 | 
						|
                              const BlockFrequency &Freq) const;
 | 
						|
 | 
						|
  uint64_t getEntryFreq() const {
 | 
						|
    assert(!Freqs.empty());
 | 
						|
    return Freqs[0].Integer;
 | 
						|
  }
 | 
						|
  /// \brief Virtual destructor.
 | 
						|
  ///
 | 
						|
  /// Need a virtual destructor to mask the compiler warning about
 | 
						|
  /// getBlockName().
 | 
						|
  virtual ~BlockFrequencyInfoImplBase() {}
 | 
						|
};
 | 
						|
 | 
						|
namespace bfi_detail {
 | 
						|
template <class BlockT> struct TypeMap {};
 | 
						|
template <> struct TypeMap<BasicBlock> {
 | 
						|
  typedef BasicBlock BlockT;
 | 
						|
  typedef Function FunctionT;
 | 
						|
  typedef BranchProbabilityInfo BranchProbabilityInfoT;
 | 
						|
  typedef Loop LoopT;
 | 
						|
  typedef LoopInfo LoopInfoT;
 | 
						|
};
 | 
						|
template <> struct TypeMap<MachineBasicBlock> {
 | 
						|
  typedef MachineBasicBlock BlockT;
 | 
						|
  typedef MachineFunction FunctionT;
 | 
						|
  typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
 | 
						|
  typedef MachineLoop LoopT;
 | 
						|
  typedef MachineLoopInfo LoopInfoT;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Get the name of a MachineBasicBlock.
 | 
						|
///
 | 
						|
/// Get the name of a MachineBasicBlock.  It's templated so that including from
 | 
						|
/// CodeGen is unnecessary (that would be a layering issue).
 | 
						|
///
 | 
						|
/// This is used mainly for debug output.  The name is similar to
 | 
						|
/// MachineBasicBlock::getFullName(), but skips the name of the function.
 | 
						|
template <class BlockT> std::string getBlockName(const BlockT *BB) {
 | 
						|
  assert(BB && "Unexpected nullptr");
 | 
						|
  auto MachineName = "BB" + Twine(BB->getNumber());
 | 
						|
  if (BB->getBasicBlock())
 | 
						|
    return (MachineName + "[" + BB->getName() + "]").str();
 | 
						|
  return MachineName.str();
 | 
						|
}
 | 
						|
/// \brief Get the name of a BasicBlock.
 | 
						|
template <> inline std::string getBlockName(const BasicBlock *BB) {
 | 
						|
  assert(BB && "Unexpected nullptr");
 | 
						|
  return BB->getName().str();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Graph of irreducible control flow.
 | 
						|
///
 | 
						|
/// This graph is used for determining the SCCs in a loop (or top-level
 | 
						|
/// function) that has irreducible control flow.
 | 
						|
///
 | 
						|
/// During the block frequency algorithm, the local graphs are defined in a
 | 
						|
/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
 | 
						|
/// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
 | 
						|
/// latter only has successor information.
 | 
						|
///
 | 
						|
/// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
 | 
						|
/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
 | 
						|
/// and it explicitly lists predecessors and successors.  The initialization
 | 
						|
/// that relies on \c MachineBasicBlock is defined in the header.
 | 
						|
struct IrreducibleGraph {
 | 
						|
  typedef BlockFrequencyInfoImplBase BFIBase;
 | 
						|
 | 
						|
  BFIBase &BFI;
 | 
						|
 | 
						|
  typedef BFIBase::BlockNode BlockNode;
 | 
						|
  struct IrrNode {
 | 
						|
    BlockNode Node;
 | 
						|
    unsigned NumIn;
 | 
						|
    std::deque<const IrrNode *> Edges;
 | 
						|
    IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
 | 
						|
 | 
						|
    typedef std::deque<const IrrNode *>::const_iterator iterator;
 | 
						|
    iterator pred_begin() const { return Edges.begin(); }
 | 
						|
    iterator succ_begin() const { return Edges.begin() + NumIn; }
 | 
						|
    iterator pred_end() const { return succ_begin(); }
 | 
						|
    iterator succ_end() const { return Edges.end(); }
 | 
						|
  };
 | 
						|
  BlockNode Start;
 | 
						|
  const IrrNode *StartIrr;
 | 
						|
  std::vector<IrrNode> Nodes;
 | 
						|
  SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
 | 
						|
 | 
						|
  /// \brief Construct an explicit graph containing irreducible control flow.
 | 
						|
  ///
 | 
						|
  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
 | 
						|
  /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
 | 
						|
  /// addBlockEdges to add block successors that have not been packaged into
 | 
						|
  /// loops.
 | 
						|
  ///
 | 
						|
  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
 | 
						|
  /// user of this.
 | 
						|
  template <class BlockEdgesAdder>
 | 
						|
  IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
 | 
						|
                   BlockEdgesAdder addBlockEdges)
 | 
						|
      : BFI(BFI), StartIrr(nullptr) {
 | 
						|
    initialize(OuterLoop, addBlockEdges);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class BlockEdgesAdder>
 | 
						|
  void initialize(const BFIBase::LoopData *OuterLoop,
 | 
						|
                  BlockEdgesAdder addBlockEdges);
 | 
						|
  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
 | 
						|
  void addNodesInFunction();
 | 
						|
  void addNode(const BlockNode &Node) {
 | 
						|
    Nodes.emplace_back(Node);
 | 
						|
    BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
 | 
						|
  }
 | 
						|
  void indexNodes();
 | 
						|
  template <class BlockEdgesAdder>
 | 
						|
  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
 | 
						|
                BlockEdgesAdder addBlockEdges);
 | 
						|
  void addEdge(IrrNode &Irr, const BlockNode &Succ,
 | 
						|
               const BFIBase::LoopData *OuterLoop);
 | 
						|
};
 | 
						|
template <class BlockEdgesAdder>
 | 
						|
void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
 | 
						|
                                  BlockEdgesAdder addBlockEdges) {
 | 
						|
  if (OuterLoop) {
 | 
						|
    addNodesInLoop(*OuterLoop);
 | 
						|
    for (auto N : OuterLoop->Nodes)
 | 
						|
      addEdges(N, OuterLoop, addBlockEdges);
 | 
						|
  } else {
 | 
						|
    addNodesInFunction();
 | 
						|
    for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
 | 
						|
      addEdges(Index, OuterLoop, addBlockEdges);
 | 
						|
  }
 | 
						|
  StartIrr = Lookup[Start.Index];
 | 
						|
}
 | 
						|
template <class BlockEdgesAdder>
 | 
						|
void IrreducibleGraph::addEdges(const BlockNode &Node,
 | 
						|
                                const BFIBase::LoopData *OuterLoop,
 | 
						|
                                BlockEdgesAdder addBlockEdges) {
 | 
						|
  auto L = Lookup.find(Node.Index);
 | 
						|
  if (L == Lookup.end())
 | 
						|
    return;
 | 
						|
  IrrNode &Irr = *L->second;
 | 
						|
  const auto &Working = BFI.Working[Node.Index];
 | 
						|
 | 
						|
  if (Working.isAPackage())
 | 
						|
    for (const auto &I : Working.Loop->Exits)
 | 
						|
      addEdge(Irr, I.first, OuterLoop);
 | 
						|
  else
 | 
						|
    addBlockEdges(*this, Irr, OuterLoop);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Shared implementation for block frequency analysis.
 | 
						|
///
 | 
						|
/// This is a shared implementation of BlockFrequencyInfo and
 | 
						|
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
 | 
						|
/// blocks.
 | 
						|
///
 | 
						|
/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
 | 
						|
/// which is called the header.  A given loop, L, can have sub-loops, which are
 | 
						|
/// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
 | 
						|
/// consists of a single block that does not have a self-edge.)
 | 
						|
///
 | 
						|
/// In addition to loops, this algorithm has limited support for irreducible
 | 
						|
/// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
 | 
						|
/// discovered on they fly, and modelled as loops with multiple headers.
 | 
						|
///
 | 
						|
/// The headers of irreducible sub-SCCs consist of its entry blocks and all
 | 
						|
/// nodes that are targets of a backedge within it (excluding backedges within
 | 
						|
/// true sub-loops).  Block frequency calculations act as if a block is
 | 
						|
/// inserted that intercepts all the edges to the headers.  All backedges and
 | 
						|
/// entries point to this block.  Its successors are the headers, which split
 | 
						|
/// the frequency evenly.
 | 
						|
///
 | 
						|
/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
 | 
						|
/// separates mass distribution from loop scaling, and dithers to eliminate
 | 
						|
/// probability mass loss.
 | 
						|
///
 | 
						|
/// The implementation is split between BlockFrequencyInfoImpl, which knows the
 | 
						|
/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
 | 
						|
/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
 | 
						|
/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
 | 
						|
/// reverse-post order.  This gives two advantages:  it's easy to compare the
 | 
						|
/// relative ordering of two nodes, and maps keyed on BlockT can be represented
 | 
						|
/// by vectors.
 | 
						|
///
 | 
						|
/// This algorithm is O(V+E), unless there is irreducible control flow, in
 | 
						|
/// which case it's O(V*E) in the worst case.
 | 
						|
///
 | 
						|
/// These are the main stages:
 | 
						|
///
 | 
						|
///  0. Reverse post-order traversal (\a initializeRPOT()).
 | 
						|
///
 | 
						|
///     Run a single post-order traversal and save it (in reverse) in RPOT.
 | 
						|
///     All other stages make use of this ordering.  Save a lookup from BlockT
 | 
						|
///     to BlockNode (the index into RPOT) in Nodes.
 | 
						|
///
 | 
						|
///  1. Loop initialization (\a initializeLoops()).
 | 
						|
///
 | 
						|
///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
 | 
						|
///     the algorithm.  In particular, store the immediate members of each loop
 | 
						|
///     in reverse post-order.
 | 
						|
///
 | 
						|
///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
 | 
						|
///
 | 
						|
///     For each loop (bottom-up), distribute mass through the DAG resulting
 | 
						|
///     from ignoring backedges and treating sub-loops as a single pseudo-node.
 | 
						|
///     Track the backedge mass distributed to the loop header, and use it to
 | 
						|
///     calculate the loop scale (number of loop iterations).  Immediate
 | 
						|
///     members that represent sub-loops will already have been visited and
 | 
						|
///     packaged into a pseudo-node.
 | 
						|
///
 | 
						|
///     Distributing mass in a loop is a reverse-post-order traversal through
 | 
						|
///     the loop.  Start by assigning full mass to the Loop header.  For each
 | 
						|
///     node in the loop:
 | 
						|
///
 | 
						|
///         - Fetch and categorize the weight distribution for its successors.
 | 
						|
///           If this is a packaged-subloop, the weight distribution is stored
 | 
						|
///           in \a LoopData::Exits.  Otherwise, fetch it from
 | 
						|
///           BranchProbabilityInfo.
 | 
						|
///
 | 
						|
///         - Each successor is categorized as \a Weight::Local, a local edge
 | 
						|
///           within the current loop, \a Weight::Backedge, a backedge to the
 | 
						|
///           loop header, or \a Weight::Exit, any successor outside the loop.
 | 
						|
///           The weight, the successor, and its category are stored in \a
 | 
						|
///           Distribution.  There can be multiple edges to each successor.
 | 
						|
///
 | 
						|
///         - If there's a backedge to a non-header, there's an irreducible SCC.
 | 
						|
///           The usual flow is temporarily aborted.  \a
 | 
						|
///           computeIrreducibleMass() finds the irreducible SCCs within the
 | 
						|
///           loop, packages them up, and restarts the flow.
 | 
						|
///
 | 
						|
///         - Normalize the distribution:  scale weights down so that their sum
 | 
						|
///           is 32-bits, and coalesce multiple edges to the same node.
 | 
						|
///
 | 
						|
///         - Distribute the mass accordingly, dithering to minimize mass loss,
 | 
						|
///           as described in \a distributeMass().
 | 
						|
///
 | 
						|
///     Finally, calculate the loop scale from the accumulated backedge mass.
 | 
						|
///
 | 
						|
///  3. Distribute mass in the function (\a computeMassInFunction()).
 | 
						|
///
 | 
						|
///     Finally, distribute mass through the DAG resulting from packaging all
 | 
						|
///     loops in the function.  This uses the same algorithm as distributing
 | 
						|
///     mass in a loop, except that there are no exit or backedge edges.
 | 
						|
///
 | 
						|
///  4. Unpackage loops (\a unwrapLoops()).
 | 
						|
///
 | 
						|
///     Initialize each block's frequency to a floating point representation of
 | 
						|
///     its mass.
 | 
						|
///
 | 
						|
///     Visit loops top-down, scaling the frequencies of its immediate members
 | 
						|
///     by the loop's pseudo-node's frequency.
 | 
						|
///
 | 
						|
///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
 | 
						|
///
 | 
						|
///     Using the min and max frequencies as a guide, translate floating point
 | 
						|
///     frequencies to an appropriate range in uint64_t.
 | 
						|
///
 | 
						|
/// It has some known flaws.
 | 
						|
///
 | 
						|
///   - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
 | 
						|
///     BlockFrequency's 64-bit integer precision.
 | 
						|
///
 | 
						|
///   - The model of irreducible control flow is a rough approximation.
 | 
						|
///
 | 
						|
///     Modelling irreducible control flow exactly involves setting up and
 | 
						|
///     solving a group of infinite geometric series.  Such precision is
 | 
						|
///     unlikely to be worthwhile, since most of our algorithms give up on
 | 
						|
///     irreducible control flow anyway.
 | 
						|
///
 | 
						|
///     Nevertheless, we might find that we need to get closer.  Here's a sort
 | 
						|
///     of TODO list for the model with diminishing returns, to be completed as
 | 
						|
///     necessary.
 | 
						|
///
 | 
						|
///       - The headers for the \a LoopData representing an irreducible SCC
 | 
						|
///         include non-entry blocks.  When these extra blocks exist, they
 | 
						|
///         indicate a self-contained irreducible sub-SCC.  We could treat them
 | 
						|
///         as sub-loops, rather than arbitrarily shoving the problematic
 | 
						|
///         blocks into the headers of the main irreducible SCC.
 | 
						|
///
 | 
						|
///       - Backedge frequencies are assumed to be evenly split between the
 | 
						|
///         headers of a given irreducible SCC.  Instead, we could track the
 | 
						|
///         backedge mass separately for each header, and adjust their relative
 | 
						|
///         frequencies.
 | 
						|
///
 | 
						|
///       - Entry frequencies are assumed to be evenly split between the
 | 
						|
///         headers of a given irreducible SCC, which is the only option if we
 | 
						|
///         need to compute mass in the SCC before its parent loop.  Instead,
 | 
						|
///         we could partially compute mass in the parent loop, and stop when
 | 
						|
///         we get to the SCC.  Here, we have the correct ratio of entry
 | 
						|
///         masses, which we can use to adjust their relative frequencies.
 | 
						|
///         Compute mass in the SCC, and then continue propagation in the
 | 
						|
///         parent.
 | 
						|
///
 | 
						|
///       - We can propagate mass iteratively through the SCC, for some fixed
 | 
						|
///         number of iterations.  Each iteration starts by assigning the entry
 | 
						|
///         blocks their backedge mass from the prior iteration.  The final
 | 
						|
///         mass for each block (and each exit, and the total backedge mass
 | 
						|
///         used for computing loop scale) is the sum of all iterations.
 | 
						|
///         (Running this until fixed point would "solve" the geometric
 | 
						|
///         series by simulation.)
 | 
						|
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
 | 
						|
  typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
 | 
						|
  typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
 | 
						|
  typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
 | 
						|
  BranchProbabilityInfoT;
 | 
						|
  typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
 | 
						|
  typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
 | 
						|
 | 
						|
  // This is part of a workaround for a GCC 4.7 crash on lambdas.
 | 
						|
  friend struct bfi_detail::BlockEdgesAdder<BT>;
 | 
						|
 | 
						|
  typedef GraphTraits<const BlockT *> Successor;
 | 
						|
  typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
 | 
						|
 | 
						|
  const BranchProbabilityInfoT *BPI;
 | 
						|
  const LoopInfoT *LI;
 | 
						|
  const FunctionT *F;
 | 
						|
 | 
						|
  // All blocks in reverse postorder.
 | 
						|
  std::vector<const BlockT *> RPOT;
 | 
						|
  DenseMap<const BlockT *, BlockNode> Nodes;
 | 
						|
 | 
						|
  typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
 | 
						|
 | 
						|
  rpot_iterator rpot_begin() const { return RPOT.begin(); }
 | 
						|
  rpot_iterator rpot_end() const { return RPOT.end(); }
 | 
						|
 | 
						|
  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
 | 
						|
 | 
						|
  BlockNode getNode(const rpot_iterator &I) const {
 | 
						|
    return BlockNode(getIndex(I));
 | 
						|
  }
 | 
						|
  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
 | 
						|
 | 
						|
  const BlockT *getBlock(const BlockNode &Node) const {
 | 
						|
    assert(Node.Index < RPOT.size());
 | 
						|
    return RPOT[Node.Index];
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Run (and save) a post-order traversal.
 | 
						|
  ///
 | 
						|
  /// Saves a reverse post-order traversal of all the nodes in \a F.
 | 
						|
  void initializeRPOT();
 | 
						|
 | 
						|
  /// \brief Initialize loop data.
 | 
						|
  ///
 | 
						|
  /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
 | 
						|
  /// each block to the deepest loop it's in, but we need the inverse.  For each
 | 
						|
  /// loop, we store in reverse post-order its "immediate" members, defined as
 | 
						|
  /// the header, the headers of immediate sub-loops, and all other blocks in
 | 
						|
  /// the loop that are not in sub-loops.
 | 
						|
  void initializeLoops();
 | 
						|
 | 
						|
  /// \brief Propagate to a block's successors.
 | 
						|
  ///
 | 
						|
  /// In the context of distributing mass through \c OuterLoop, divide the mass
 | 
						|
  /// currently assigned to \c Node between its successors.
 | 
						|
  ///
 | 
						|
  /// \return \c true unless there's an irreducible backedge.
 | 
						|
  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
 | 
						|
 | 
						|
  /// \brief Compute mass in a particular loop.
 | 
						|
  ///
 | 
						|
  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
 | 
						|
  /// reverse post-order, distribute mass to its successors.  Only visits nodes
 | 
						|
  /// that have not been packaged into sub-loops.
 | 
						|
  ///
 | 
						|
  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
 | 
						|
  /// \return \c true unless there's an irreducible backedge.
 | 
						|
  bool computeMassInLoop(LoopData &Loop);
 | 
						|
 | 
						|
  /// \brief Try to compute mass in the top-level function.
 | 
						|
  ///
 | 
						|
  /// Assign mass to the entry block, and then for each block in reverse
 | 
						|
  /// post-order, distribute mass to its successors.  Skips nodes that have
 | 
						|
  /// been packaged into loops.
 | 
						|
  ///
 | 
						|
  /// \pre \a computeMassInLoops() has been called.
 | 
						|
  /// \return \c true unless there's an irreducible backedge.
 | 
						|
  bool tryToComputeMassInFunction();
 | 
						|
 | 
						|
  /// \brief Compute mass in (and package up) irreducible SCCs.
 | 
						|
  ///
 | 
						|
  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
 | 
						|
  /// of \c Insert), and call \a computeMassInLoop() on each of them.
 | 
						|
  ///
 | 
						|
  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
 | 
						|
  ///
 | 
						|
  /// \pre \a computeMassInLoop() has been called for each subloop of \c
 | 
						|
  /// OuterLoop.
 | 
						|
  /// \pre \c Insert points at the the last loop successfully processed by \a
 | 
						|
  /// computeMassInLoop().
 | 
						|
  /// \pre \c OuterLoop has irreducible SCCs.
 | 
						|
  void computeIrreducibleMass(LoopData *OuterLoop,
 | 
						|
                              std::list<LoopData>::iterator Insert);
 | 
						|
 | 
						|
  /// \brief Compute mass in all loops.
 | 
						|
  ///
 | 
						|
  /// For each loop bottom-up, call \a computeMassInLoop().
 | 
						|
  ///
 | 
						|
  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
 | 
						|
  /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
 | 
						|
  /// re-enter \a computeMassInLoop().
 | 
						|
  ///
 | 
						|
  /// \post \a computeMassInLoop() has returned \c true for every loop.
 | 
						|
  void computeMassInLoops();
 | 
						|
 | 
						|
  /// \brief Compute mass in the top-level function.
 | 
						|
  ///
 | 
						|
  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
 | 
						|
  /// compute mass in the top-level function.
 | 
						|
  ///
 | 
						|
  /// \post \a tryToComputeMassInFunction() has returned \c true.
 | 
						|
  void computeMassInFunction();
 | 
						|
 | 
						|
  std::string getBlockName(const BlockNode &Node) const override {
 | 
						|
    return bfi_detail::getBlockName(getBlock(Node));
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  const FunctionT *getFunction() const { return F; }
 | 
						|
 | 
						|
  void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
 | 
						|
                  const LoopInfoT *LI);
 | 
						|
  BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
 | 
						|
 | 
						|
  using BlockFrequencyInfoImplBase::getEntryFreq;
 | 
						|
  BlockFrequency getBlockFreq(const BlockT *BB) const {
 | 
						|
    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
 | 
						|
  }
 | 
						|
  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
 | 
						|
    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Print the frequencies for the current function.
 | 
						|
  ///
 | 
						|
  /// Prints the frequencies for the blocks in the current function.
 | 
						|
  ///
 | 
						|
  /// Blocks are printed in the natural iteration order of the function, rather
 | 
						|
  /// than reverse post-order.  This provides two advantages:  writing -analyze
 | 
						|
  /// tests is easier (since blocks come out in source order), and even
 | 
						|
  /// unreachable blocks are printed.
 | 
						|
  ///
 | 
						|
  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
 | 
						|
  /// we need to override it here.
 | 
						|
  raw_ostream &print(raw_ostream &OS) const override;
 | 
						|
  using BlockFrequencyInfoImplBase::dump;
 | 
						|
 | 
						|
  using BlockFrequencyInfoImplBase::printBlockFreq;
 | 
						|
  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
 | 
						|
    return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <class BT>
 | 
						|
void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
 | 
						|
                                            const BranchProbabilityInfoT *BPI,
 | 
						|
                                            const LoopInfoT *LI) {
 | 
						|
  // Save the parameters.
 | 
						|
  this->BPI = BPI;
 | 
						|
  this->LI = LI;
 | 
						|
  this->F = F;
 | 
						|
 | 
						|
  // Clean up left-over data structures.
 | 
						|
  BlockFrequencyInfoImplBase::clear();
 | 
						|
  RPOT.clear();
 | 
						|
  Nodes.clear();
 | 
						|
 | 
						|
  // Initialize.
 | 
						|
  DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
 | 
						|
               << std::string(F->getName().size(), '=') << "\n");
 | 
						|
  initializeRPOT();
 | 
						|
  initializeLoops();
 | 
						|
 | 
						|
  // Visit loops in post-order to find thelocal mass distribution, and then do
 | 
						|
  // the full function.
 | 
						|
  computeMassInLoops();
 | 
						|
  computeMassInFunction();
 | 
						|
  unwrapLoops();
 | 
						|
  finalizeMetrics();
 | 
						|
}
 | 
						|
 | 
						|
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
 | 
						|
  const BlockT *Entry = F->begin();
 | 
						|
  RPOT.reserve(F->size());
 | 
						|
  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
 | 
						|
  std::reverse(RPOT.begin(), RPOT.end());
 | 
						|
 | 
						|
  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
 | 
						|
         "More nodes in function than Block Frequency Info supports");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "reverse-post-order-traversal\n");
 | 
						|
  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
 | 
						|
    BlockNode Node = getNode(I);
 | 
						|
    DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
 | 
						|
    Nodes[*I] = Node;
 | 
						|
  }
 | 
						|
 | 
						|
  Working.reserve(RPOT.size());
 | 
						|
  for (size_t Index = 0; Index < RPOT.size(); ++Index)
 | 
						|
    Working.emplace_back(Index);
 | 
						|
  Freqs.resize(RPOT.size());
 | 
						|
}
 | 
						|
 | 
						|
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
 | 
						|
  DEBUG(dbgs() << "loop-detection\n");
 | 
						|
  if (LI->empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Visit loops top down and assign them an index.
 | 
						|
  std::deque<std::pair<const LoopT *, LoopData *>> Q;
 | 
						|
  for (const LoopT *L : *LI)
 | 
						|
    Q.emplace_back(L, nullptr);
 | 
						|
  while (!Q.empty()) {
 | 
						|
    const LoopT *Loop = Q.front().first;
 | 
						|
    LoopData *Parent = Q.front().second;
 | 
						|
    Q.pop_front();
 | 
						|
 | 
						|
    BlockNode Header = getNode(Loop->getHeader());
 | 
						|
    assert(Header.isValid());
 | 
						|
 | 
						|
    Loops.emplace_back(Parent, Header);
 | 
						|
    Working[Header.Index].Loop = &Loops.back();
 | 
						|
    DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
 | 
						|
 | 
						|
    for (const LoopT *L : *Loop)
 | 
						|
      Q.emplace_back(L, &Loops.back());
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit nodes in reverse post-order and add them to their deepest containing
 | 
						|
  // loop.
 | 
						|
  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
 | 
						|
    // Loop headers have already been mostly mapped.
 | 
						|
    if (Working[Index].isLoopHeader()) {
 | 
						|
      LoopData *ContainingLoop = Working[Index].getContainingLoop();
 | 
						|
      if (ContainingLoop)
 | 
						|
        ContainingLoop->Nodes.push_back(Index);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
 | 
						|
    if (!Loop)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add this node to its containing loop's member list.
 | 
						|
    BlockNode Header = getNode(Loop->getHeader());
 | 
						|
    assert(Header.isValid());
 | 
						|
    const auto &HeaderData = Working[Header.Index];
 | 
						|
    assert(HeaderData.isLoopHeader());
 | 
						|
 | 
						|
    Working[Index].Loop = HeaderData.Loop;
 | 
						|
    HeaderData.Loop->Nodes.push_back(Index);
 | 
						|
    DEBUG(dbgs() << " - loop = " << getBlockName(Header)
 | 
						|
                 << ": member = " << getBlockName(Index) << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
 | 
						|
  // Visit loops with the deepest first, and the top-level loops last.
 | 
						|
  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
 | 
						|
    if (computeMassInLoop(*L))
 | 
						|
      continue;
 | 
						|
    auto Next = std::next(L);
 | 
						|
    computeIrreducibleMass(&*L, L.base());
 | 
						|
    L = std::prev(Next);
 | 
						|
    if (computeMassInLoop(*L))
 | 
						|
      continue;
 | 
						|
    llvm_unreachable("unhandled irreducible control flow");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class BT>
 | 
						|
bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
 | 
						|
  // Compute mass in loop.
 | 
						|
  DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
 | 
						|
 | 
						|
  if (Loop.isIrreducible()) {
 | 
						|
    BlockMass Remaining = BlockMass::getFull();
 | 
						|
    for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
 | 
						|
      auto &Mass = Working[Loop.Nodes[H].Index].getMass();
 | 
						|
      Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
 | 
						|
      Remaining -= Mass;
 | 
						|
    }
 | 
						|
    for (const BlockNode &M : Loop.Nodes)
 | 
						|
      if (!propagateMassToSuccessors(&Loop, M))
 | 
						|
        llvm_unreachable("unhandled irreducible control flow");
 | 
						|
  } else {
 | 
						|
    Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
 | 
						|
    if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
 | 
						|
      llvm_unreachable("irreducible control flow to loop header!?");
 | 
						|
    for (const BlockNode &M : Loop.members())
 | 
						|
      if (!propagateMassToSuccessors(&Loop, M))
 | 
						|
        // Irreducible backedge.
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  computeLoopScale(Loop);
 | 
						|
  packageLoop(Loop);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class BT>
 | 
						|
bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
 | 
						|
  // Compute mass in function.
 | 
						|
  DEBUG(dbgs() << "compute-mass-in-function\n");
 | 
						|
  assert(!Working.empty() && "no blocks in function");
 | 
						|
  assert(!Working[0].isLoopHeader() && "entry block is a loop header");
 | 
						|
 | 
						|
  Working[0].getMass() = BlockMass::getFull();
 | 
						|
  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
 | 
						|
    // Check for nodes that have been packaged.
 | 
						|
    BlockNode Node = getNode(I);
 | 
						|
    if (Working[Node.Index].isPackaged())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!propagateMassToSuccessors(nullptr, Node))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
 | 
						|
  if (tryToComputeMassInFunction())
 | 
						|
    return;
 | 
						|
  computeIrreducibleMass(nullptr, Loops.begin());
 | 
						|
  if (tryToComputeMassInFunction())
 | 
						|
    return;
 | 
						|
  llvm_unreachable("unhandled irreducible control flow");
 | 
						|
}
 | 
						|
 | 
						|
/// \note This should be a lambda, but that crashes GCC 4.7.
 | 
						|
namespace bfi_detail {
 | 
						|
template <class BT> struct BlockEdgesAdder {
 | 
						|
  typedef BT BlockT;
 | 
						|
  typedef BlockFrequencyInfoImplBase::LoopData LoopData;
 | 
						|
  typedef GraphTraits<const BlockT *> Successor;
 | 
						|
 | 
						|
  const BlockFrequencyInfoImpl<BT> &BFI;
 | 
						|
  explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
 | 
						|
      : BFI(BFI) {}
 | 
						|
  void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
 | 
						|
                  const LoopData *OuterLoop) {
 | 
						|
    const BlockT *BB = BFI.RPOT[Irr.Node.Index];
 | 
						|
    for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
 | 
						|
         I != E; ++I)
 | 
						|
      G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
template <class BT>
 | 
						|
void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
 | 
						|
    LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
 | 
						|
  DEBUG(dbgs() << "analyze-irreducible-in-";
 | 
						|
        if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
 | 
						|
        else dbgs() << "function\n");
 | 
						|
 | 
						|
  using namespace bfi_detail;
 | 
						|
  // Ideally, addBlockEdges() would be declared here as a lambda, but that
 | 
						|
  // crashes GCC 4.7.
 | 
						|
  BlockEdgesAdder<BT> addBlockEdges(*this);
 | 
						|
  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
 | 
						|
 | 
						|
  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
 | 
						|
    computeMassInLoop(L);
 | 
						|
 | 
						|
  if (!OuterLoop)
 | 
						|
    return;
 | 
						|
  updateLoopWithIrreducible(*OuterLoop);
 | 
						|
}
 | 
						|
 | 
						|
template <class BT>
 | 
						|
bool
 | 
						|
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
 | 
						|
                                                      const BlockNode &Node) {
 | 
						|
  DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
 | 
						|
  // Calculate probability for successors.
 | 
						|
  Distribution Dist;
 | 
						|
  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
 | 
						|
    assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
 | 
						|
    if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
 | 
						|
      // Irreducible backedge.
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    const BlockT *BB = getBlock(Node);
 | 
						|
    for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
 | 
						|
         SI != SE; ++SI)
 | 
						|
      // Do not dereference SI, or getEdgeWeight() is linear in the number of
 | 
						|
      // successors.
 | 
						|
      if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
 | 
						|
                     BPI->getEdgeWeight(BB, SI)))
 | 
						|
        // Irreducible backedge.
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Distribute mass to successors, saving exit and backedge data in the
 | 
						|
  // loop header.
 | 
						|
  distributeMass(Node, OuterLoop, Dist);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class BT>
 | 
						|
raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
 | 
						|
  if (!F)
 | 
						|
    return OS;
 | 
						|
  OS << "block-frequency-info: " << F->getName() << "\n";
 | 
						|
  for (const BlockT &BB : *F)
 | 
						|
    OS << " - " << bfi_detail::getBlockName(&BB)
 | 
						|
       << ": float = " << getFloatingBlockFreq(&BB)
 | 
						|
       << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
 | 
						|
 | 
						|
  // Add an extra newline for readability.
 | 
						|
  OS << "\n";
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#undef DEBUG_TYPE
 | 
						|
 | 
						|
#endif
 |