mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Move include/Config and include/Support into include/llvm/Config, include/llvm/ADT and include/llvm/Support. From here on out, all LLVM public header files must be under include/llvm/. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16137 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1841 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1841 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ModuloScheduling.cpp - ModuloScheduling  ----------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 
 | |
| //  This ModuloScheduling pass is based on the Swing Modulo Scheduling 
 | |
| //  algorithm. 
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ModuloSched"
 | |
| 
 | |
| #include "ModuloScheduling.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Target/TargetSchedInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <cmath>
 | |
| #include <fstream>
 | |
| #include <sstream>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| #include "../../Target/SparcV9/MachineCodeForInstruction.h"
 | |
| #include "../../Target/SparcV9/SparcV9TmpInstr.h"
 | |
| #include "../../Target/SparcV9/SparcV9Internals.h"
 | |
| #include "../../Target/SparcV9/SparcV9RegisterInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Create ModuloSchedulingPass
 | |
| ///
 | |
| FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
 | |
|   DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
 | |
|   return new ModuloSchedulingPass(targ); 
 | |
| }
 | |
| 
 | |
| 
 | |
| //Graph Traits for printing out the dependence graph
 | |
| template<typename GraphType>
 | |
| static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
 | |
|                              const GraphType >) {
 | |
|   std::string Filename = GraphName + ".dot";
 | |
|   O << "Writing '" << Filename << "'...";
 | |
|   std::ofstream F(Filename.c_str());
 | |
|   
 | |
|   if (F.good())
 | |
|     WriteGraph(F, GT);
 | |
|   else
 | |
|     O << "  error opening file for writing!";
 | |
|   O << "\n";
 | |
| };
 | |
| 
 | |
| //Graph Traits for printing out the dependence graph
 | |
| namespace llvm {
 | |
| 
 | |
|   template<>
 | |
|   struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
 | |
|     static std::string getGraphName(MSchedGraph *F) {
 | |
|       return "Dependence Graph";
 | |
|     }
 | |
|     
 | |
|     static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
 | |
|       if (Node->getInst()) {
 | |
| 	std::stringstream ss;
 | |
| 	ss << *(Node->getInst());
 | |
| 	return ss.str(); //((MachineInstr*)Node->getInst());
 | |
|       }
 | |
|       else
 | |
| 	return "No Inst";
 | |
|     }
 | |
|     static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
 | |
| 					  MSchedGraphNode::succ_iterator I) {
 | |
|       //Label each edge with the type of dependence
 | |
|       std::string edgelabel = "";
 | |
|       switch (I.getEdge().getDepOrderType()) {
 | |
| 	
 | |
|       case MSchedGraphEdge::TrueDep: 
 | |
| 	edgelabel = "True";
 | |
| 	break;
 | |
|     
 | |
|       case MSchedGraphEdge::AntiDep: 
 | |
| 	edgelabel =  "Anti";
 | |
| 	break;
 | |
| 	
 | |
|       case MSchedGraphEdge::OutputDep: 
 | |
| 	edgelabel = "Output";
 | |
| 	break;
 | |
| 	
 | |
|       default:
 | |
| 	edgelabel = "Unknown";
 | |
| 	break;
 | |
|       }
 | |
| 
 | |
|       //FIXME
 | |
|       int iteDiff = I.getEdge().getIteDiff();
 | |
|       std::string intStr = "(IteDiff: ";
 | |
|       intStr += itostr(iteDiff);
 | |
| 
 | |
|       intStr += ")";
 | |
|       edgelabel += intStr;
 | |
| 
 | |
|       return edgelabel;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// ModuloScheduling::runOnFunction - main transformation entry point
 | |
| /// The Swing Modulo Schedule algorithm has three basic steps:
 | |
| /// 1) Computation and Analysis of the dependence graph
 | |
| /// 2) Ordering of the nodes
 | |
| /// 3) Scheduling
 | |
| /// 
 | |
| bool ModuloSchedulingPass::runOnFunction(Function &F) {
 | |
|   
 | |
|   bool Changed = false;
 | |
|   
 | |
|   DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in" + F.getName() + "\n");
 | |
|   
 | |
|   //Get MachineFunction
 | |
|   MachineFunction &MF = MachineFunction::get(&F);
 | |
|   
 | |
|   //Print out machine function
 | |
|   DEBUG(MF.print(std::cerr));
 | |
| 
 | |
|   //Worklist
 | |
|   std::vector<MachineBasicBlock*> Worklist;
 | |
|   
 | |
|   //Iterate over BasicBlocks and put them into our worklist if they are valid
 | |
|   for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
 | |
|     if(MachineBBisValid(BI)) 
 | |
|       Worklist.push_back(&*BI);
 | |
|   
 | |
| 
 | |
|   //Iterate over the worklist and perform scheduling
 | |
|   for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),  
 | |
| 	BE = Worklist.end(); BI != BE; ++BI) {
 | |
|     
 | |
|     MSchedGraph *MSG = new MSchedGraph(*BI, target);
 | |
|     
 | |
|     //Write Graph out to file
 | |
|     DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
 | |
|     
 | |
|     //Print out BB for debugging
 | |
|     DEBUG((*BI)->print(std::cerr));
 | |
|     
 | |
|     //Calculate Resource II
 | |
|     int ResMII = calculateResMII(*BI);
 | |
|     
 | |
|     //Calculate Recurrence II
 | |
|     int RecMII = calculateRecMII(MSG, ResMII);
 | |
|     
 | |
|     //Our starting initiation interval is the maximum of RecMII and ResMII
 | |
|     II = std::max(RecMII, ResMII);
 | |
|     
 | |
|     //Print out II, RecMII, and ResMII
 | |
|     DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
 | |
|     
 | |
|     //Calculate Node Properties
 | |
|     calculateNodeAttributes(MSG, ResMII);
 | |
|     
 | |
|     //Dump node properties if in debug mode
 | |
|     DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I =  nodeToAttributesMap.begin(), 
 | |
| 		E = nodeToAttributesMap.end(); I !=E; ++I) {
 | |
|       std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " 
 | |
| 		<< I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth 
 | |
| 		<< " Height: " << I->second.height << "\n";
 | |
|     });
 | |
|     
 | |
|     //Put nodes in order to schedule them
 | |
|     computePartialOrder();
 | |
|     
 | |
|     //Dump out partial order
 | |
|     DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), 
 | |
| 		E = partialOrder.end(); I !=E; ++I) {
 | |
|       std::cerr << "Start set in PO\n";
 | |
|       for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
 | |
| 	std::cerr << "PO:" << **J << "\n";
 | |
|     });
 | |
|     
 | |
|     //Place nodes in final order
 | |
|     orderNodes();
 | |
|     
 | |
|     //Dump out order of nodes
 | |
|     DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
 | |
| 	  std::cerr << "FO:" << **I << "\n";
 | |
|     });
 | |
|     
 | |
|     //Finally schedule nodes
 | |
|     computeSchedule();
 | |
|     
 | |
|     //Print out final schedule
 | |
|     DEBUG(schedule.print(std::cerr));
 | |
|     
 | |
| 
 | |
|     //Final scheduling step is to reconstruct the loop
 | |
|     reconstructLoop(*BI);
 | |
|     
 | |
|     //Print out new loop
 | |
|     
 | |
|     
 | |
|     //Clear out our maps for the next basic block that is processed
 | |
|     nodeToAttributesMap.clear();
 | |
|     partialOrder.clear();
 | |
|     recurrenceList.clear();
 | |
|     FinalNodeOrder.clear();
 | |
|     schedule.clear();
 | |
|     
 | |
|     //Clean up. Nuke old MachineBB and llvmBB
 | |
|     //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
 | |
|     //Function *parent = (Function*) llvmBB->getParent();
 | |
|     //Should't std::find work??
 | |
|     //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
 | |
|     //parent->getBasicBlockList().erase(llvmBB);
 | |
|     
 | |
|     //delete(llvmBB);
 | |
|     //delete(*BI);
 | |
|   }
 | |
|   
 | |
|  
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function checks if a Machine Basic Block is valid for modulo
 | |
| /// scheduling. This means that it has no control flow (if/else or
 | |
| /// calls) in the block.  Currently ModuloScheduling only works on
 | |
| /// single basic block loops.
 | |
| bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
 | |
| 
 | |
|   bool isLoop = false;
 | |
|   
 | |
|   //Check first if its a valid loop
 | |
|   for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), 
 | |
| 	E = succ_end(BI->getBasicBlock()); I != E; ++I) {
 | |
|     if (*I == BI->getBasicBlock())    // has single block loop
 | |
|       isLoop = true;
 | |
|   }
 | |
|   
 | |
|   if(!isLoop)
 | |
|     return false;
 | |
|     
 | |
|   //Get Target machine instruction info
 | |
|   const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
|     
 | |
|   //Check each instruction and look for calls
 | |
|   for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | |
|     //Get opcode to check instruction type
 | |
|     MachineOpCode OC = I->getOpcode();
 | |
|     if(TMI->isCall(OC))
 | |
|       return false;
 | |
|  
 | |
|   }
 | |
|   return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| //ResMII is calculated by determining the usage count for each resource
 | |
| //and using the maximum.
 | |
| //FIXME: In future there should be a way to get alternative resources
 | |
| //for each instruction
 | |
| int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
 | |
|   
 | |
|   const TargetInstrInfo *mii = target.getInstrInfo();
 | |
|   const TargetSchedInfo *msi = target.getSchedInfo();
 | |
| 
 | |
|   int ResMII = 0;
 | |
|   
 | |
|   //Map to keep track of usage count of each resource
 | |
|   std::map<unsigned, unsigned> resourceUsageCount;
 | |
| 
 | |
|   for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | |
| 
 | |
|     //Get resource usage for this instruction
 | |
|     InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
 | |
|     std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
 | |
| 
 | |
|     //Loop over resources in each cycle and increments their usage count
 | |
|     for(unsigned i=0; i < resources.size(); ++i)
 | |
|       for(unsigned j=0; j < resources[i].size(); ++j) {
 | |
| 	if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
 | |
| 	  resourceUsageCount[resources[i][j]] = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 	  resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
 | |
| 	}
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   //Find maximum usage count
 | |
|   
 | |
|   //Get max number of instructions that can be issued at once. (FIXME)
 | |
|   int issueSlots = msi->maxNumIssueTotal;
 | |
| 
 | |
|   for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
 | |
|     
 | |
|     //Get the total number of the resources in our cpu
 | |
|     int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
 | |
|     
 | |
|     //Get total usage count for this resources
 | |
|     unsigned usageCount = RB->second;
 | |
|     
 | |
|     //Divide the usage count by either the max number we can issue or the number of
 | |
|     //resources (whichever is its upper bound)
 | |
|     double finalUsageCount;
 | |
|     if( resourceNum <= issueSlots)
 | |
|       finalUsageCount = ceil(1.0 * usageCount / resourceNum);
 | |
|     else
 | |
|       finalUsageCount = ceil(1.0 * usageCount / issueSlots);
 | |
|     
 | |
|     
 | |
|     //Only keep track of the max
 | |
|     ResMII = std::max( (int) finalUsageCount, ResMII);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return ResMII;
 | |
| 
 | |
| }
 | |
| 
 | |
| /// calculateRecMII - Calculates the value of the highest recurrence
 | |
| /// By value we mean the total latency
 | |
| int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
 | |
|   std::vector<MSchedGraphNode*> vNodes;
 | |
|   //Loop over all nodes in the graph
 | |
|   for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | |
|     findAllReccurrences(I->second, vNodes, MII);
 | |
|     vNodes.clear();
 | |
|   }
 | |
| 
 | |
|   int RecMII = 0;
 | |
|   
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
 | |
|     DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | |
|       std::cerr << **N << "\n";
 | |
|     });
 | |
|     RecMII = std::max(RecMII, I->first);
 | |
|   }
 | |
|     
 | |
|   return MII;
 | |
| }
 | |
| 
 | |
| /// calculateNodeAttributes - The following properties are calculated for
 | |
| /// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
 | |
| /// MOB.
 | |
| void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
 | |
| 
 | |
|   //Loop over the nodes and add them to the map
 | |
|   for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | |
|     //Assert if its already in the map
 | |
|     assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
 | |
|     
 | |
|     //Put into the map with default attribute values
 | |
|     nodeToAttributesMap[I->second] = MSNodeAttributes();
 | |
|   }
 | |
| 
 | |
|   //Create set to deal with reccurrences
 | |
|   std::set<MSchedGraphNode*> visitedNodes;
 | |
|   
 | |
|   //Now Loop over map and calculate the node attributes
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
 | |
|     visitedNodes.clear();
 | |
|   }
 | |
|   
 | |
|   int maxASAP = findMaxASAP();
 | |
|   //Calculate ALAP which depends on ASAP being totally calculated
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
 | |
|     visitedNodes.clear();
 | |
|   }
 | |
| 
 | |
|   //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
 | |
|    
 | |
|     DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
 | |
|     calculateDepth(I->first, (MSchedGraphNode*) 0);
 | |
|     calculateHeight(I->first, (MSchedGraphNode*) 0);
 | |
|   }
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
 | |
| bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
 | |
|   if(destNode == 0 || srcNode ==0)
 | |
|     return false;
 | |
|   
 | |
|   bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
 | |
|   
 | |
|   return findEdge;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// calculateASAP - Calculates the 
 | |
| int  ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
 | |
|     
 | |
|   DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
 | |
| 
 | |
|   //Get current node attributes
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.ASAP != -1)
 | |
|     return attributes.ASAP;
 | |
|   
 | |
|   int maxPredValue = 0;
 | |
|   
 | |
|   //Iterate over all of the predecessors and find max
 | |
|   for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | |
|     
 | |
|     //Only process if we are not ignoring the edge
 | |
|     if(!ignoreEdge(*P, node)) {
 | |
|       int predASAP = -1;
 | |
|       predASAP = calculateASAP(*P, MII, node);
 | |
|     
 | |
|       assert(predASAP != -1 && "ASAP has not been calculated");
 | |
|       int iteDiff = node->getInEdge(*P).getIteDiff();
 | |
|       
 | |
|       int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
 | |
|       DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
 | |
|       maxPredValue = std::max(maxPredValue, currentPredValue);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   attributes.ASAP = maxPredValue;
 | |
| 
 | |
|   DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
 | |
|   
 | |
|   return maxPredValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, 
 | |
| 					int maxASAP, MSchedGraphNode *srcNode) {
 | |
|   
 | |
|   DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
 | |
|   
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
|  
 | |
|   if(attributes.ALAP != -1)
 | |
|     return attributes.ALAP;
 | |
|  
 | |
|   if(node->hasSuccessors()) {
 | |
|     
 | |
|     //Trying to deal with the issue where the node has successors, but
 | |
|     //we are ignoring all of the edges to them. So this is my hack for
 | |
|     //now.. there is probably a more elegant way of doing this (FIXME)
 | |
|     bool processedOneEdge = false;
 | |
| 
 | |
|     //FIXME, set to something high to start
 | |
|     int minSuccValue = 9999999;
 | |
|     
 | |
|     //Iterate over all of the predecessors and fine max
 | |
|     for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
 | |
| 	  E = node->succ_end(); P != E; ++P) {
 | |
|       
 | |
|       //Only process if we are not ignoring the edge
 | |
|       if(!ignoreEdge(node, *P)) {
 | |
| 	processedOneEdge = true;
 | |
| 	int succALAP = -1;
 | |
| 	succALAP = calculateALAP(*P, MII, maxASAP, node);
 | |
| 	
 | |
| 	assert(succALAP != -1 && "Successors ALAP should have been caclulated");
 | |
| 	
 | |
| 	int iteDiff = P.getEdge().getIteDiff();
 | |
| 	
 | |
| 	int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
 | |
| 	
 | |
| 	DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
 | |
| 
 | |
| 	minSuccValue = std::min(minSuccValue, currentSuccValue);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if(processedOneEdge)
 | |
|     	attributes.ALAP = minSuccValue;
 | |
|     
 | |
|     else
 | |
|       attributes.ALAP = maxASAP;
 | |
|   }
 | |
|   else
 | |
|     attributes.ALAP = maxASAP;
 | |
| 
 | |
|   DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
 | |
| 
 | |
|   if(attributes.ALAP < 0)
 | |
|     attributes.ALAP = 0;
 | |
| 
 | |
|   return attributes.ALAP;
 | |
| }
 | |
| 
 | |
| int ModuloSchedulingPass::findMaxASAP() {
 | |
|   int maxASAP = 0;
 | |
| 
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
 | |
| 	E = nodeToAttributesMap.end(); I != E; ++I)
 | |
|     maxASAP = std::max(maxASAP, I->second.ASAP);
 | |
|   return maxASAP;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
 | |
|   
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.height != -1)
 | |
|     return attributes.height;
 | |
| 
 | |
|   int maxHeight = 0;
 | |
|     
 | |
|   //Iterate over all of the predecessors and find max
 | |
|   for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
 | |
| 	E = node->succ_end(); P != E; ++P) {
 | |
|     
 | |
|     
 | |
|     if(!ignoreEdge(node, *P)) {
 | |
|       int succHeight = calculateHeight(*P, node);
 | |
| 
 | |
|       assert(succHeight != -1 && "Successors Height should have been caclulated");
 | |
| 
 | |
|       int currentHeight = succHeight + node->getLatency();
 | |
|       maxHeight = std::max(maxHeight, currentHeight);
 | |
|     }
 | |
|   }
 | |
|   attributes.height = maxHeight;
 | |
|   DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
 | |
|   return maxHeight;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, 
 | |
| 					  MSchedGraphNode *destNode) {
 | |
| 
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.depth != -1)
 | |
|     return attributes.depth;
 | |
| 
 | |
|   int maxDepth = 0;
 | |
|       
 | |
|   //Iterate over all of the predecessors and fine max
 | |
|   for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | |
| 
 | |
|     if(!ignoreEdge(*P, node)) {
 | |
|       int predDepth = -1;
 | |
|       predDepth = calculateDepth(*P, node);
 | |
|       
 | |
|       assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
 | |
| 
 | |
|       int currentDepth = predDepth + (*P)->getLatency();
 | |
|       maxDepth = std::max(maxDepth, currentDepth);
 | |
|     }
 | |
|   }
 | |
|   attributes.depth = maxDepth;
 | |
|   
 | |
|   DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
 | |
|   return maxDepth;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
 | |
|   //Check to make sure that this recurrence is unique
 | |
|   bool same = false;
 | |
| 
 | |
| 
 | |
|   //Loop over all recurrences already in our list
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
 | |
|     
 | |
|     bool all_same = true;
 | |
|      //First compare size
 | |
|     if(R->second.size() == recurrence.size()) {
 | |
|       
 | |
|       for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
 | |
| 	if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
 | |
| 	  all_same = all_same && false;
 | |
| 	  break;
 | |
| 	}
 | |
| 	else
 | |
| 	  all_same = all_same && true;
 | |
|       }
 | |
|       if(all_same) {
 | |
| 	same = true;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if(!same) {
 | |
|     srcBENode = recurrence.back();
 | |
|     destBENode = recurrence.front();
 | |
|     
 | |
|     //FIXME
 | |
|     if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
 | |
|       //DEBUG(std::cerr << "NOT A BACKEDGE\n");
 | |
|       //find actual backedge HACK HACK 
 | |
|       for(unsigned i=0; i< recurrence.size()-1; ++i) {
 | |
| 	if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
 | |
| 	  srcBENode = recurrence[i];
 | |
| 	  destBENode = recurrence[i+1];
 | |
| 	  break;
 | |
| 	}
 | |
| 	  
 | |
|       }
 | |
|       
 | |
|     }
 | |
|     DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
 | |
|     edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
 | |
|     recurrenceList.insert(std::make_pair(II, recurrence));
 | |
|   }
 | |
|   
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, 
 | |
| 					       std::vector<MSchedGraphNode*> &visitedNodes,
 | |
| 					       int II) {
 | |
| 
 | |
|   if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
 | |
|     std::vector<MSchedGraphNode*> recurrence;
 | |
|     bool first = true;
 | |
|     int delay = 0;
 | |
|     int distance = 0;
 | |
|     int RecMII = II; //Starting value
 | |
|     MSchedGraphNode *last = node;
 | |
|     MSchedGraphNode *srcBackEdge = 0;
 | |
|     MSchedGraphNode *destBackEdge = 0;
 | |
|     
 | |
| 
 | |
| 
 | |
|     for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
 | |
| 	I !=E; ++I) {
 | |
| 
 | |
|       if(*I == node) 
 | |
| 	first = false;
 | |
|       if(first)
 | |
| 	continue;
 | |
| 
 | |
|       delay = delay + (*I)->getLatency();
 | |
| 
 | |
|       if(*I != node) {
 | |
| 	int diff = (*I)->getInEdge(last).getIteDiff();
 | |
| 	distance += diff;
 | |
| 	if(diff > 0) {
 | |
| 	  srcBackEdge = last;
 | |
| 	  destBackEdge = *I;
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       recurrence.push_back(*I);
 | |
|       last = *I;
 | |
|     }
 | |
| 
 | |
| 
 | |
|       
 | |
|     //Get final distance calc
 | |
|     distance += node->getInEdge(last).getIteDiff();
 | |
|    
 | |
| 
 | |
|     //Adjust II until we get close to the inequality delay - II*distance <= 0
 | |
|     
 | |
|     int value = delay-(RecMII * distance);
 | |
|     int lastII = II;
 | |
|     while(value <= 0) {
 | |
|       
 | |
|       lastII = RecMII;
 | |
|       RecMII--;
 | |
|       value = delay-(RecMII * distance);
 | |
|     }
 | |
|     
 | |
|     
 | |
|     DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
 | |
|     addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
 | |
|     assert(distance != 0 && "Recurrence distance should not be zero");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
 | |
|     visitedNodes.push_back(node);
 | |
|     findAllReccurrences(*I, visitedNodes, II);
 | |
|     visitedNodes.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::computePartialOrder() {
 | |
|   
 | |
|   
 | |
|   //Loop over all recurrences and add to our partial order
 | |
|   //be sure to remove nodes that are already in the partial order in
 | |
|   //a different recurrence and don't add empty recurrences.
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
 | |
|     
 | |
|     //Add nodes that connect this recurrence to the previous recurrence
 | |
|     
 | |
|     //If this is the first recurrence in the partial order, add all predecessors
 | |
|     for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | |
| 
 | |
|     }
 | |
| 
 | |
| 
 | |
|     std::vector<MSchedGraphNode*> new_recurrence;
 | |
|     //Loop through recurrence and remove any nodes already in the partial order
 | |
|     for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | |
|       bool found = false;
 | |
|       for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
 | |
| 	if(find(PO->begin(), PO->end(), *N) != PO->end())
 | |
| 	  found = true;
 | |
|       }
 | |
|       if(!found) {
 | |
| 	new_recurrence.push_back(*N);
 | |
| 	 
 | |
| 	if(partialOrder.size() == 0)
 | |
| 	  //For each predecessors, add it to this recurrence ONLY if it is not already in it
 | |
| 	  for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), 
 | |
| 		PE = (*N)->pred_end(); P != PE; ++P) {
 | |
| 	    
 | |
| 	    //Check if we are supposed to ignore this edge or not
 | |
| 	    if(!ignoreEdge(*P, *N))
 | |
| 	      //Check if already in this recurrence
 | |
| 	      if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
 | |
| 		//Also need to check if in partial order
 | |
| 		bool predFound = false;
 | |
| 		for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
 | |
| 		  if(find(PO->begin(), PO->end(), *P) != PO->end())
 | |
| 		    predFound = true;
 | |
| 		}
 | |
| 		
 | |
| 		if(!predFound)
 | |
| 		  if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
 | |
| 		     new_recurrence.push_back(*P);
 | |
| 		
 | |
| 	      }
 | |
| 	  }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|         
 | |
|     if(new_recurrence.size() > 0)
 | |
|       partialOrder.push_back(new_recurrence);
 | |
|   }
 | |
|   
 | |
|   //Add any nodes that are not already in the partial order
 | |
|   std::vector<MSchedGraphNode*> lastNodes;
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     bool found = false;
 | |
|     //Check if its already in our partial order, if not add it to the final vector
 | |
|     for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
 | |
|       if(find(PO->begin(), PO->end(), I->first) != PO->end())
 | |
| 	found = true;
 | |
|     }
 | |
|     if(!found)
 | |
|       lastNodes.push_back(I->first);
 | |
|   }
 | |
| 
 | |
|   if(lastNodes.size() > 0)
 | |
|     partialOrder.push_back(lastNodes);
 | |
|   
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
 | |
|   
 | |
|   //Sort CurrentSet so we can use lowerbound
 | |
|   sort(CurrentSet.begin(), CurrentSet.end());
 | |
|   
 | |
|   for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | |
|     for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), 
 | |
| 	  E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
 | |
|    
 | |
|       //Check if we are supposed to ignore this edge or not
 | |
|       if(ignoreEdge(*P,FinalNodeOrder[j]))
 | |
| 	continue;
 | |
| 	 
 | |
|       if(find(CurrentSet.begin(), 
 | |
| 		     CurrentSet.end(), *P) != CurrentSet.end())
 | |
| 	if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | |
| 	  IntersectResult.push_back(*P);
 | |
|     }
 | |
|   } 
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
 | |
| 
 | |
|   //Sort CurrentSet so we can use lowerbound
 | |
|   sort(CurrentSet.begin(), CurrentSet.end());
 | |
|   
 | |
|   for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | |
|     for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), 
 | |
| 	  E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
 | |
| 
 | |
|       //Check if we are supposed to ignore this edge or not
 | |
|       if(ignoreEdge(FinalNodeOrder[j],*P))
 | |
| 	continue;
 | |
| 
 | |
|       if(find(CurrentSet.begin(), 
 | |
| 		     CurrentSet.end(), *P) != CurrentSet.end())
 | |
| 	if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | |
| 	  IntersectResult.push_back(*P);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
 | |
|   std::cerr << "Intersection (";
 | |
|   for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
 | |
|     std::cerr << **I << ", ";
 | |
|   std::cerr << ")\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::orderNodes() {
 | |
|   
 | |
|   int BOTTOM_UP = 0;
 | |
|   int TOP_DOWN = 1;
 | |
| 
 | |
|   //Set default order
 | |
|   int order = BOTTOM_UP;
 | |
| 
 | |
| 
 | |
|   //Loop over all the sets and place them in the final node order
 | |
|   for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
 | |
| 
 | |
|     DEBUG(std::cerr << "Processing set in S\n");
 | |
|     DEBUG(dumpIntersection(*CurrentSet));
 | |
| 
 | |
|     //Result of intersection
 | |
|     std::vector<MSchedGraphNode*> IntersectCurrent;
 | |
| 
 | |
|     predIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|     //If the intersection of predecessor and current set is not empty
 | |
|     //sort nodes bottom up
 | |
|     if(IntersectCurrent.size() != 0) {
 | |
|       DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
 | |
|       order = BOTTOM_UP;
 | |
|     }
 | |
|     //If empty, use successors
 | |
|     else {
 | |
|       DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
 | |
| 
 | |
|       succIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|       //sort top-down
 | |
|       if(IntersectCurrent.size() != 0) {
 | |
| 	 DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
 | |
| 	order = TOP_DOWN;
 | |
|       }
 | |
|       else {
 | |
| 	DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
 | |
| 	//Find node with max ASAP in current Set
 | |
| 	MSchedGraphNode *node;
 | |
| 	int maxASAP = 0;
 | |
| 	DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
 | |
| 	for(unsigned j=0; j < CurrentSet->size(); ++j) {
 | |
| 	  //Get node attributes
 | |
| 	  MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
 | |
| 	  //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
 | |
| 	  DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
 | |
| 	  if(maxASAP < nodeAttr.ASAP) {
 | |
| 	    maxASAP = nodeAttr.ASAP;
 | |
| 	    node = (*CurrentSet)[j];
 | |
| 	  }
 | |
| 	}
 | |
| 	assert(node != 0 && "In node ordering node should not be null");
 | |
| 	IntersectCurrent.push_back(node);
 | |
| 	order = BOTTOM_UP;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     //Repeat until all nodes are put into the final order from current set
 | |
|     while(IntersectCurrent.size() > 0) {
 | |
| 
 | |
|       if(order == TOP_DOWN) {
 | |
| 	DEBUG(std::cerr << "Order is TOP DOWN\n");
 | |
| 
 | |
| 	while(IntersectCurrent.size() > 0) {
 | |
| 	  DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
 | |
| 	  
 | |
| 	  int MOB = 0;
 | |
| 	  int height = 0;
 | |
| 	  MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
 | |
| 	  	  
 | |
| 	  //Find node in intersection with highest heigh and lowest MOB
 | |
| 	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
 | |
| 		E = IntersectCurrent.end(); I != E; ++I) {
 | |
| 	    
 | |
| 	    //Get current nodes properties
 | |
| 	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | |
| 
 | |
| 	    if(height < nodeAttr.height) {
 | |
| 	      highestHeightNode = *I;
 | |
| 	      height = nodeAttr.height;
 | |
| 	      MOB = nodeAttr.MOB;
 | |
| 	    }
 | |
| 	    else if(height ==  nodeAttr.height) {
 | |
| 	      if(MOB > nodeAttr.height) {
 | |
| 		highestHeightNode = *I;
 | |
| 		height =  nodeAttr.height;
 | |
| 		MOB = nodeAttr.MOB;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  
 | |
| 	  //Append our node with greatest height to the NodeOrder
 | |
| 	  if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
 | |
| 	    DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
 | |
| 	    FinalNodeOrder.push_back(highestHeightNode);
 | |
| 	  }
 | |
| 
 | |
| 	  //Remove V from IntersectOrder
 | |
| 	  IntersectCurrent.erase(find(IntersectCurrent.begin(), 
 | |
| 				      IntersectCurrent.end(), highestHeightNode));
 | |
| 
 | |
| 
 | |
| 	  //Intersect V's successors with CurrentSet
 | |
| 	  for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
 | |
| 		E = highestHeightNode->succ_end(); P != E; ++P) {
 | |
| 	    //if(lower_bound(CurrentSet->begin(), 
 | |
| 	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
| 	    if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {  
 | |
| 	      if(ignoreEdge(highestHeightNode, *P))
 | |
| 		continue;
 | |
| 	      //If not already in Intersect, add
 | |
| 	      if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
 | |
| 		IntersectCurrent.push_back(*P);
 | |
| 	    }
 | |
| 	  }
 | |
|      	} //End while loop over Intersect Size
 | |
| 
 | |
| 	//Change direction
 | |
| 	order = BOTTOM_UP;
 | |
| 
 | |
| 	//Reset Intersect to reflect changes in OrderNodes
 | |
| 	IntersectCurrent.clear();
 | |
| 	predIntersect(*CurrentSet, IntersectCurrent);
 | |
| 	
 | |
|       } //End If TOP_DOWN
 | |
| 	
 | |
| 	//Begin if BOTTOM_UP
 | |
|       else {
 | |
| 	DEBUG(std::cerr << "Order is BOTTOM UP\n");
 | |
| 	while(IntersectCurrent.size() > 0) {
 | |
| 	  DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
 | |
| 
 | |
| 	  //dump intersection
 | |
| 	  DEBUG(dumpIntersection(IntersectCurrent));
 | |
| 	  //Get node with highest depth, if a tie, use one with lowest
 | |
| 	  //MOB
 | |
| 	  int MOB = 0;
 | |
| 	  int depth = 0;
 | |
| 	  MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
 | |
| 	  
 | |
| 	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
 | |
| 		E = IntersectCurrent.end(); I != E; ++I) {
 | |
| 	    //Find node attribute in graph
 | |
| 	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | |
| 	    
 | |
| 	    if(depth < nodeAttr.depth) {
 | |
| 	      highestDepthNode = *I;
 | |
| 	      depth = nodeAttr.depth;
 | |
| 	      MOB = nodeAttr.MOB;
 | |
| 	    }
 | |
| 	    else if(depth == nodeAttr.depth) {
 | |
| 	      if(MOB > nodeAttr.MOB) {
 | |
| 		highestDepthNode = *I;
 | |
| 		depth = nodeAttr.depth;
 | |
| 		MOB = nodeAttr.MOB;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  
 | |
| 	  
 | |
| 
 | |
| 	  //Append highest depth node to the NodeOrder
 | |
| 	   if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
 | |
| 	     DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
 | |
| 	     FinalNodeOrder.push_back(highestDepthNode);
 | |
| 	   }
 | |
| 	  //Remove heightestDepthNode from IntersectOrder
 | |
| 	  IntersectCurrent.erase(find(IntersectCurrent.begin(), 
 | |
| 				      IntersectCurrent.end(),highestDepthNode));
 | |
| 	  
 | |
| 
 | |
| 	  //Intersect heightDepthNode's pred with CurrentSet
 | |
| 	  for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), 
 | |
| 		E = highestDepthNode->pred_end(); P != E; ++P) {
 | |
| 	    //if(lower_bound(CurrentSet->begin(), 
 | |
| 	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
| 	    if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
| 	    
 | |
| 	      if(ignoreEdge(*P, highestDepthNode))
 | |
| 		continue;
 | |
| 	    
 | |
| 	    //If not already in Intersect, add
 | |
| 	    if(find(IntersectCurrent.begin(), 
 | |
| 		      IntersectCurrent.end(), *P) == IntersectCurrent.end())
 | |
| 		IntersectCurrent.push_back(*P);
 | |
| 	    }
 | |
| 	  }
 | |
| 	  
 | |
| 	} //End while loop over Intersect Size
 | |
| 	
 | |
| 	  //Change order
 | |
| 	order = TOP_DOWN;
 | |
| 	
 | |
| 	//Reset IntersectCurrent to reflect changes in OrderNodes
 | |
| 	IntersectCurrent.clear();
 | |
| 	succIntersect(*CurrentSet, IntersectCurrent);
 | |
| 	} //End if BOTTOM_DOWN
 | |
| 	
 | |
|     }
 | |
|     //End Wrapping while loop
 | |
|       
 | |
|   }//End for over all sets of nodes
 | |
|    
 | |
|   //Return final Order
 | |
|   //return FinalNodeOrder;
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::computeSchedule() {
 | |
| 
 | |
|   bool success = false;
 | |
|   
 | |
|   while(!success) {
 | |
|     
 | |
|     //Loop over the final node order and process each node
 | |
|     for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), 
 | |
| 	  E = FinalNodeOrder.end(); I != E; ++I) {
 | |
|       
 | |
|       //CalculateEarly and Late start
 | |
|       int EarlyStart = -1;
 | |
|       int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
 | |
|       bool hasSucc = false;
 | |
|       bool hasPred = false;
 | |
|       
 | |
|       if(!(*I)->isBranch()) {
 | |
| 	//Loop over nodes in the schedule and determine if they are predecessors
 | |
| 	//or successors of the node we are trying to schedule
 | |
| 	for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); 
 | |
| 	    nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
 | |
| 	  
 | |
| 	  //For this cycle, get the vector of nodes schedule and loop over it
 | |
| 	  for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
 | |
| 	    
 | |
| 	    if((*I)->isPredecessor(*schedNode)) {
 | |
| 	      if(!ignoreEdge(*schedNode, *I)) {
 | |
| 		int diff = (*I)->getInEdge(*schedNode).getIteDiff();
 | |
| 		int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
 | |
| 		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | |
| 		DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
 | |
| 		EarlyStart = std::max(EarlyStart, ES_Temp);
 | |
| 		hasPred = true;
 | |
| 	      }
 | |
| 	    }
 | |
| 	    if((*I)->isSuccessor(*schedNode)) {
 | |
| 	      if(!ignoreEdge(*I,*schedNode)) {
 | |
| 		int diff = (*schedNode)->getInEdge(*I).getIteDiff();
 | |
| 		int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
 | |
| 		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | |
| 		DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
 | |
| 		LateStart = std::min(LateStart, LS_Temp);
 | |
| 		hasSucc = true;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       else {
 | |
| 	//WARNING: HACK! FIXME!!!!
 | |
| 	EarlyStart = II-1;
 | |
| 	LateStart = II-1;
 | |
| 	hasPred = 1;
 | |
| 	hasSucc = 1;
 | |
|       }
 | |
|  
 | |
|       
 | |
|       DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
 | |
|       DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
 | |
| 
 | |
|       //Check if the node has no pred or successors and set Early Start to its ASAP
 | |
|       if(!hasSucc && !hasPred)
 | |
| 	EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
 | |
|       
 | |
|       //Now, try to schedule this node depending upon its pred and successor in the schedule
 | |
|       //already
 | |
|       if(!hasSucc && hasPred)
 | |
| 	success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
 | |
|       else if(!hasPred && hasSucc)
 | |
| 	success = scheduleNode(*I, LateStart, (LateStart - II +1));
 | |
|       else if(hasPred && hasSucc)
 | |
| 	success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
 | |
|       else
 | |
| 	success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
 | |
|       
 | |
|       if(!success) {
 | |
| 	++II; 
 | |
| 	schedule.clear();
 | |
| 	break;
 | |
|       }
 | |
|      
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "Constructing Kernel\n");
 | |
|     success = schedule.constructKernel(II);
 | |
|     if(!success) {
 | |
|       ++II;
 | |
|       schedule.clear();
 | |
|     }
 | |
|   } 
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, 
 | |
| 				      int start, int end) {
 | |
|   bool success = false;
 | |
| 
 | |
|   DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
 | |
| 
 | |
|   //Make sure start and end are not negative
 | |
|   if(start < 0)
 | |
|     start = 0;
 | |
|   if(end < 0)
 | |
|     end = 0;
 | |
| 
 | |
|   bool forward = true;
 | |
|   if(start > end)
 | |
|     forward = false;
 | |
| 
 | |
|   bool increaseSC = true;
 | |
|   int cycle = start ;
 | |
| 
 | |
| 
 | |
|   while(increaseSC) {
 | |
|     
 | |
|     increaseSC = false;
 | |
| 
 | |
|     increaseSC = schedule.insert(node, cycle);
 | |
|     
 | |
|     if(!increaseSC) 
 | |
|       return true;
 | |
| 
 | |
|     //Increment cycle to try again
 | |
|     if(forward) {
 | |
|       ++cycle;
 | |
|       DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
 | |
|       if(cycle > end)
 | |
| 	return false;
 | |
|     }
 | |
|     else {
 | |
|       --cycle;
 | |
|       DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
 | |
|       if(cycle < end)
 | |
| 	return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return success;
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | |
| 
 | |
|   //Keep a map to easily know whats in the kernel
 | |
|   std::map<int, std::set<const MachineInstr*> > inKernel;
 | |
|   int maxStageCount = 0;
 | |
| 
 | |
|   MSchedGraphNode *branch = 0;
 | |
| 
 | |
|   for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
|     maxStageCount = std::max(maxStageCount, I->second);
 | |
|     
 | |
|     //Ignore the branch, we will handle this separately
 | |
|     if(I->first->isBranch()) {
 | |
|       branch = I->first;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     //Put int the map so we know what instructions in each stage are in the kernel
 | |
|     DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
 | |
|     inKernel[I->second].insert(I->first->getInst());
 | |
|   }
 | |
| 
 | |
|   //Get target information to look at machine operands
 | |
|   const TargetInstrInfo *mii = target.getInstrInfo();
 | |
| 
 | |
|  //Now write the prologues
 | |
|   for(int i = 0; i < maxStageCount; ++i) {
 | |
|     BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
 | |
|     MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | |
|   
 | |
|     DEBUG(std::cerr << "i=" << i << "\n");
 | |
|     for(int j = 0; j <= i; ++j) {
 | |
|       for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | |
| 	if(inKernel[j].count(&*MI)) {
 | |
| 	  machineBB->push_back(MI->clone());
 | |
| 	  
 | |
| 	  Instruction *tmp;
 | |
| 
 | |
| 	  //After cloning, we may need to save the value that this instruction defines
 | |
| 	  for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
 | |
| 	    //get machine operand
 | |
| 	    const MachineOperand &mOp = MI->getOperand(opNum);
 | |
| 	    if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | |
| 
 | |
| 
 | |
| 	      //Check if this is a value we should save
 | |
| 	      if(valuesToSave.count(mOp.getVRegValue())) {
 | |
| 		//Save copy in tmpInstruction
 | |
| 		tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 		
 | |
| 		DEBUG(std::cerr << "Value: " << mOp.getVRegValue() << " New Value: " << tmp << " Stage: " << i << "\n");
 | |
| 		newValues[mOp.getVRegValue()][i].push_back(tmp);
 | |
| 		newValLocation[tmp] = machineBB;
 | |
| 
 | |
| 		DEBUG(std::cerr << "Machine Instr Operands: " << mOp.getVRegValue() << ", 0, " << tmp << "\n");
 | |
| 		
 | |
| 		//Create machine instruction and put int machineBB
 | |
| 		MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 		
 | |
| 		DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //Stick in branch at the end
 | |
|     machineBB->push_back(branch->getInst()->clone());
 | |
| 
 | |
|   (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);  
 | |
|     prologues.push_back(machineBB);
 | |
|     llvm_prologues.push_back(llvmBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation ) {
 | |
|   
 | |
|   std::map<int, std::set<const MachineInstr*> > inKernel;
 | |
|   int maxStageCount = 0;
 | |
|   for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
|     maxStageCount = std::max(maxStageCount, I->second);
 | |
|     
 | |
|     //Ignore the branch, we will handle this separately
 | |
|     if(I->first->isBranch())
 | |
|       continue;
 | |
| 
 | |
|     //Put int the map so we know what instructions in each stage are in the kernel
 | |
|     inKernel[I->second].insert(I->first->getInst());
 | |
|   }
 | |
| 
 | |
|   std::map<Value*, Value*> valPHIs;
 | |
| 
 | |
|   //Now write the epilogues
 | |
|   for(int i = maxStageCount-1; i >= 0; --i) {
 | |
|     BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
 | |
|     MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | |
|    
 | |
|     DEBUG(std::cerr << " i: " << i << "\n");
 | |
| 
 | |
|     //Spit out phi nodes
 | |
|     for(std::map<Value*, std::map<int, std::vector<Value*> > >::iterator V = newValues.begin(), E = newValues.end();
 | |
| 	V != E; ++V) {
 | |
| 
 | |
|       DEBUG(std::cerr << "Writing phi for" << *(V->first));
 | |
|       for(std::map<int, std::vector<Value*> >::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) {
 | |
| 	if(I->first == i) {
 | |
| 	  DEBUG(std::cerr << "BLAH " << i << "\n");
 | |
| 	  
 | |
| 	  //Vector must have two elements in it:
 | |
| 	  assert(I->second.size() == 2 && "Vector size should be two\n");
 | |
| 	  
 | |
| 	  Instruction *tmp = new TmpInstruction(I->second[0]);
 | |
| 	  MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(I->second[0]).addReg(I->second[1]).addRegDef(tmp);
 | |
| 	  valPHIs[V->first] = tmp;
 | |
| 	}
 | |
|       }
 | |
|       
 | |
|     }
 | |
| 
 | |
|     for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | |
|       for(int j=maxStageCount; j > i; --j) {
 | |
| 	if(inKernel[j].count(&*MI)) {
 | |
| 	  DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
 | |
| 	  MachineInstr *clone = MI->clone();
 | |
| 	  
 | |
| 	  //Update operands that need to use the result from the phi
 | |
| 	  for(unsigned i=0; i < clone->getNumOperands(); ++i) {
 | |
| 	    //get machine operand
 | |
| 	    const MachineOperand &mOp = clone->getOperand(i);
 | |
| 	    if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
 | |
| 	      if(valPHIs.count(mOp.getVRegValue())) {
 | |
| 		//Update the operand in the cloned instruction
 | |
| 		clone->getOperand(i).setValueReg(valPHIs[mOp.getVRegValue()]); 
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  machineBB->push_back(clone);
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
 | |
|     epilogues.push_back(machineBB);
 | |
|     llvm_epilogues.push_back(llvmBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | |
|   
 | |
|   //Keep track of operands that are read and saved from a previous iteration. The new clone
 | |
|   //instruction will use the result of the phi instead.
 | |
|   std::map<Value*, Value*> finalPHIValue;
 | |
|   std::map<Value*, Value*> kernelValue;
 | |
| 
 | |
|     //Create TmpInstructions for the final phis
 | |
|  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
| 
 | |
|    //Clone instruction
 | |
|    const MachineInstr *inst = I->first->getInst();
 | |
|    MachineInstr *instClone = inst->clone();
 | |
|    
 | |
|    //If this instruction is from a previous iteration, update its operands
 | |
|    if(I->second > 0) {
 | |
|      //Loop over Machine Operands
 | |
|      const MachineInstr *inst = I->first->getInst();
 | |
|      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
|        //get machine operand
 | |
|        const MachineOperand &mOp = inst->getOperand(i);
 | |
| 
 | |
|        if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
| 	 //If its in the value saved, we need to create a temp instruction and use that instead
 | |
| 	 if(valuesToSave.count(mOp.getVRegValue())) {
 | |
| 	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 	   
 | |
| 	   //Update the operand in the cloned instruction
 | |
| 	   instClone->getOperand(i).setValueReg(tmp);
 | |
| 	   
 | |
| 	   //save this as our final phi
 | |
| 	   finalPHIValue[mOp.getVRegValue()] = tmp;
 | |
| 	   newValLocation[tmp] = machineBB;
 | |
| 	 }
 | |
|        }
 | |
| 
 | |
|      }
 | |
|      //Insert into machine basic block
 | |
|      machineBB->push_back(instClone);
 | |
| 
 | |
|    }
 | |
|    //Otherwise we just check if we need to save a value or not
 | |
|    else {
 | |
|      //Insert into machine basic block
 | |
|      machineBB->push_back(instClone);
 | |
| 
 | |
|      //Loop over Machine Operands
 | |
|      const MachineInstr *inst = I->first->getInst();
 | |
|      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
|        //get machine operand
 | |
|        const MachineOperand &mOp = inst->getOperand(i);
 | |
| 
 | |
|        if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | |
| 	 if(valuesToSave.count(mOp.getVRegValue())) {
 | |
| 	   
 | |
| 	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 	   
 | |
| 	   //Create new machine instr and put in MBB
 | |
| 	   MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 	   
 | |
| 	   //Save for future cleanup
 | |
| 	   kernelValue[mOp.getVRegValue()] = tmp;
 | |
| 	   newValLocation[tmp] = machineBB;
 | |
| 	 }
 | |
|        }
 | |
|      }
 | |
|    }
 | |
|  }
 | |
| 
 | |
|  //Clean up by writing phis
 | |
|  for(std::map<Value*, std::map<int, std::vector<Value*> > >::iterator V = newValues.begin(), E = newValues.end();
 | |
|      V != E; ++V) {
 | |
| 
 | |
|    DEBUG(std::cerr << "Writing phi for" << *(V->first));
 | |
|   
 | |
|    //FIXME
 | |
|    int maxStage = 1;
 | |
| 
 | |
|    //Last phi
 | |
|    Instruction *lastPHI = 0;
 | |
| 
 | |
|    for(std::map<int, std::vector<Value*> >::iterator I = V->second.begin(), IE = V->second.end();
 | |
|        I != IE; ++I) {
 | |
|      
 | |
|      int stage = I->first;
 | |
| 
 | |
|      DEBUG(std::cerr << "Stage: " << I->first << " vector size: " << I->second.size() << "\n");
 | |
| 
 | |
|      //Assert if this vector is ever greater then 1. This should not happen
 | |
|      //FIXME: Get rid of vector if we convince ourselves this won't happn
 | |
|      assert(I->second.size() == 1 && "Vector of values should be of size \n");
 | |
| 
 | |
|      //We must handle the first and last phi specially
 | |
|      if(stage == maxStage) {
 | |
|        //The resulting value must be the Value* we created earlier
 | |
|        assert(lastPHI != 0 && "Last phi is NULL!\n");
 | |
|        MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(finalPHIValue[V->first]);
 | |
|        I->second.push_back(finalPHIValue[V->first]);
 | |
|      }
 | |
|      else if(stage == 0) {
 | |
|        lastPHI = new TmpInstruction(I->second[0]);
 | |
|        MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second[0]).addRegDef(lastPHI);
 | |
|        I->second.push_back(lastPHI);
 | |
|        newValLocation[lastPHI] = machineBB;
 | |
|      }
 | |
|      else {
 | |
|         Instruction *tmp = new TmpInstruction(I->second[0]);
 | |
| 	MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(tmp);
 | |
| 	lastPHI = tmp;
 | |
| 	I->second.push_back(lastPHI);
 | |
|        newValLocation[tmp] = machineBB;
 | |
|      }
 | |
|    }
 | |
|  }
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | |
| 
 | |
|   //Worklist to delete things
 | |
|   std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
 | |
|   
 | |
|   const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|   //Start with the kernel and for each phi insert a copy for the phi def and for each arg
 | |
|   for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
 | |
|     //Get op code and check if its a phi
 | |
|      if(I->getOpcode() == V9::PHI) {
 | |
|        Instruction *tmp = 0;
 | |
|        for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
| 	 //Get Operand
 | |
| 	 const MachineOperand &mOp = I->getOperand(i);
 | |
| 	 assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | |
| 	 
 | |
| 	 if(!tmp) {
 | |
| 	   tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 	 }
 | |
| 
 | |
|       	 //Now for all our arguments we read, OR to the new TmpInstruction that we created
 | |
| 	 if(mOp.isUse()) {
 | |
| 	   DEBUG(std::cerr << "Use: " << mOp << "\n");
 | |
| 	   //Place a copy at the end of its BB but before the branches
 | |
| 	   assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | |
| 	   //Reverse iterate to find the branches, we can safely assume no instructions have been
 | |
| 	   //put in the nop positions
 | |
| 	   for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | |
| 	     MachineOpCode opc = inst->getOpcode();
 | |
| 	     if(TMI->isBranch(opc) || TMI->isNop(opc))
 | |
| 	       continue;
 | |
| 	     else {
 | |
| 	       BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 	       break;
 | |
| 	     }
 | |
| 	       
 | |
| 	   }
 | |
| 
 | |
| 	 }
 | |
| 	 else {
 | |
| 	   //Remove the phi and replace it with an OR
 | |
| 	   DEBUG(std::cerr << "Def: " << mOp << "\n");
 | |
| 	   BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | |
| 	   worklist.push_back(std::make_pair(kernelBB, I));
 | |
| 	 }
 | |
| 
 | |
|        }
 | |
|      }
 | |
|        
 | |
|   }
 | |
| 
 | |
|   //Remove phis from epilogue
 | |
|   for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
 | |
|     for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
 | |
|       //Get op code and check if its a phi
 | |
|       if(I->getOpcode() == V9::PHI) {
 | |
| 	Instruction *tmp = 0;
 | |
| 	for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
| 	  //Get Operand
 | |
| 	  const MachineOperand &mOp = I->getOperand(i);
 | |
| 	  assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | |
| 	  
 | |
| 	  if(!tmp) {
 | |
| 	    tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 	  }
 | |
| 	  
 | |
| 	  //Now for all our arguments we read, OR to the new TmpInstruction that we created
 | |
| 	  if(mOp.isUse()) {
 | |
| 	    DEBUG(std::cerr << "Use: " << mOp << "\n");
 | |
| 	    //Place a copy at the end of its BB but before the branches
 | |
| 	    assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | |
| 	    //Reverse iterate to find the branches, we can safely assume no instructions have been
 | |
| 	    //put in the nop positions
 | |
| 	    for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | |
| 	      MachineOpCode opc = inst->getOpcode();
 | |
| 	      if(TMI->isBranch(opc) || TMI->isNop(opc))
 | |
| 		continue;
 | |
| 	      else {
 | |
| 		BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 		break;
 | |
| 	      }
 | |
| 	      
 | |
| 	    }
 | |
| 	    
 | |
| 	  }
 | |
| 	  else {
 | |
| 	    //Remove the phi and replace it with an OR
 | |
| 	    DEBUG(std::cerr << "Def: " << mOp << "\n");
 | |
| 	    BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | |
| 	    worklist.push_back(std::make_pair(*MB,I));
 | |
| 	  }
 | |
| 	  
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|     //Delete the phis
 | |
|   for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
 | |
|     I->first->erase(I->second);
 | |
| 		    
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
 | |
| 
 | |
|   //First find the value *'s that we need to "save"
 | |
|   std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave;
 | |
| 
 | |
|   //Loop over kernel and only look at instructions from a stage > 0
 | |
|   //Look at its operands and save values *'s that are read
 | |
|   for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
| 
 | |
|     if(I->second > 0) {
 | |
|       //For this instruction, get the Value*'s that it reads and put them into the set.
 | |
|       //Assert if there is an operand of another type that we need to save
 | |
|       const MachineInstr *inst = I->first->getInst();
 | |
|       for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
| 	//get machine operand
 | |
| 	const MachineOperand &mOp = inst->getOperand(i);
 | |
| 	
 | |
| 	if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
| 	  //find the value in the map
 | |
| 	  if (const Value* srcI = mOp.getVRegValue())
 | |
| 	    valuesToSave[srcI] = std::make_pair(I->first, i);
 | |
| 	  
 | |
| 	}
 | |
| 	
 | |
| 	if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
| 	  assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
 | |
| 
 | |
|   //Map to keep track of old to new values
 | |
|   std::map<Value*, std::map<int, std::vector<Value*> > > newValues;
 | |
|  
 | |
|   //Another map to keep track of what machine basic blocks these new value*s are in since
 | |
|   //they have no llvm instruction equivalent
 | |
|   std::map<Value*, MachineBasicBlock*> newValLocation;
 | |
| 
 | |
|   std::vector<MachineBasicBlock*> prologues;
 | |
|   std::vector<BasicBlock*> llvm_prologues;
 | |
| 
 | |
| 
 | |
|   //Write prologue
 | |
|   writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);
 | |
| 
 | |
|   BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
 | |
|   MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
 | |
|   
 | |
|   writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation);
 | |
|   (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
 | |
|  
 | |
|   std::vector<MachineBasicBlock*> epilogues;
 | |
|   std::vector<BasicBlock*> llvm_epilogues;
 | |
| 
 | |
|   //Write epilogues
 | |
|   writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation);
 | |
| 
 | |
| 
 | |
|   const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|   //Fix up machineBB and llvmBB branches
 | |
|   for(unsigned I = 0; I <  prologues.size(); ++I) {
 | |
|    
 | |
|     MachineInstr *branch = 0;
 | |
|     
 | |
|     //Find terminator since getFirstTerminator does not work!
 | |
|     for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
 | |
|       MachineOpCode OC = mInst->getOpcode();
 | |
|       if(TMI->isBranch(OC)) {
 | |
| 	branch = &*mInst;
 | |
| 	DEBUG(std::cerr << *mInst << "\n");
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|    
 | |
|  
 | |
|     //Update branch
 | |
|     for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
 | |
|       MachineOperand &mOp = branch->getOperand(opNum);
 | |
|       if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
| 	mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //Update llvm basic block with our new branch instr
 | |
|     DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
 | |
|     const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | |
|     TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition());
 | |
|     if(I == prologues.size()-1) {
 | |
|       TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | |
| 						 llvm_epilogues[(llvm_epilogues.size()-1-I)], 
 | |
| 						 tmp, 
 | |
| 						 llvm_prologues[I]);
 | |
|     }
 | |
|     else
 | |
|       TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
 | |
| 						 llvm_epilogues[(llvm_epilogues.size()-1-I)], 
 | |
| 						 tmp, 
 | |
| 						 llvm_prologues[I]);
 | |
| 
 | |
|     assert(branch != 0 && "There must be a terminator for this machine basic block!\n");
 | |
|   
 | |
|     //Push nop onto end of machine basic block
 | |
|     BuildMI(prologues[I], V9::NOP, 0);
 | |
|     
 | |
|     //Now since I don't trust fall throughs, add a unconditional branch to the next prologue
 | |
|     if(I != prologues.size()-1)
 | |
|       BuildMI(prologues[I], V9::BA, 1).addReg(llvm_prologues[I+1]);
 | |
|     else
 | |
|       BuildMI(prologues[I], V9::BA, 1).addReg(llvmKernelBB);
 | |
| 
 | |
|     //Add one more nop!
 | |
|     BuildMI(prologues[I], V9::NOP, 0);
 | |
|   }
 | |
| 
 | |
|   //Fix up kernel machine branches
 | |
|   MachineInstr *branch = 0;
 | |
|   for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
 | |
|     MachineOpCode OC = mInst->getOpcode();
 | |
|     if(TMI->isBranch(OC)) {
 | |
|       branch = &*mInst;
 | |
|       DEBUG(std::cerr << *mInst << "\n");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n");
 | |
|    
 | |
|   //Update kernel self loop branch
 | |
|   for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
 | |
|     MachineOperand &mOp = branch->getOperand(opNum);
 | |
|     
 | |
|     if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|       mOp.setValueReg(llvmKernelBB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   //Update kernelLLVM branches
 | |
|   const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | |
|   TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | |
| 					     llvm_epilogues[0], 
 | |
| 					     new TmpInstruction(branchVal->getCondition()), 
 | |
| 					     llvmKernelBB);
 | |
| 
 | |
|   //Add kernel noop
 | |
|    BuildMI(machineKernelBB, V9::NOP, 0);
 | |
| 
 | |
|    //Add unconditional branch to first epilogue
 | |
|    BuildMI(machineKernelBB, V9::BA, 1).addReg(llvm_epilogues[0]);
 | |
| 
 | |
|    //Add kernel noop
 | |
|    BuildMI(machineKernelBB, V9::NOP, 0);
 | |
| 
 | |
|    //Lastly add unconditional branches for the epilogues
 | |
|    for(unsigned I = 0; I <  epilogues.size(); ++I) {
 | |
|      
 | |
|     //Now since I don't trust fall throughs, add a unconditional branch to the next prologue
 | |
|      if(I != epilogues.size()-1) {
 | |
|        BuildMI(epilogues[I], V9::BA, 1).addReg(llvm_epilogues[I+1]);
 | |
|        //Add unconditional branch to end of epilogue
 | |
|        TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], 
 | |
| 						  llvm_epilogues[I]);
 | |
| 
 | |
|      }
 | |
|     else {
 | |
|       MachineBasicBlock *origBlock = (MachineBasicBlock*) BB;
 | |
|       for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) {
 | |
| 	MachineOpCode OC = inst->getOpcode();
 | |
| 	if(TMI->isBranch(OC)) {
 | |
| 	  branch = &*inst;
 | |
| 	  DEBUG(std::cerr << *inst << "\n");
 | |
| 	  break;
 | |
| 	
 | |
| 	}
 | |
| 	
 | |
| 	for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
 | |
| 	  MachineOperand &mOp = branch->getOperand(opNum);
 | |
| 	  
 | |
| 	  if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
| 	    BuildMI(epilogues[I], V9::BA, 1).addReg(mOp.getVRegValue());
 | |
| 	    break;
 | |
| 	  }
 | |
| 	}
 | |
| 	
 | |
|       }
 | |
|       
 | |
|       //Update last epilogue exit branch
 | |
|       BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | |
|       //Find where we are supposed to branch to
 | |
|       BasicBlock *nextBlock = 0;
 | |
|       for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
 | |
| 	if(branchVal->getSuccessor(j) != BB->getBasicBlock())
 | |
| 	  nextBlock = branchVal->getSuccessor(j);
 | |
|       }
 | |
| 	TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
 | |
|     }
 | |
|     //Add one more nop!
 | |
|     BuildMI(epilogues[I], V9::NOP, 0);
 | |
| 
 | |
|    }
 | |
| 
 | |
|    //FIX UP Machine BB entry!!
 | |
|    //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
 | |
|    
 | |
| 
 | |
|    //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
 | |
|    const BasicBlock *llvmBB = BB->getBasicBlock();
 | |
| 
 | |
|    for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
 | |
|      if(*P == llvmBB)
 | |
|        continue;
 | |
|      else {
 | |
|        DEBUG(std::cerr << "Found our entry BB\n");
 | |
|        //Get the Terminator instruction for this basic block and print it out
 | |
|        DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
 | |
|        //Update the terminator
 | |
|        TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
 | |
|        for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
 | |
| 	 if(term->getSuccessor(i) == llvmBB) {
 | |
| 	   DEBUG(std::cerr << "Replacing successor bb\n");
 | |
| 	   if(llvm_prologues.size() > 0) {
 | |
| 	     term->setSuccessor(i, llvm_prologues[0]);
 | |
| 	     //Also update its corresponding machine instruction
 | |
| 	     MachineCodeForInstruction & tempMvec =
 | |
| 	       MachineCodeForInstruction::get(term);
 | |
| 	     for (unsigned j = 0; j < tempMvec.size(); j++) {
 | |
| 	       MachineInstr *temp = tempMvec[j];
 | |
| 	       MachineOpCode opc = temp->getOpcode();
 | |
| 	       if(TMI->isBranch(opc)) {
 | |
| 		 DEBUG(std::cerr << *temp << "\n");
 | |
| 		 //Update branch
 | |
| 		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | |
| 		   MachineOperand &mOp = temp->getOperand(opNum);
 | |
| 		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
| 		     mOp.setValueReg(llvm_prologues[0]);
 | |
| 		   }
 | |
| 		 }
 | |
| 	       }
 | |
| 	     }        
 | |
| 	   }
 | |
| 	   else {
 | |
| 	     term->setSuccessor(i, llvmKernelBB);
 | |
| 	   //Also update its corresponding machine instruction
 | |
| 	     MachineCodeForInstruction & tempMvec =
 | |
| 	       MachineCodeForInstruction::get(term);
 | |
| 	     for (unsigned j = 0; j < tempMvec.size(); j++) {
 | |
| 	       MachineInstr *temp = tempMvec[j];
 | |
| 	       MachineOpCode opc = temp->getOpcode();
 | |
| 	       if(TMI->isBranch(opc)) {
 | |
| 		 DEBUG(std::cerr << *temp << "\n");
 | |
| 		 //Update branch
 | |
| 		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | |
| 		   MachineOperand &mOp = temp->getOperand(opNum);
 | |
| 		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
| 		     mOp.setValueReg(llvmKernelBB);
 | |
| 		   }
 | |
| 		 }
 | |
| 	       }
 | |
| 	     }
 | |
| 	   }
 | |
| 	 }
 | |
|        }
 | |
|        break;
 | |
|      }
 | |
|    }
 | |
|    
 | |
|    removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);
 | |
| 
 | |
| 
 | |
|     
 | |
|   //Print out epilogues and prologue
 | |
|   DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); 
 | |
|       I != E; ++I) {
 | |
|     std::cerr << "PROLOGUE\n";
 | |
|     (*I)->print(std::cerr);
 | |
|   });
 | |
|   
 | |
|   DEBUG(std::cerr << "KERNEL\n");
 | |
|   DEBUG(machineKernelBB->print(std::cerr));
 | |
| 
 | |
|   DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); 
 | |
|       I != E; ++I) {
 | |
|     std::cerr << "EPILOGUE\n";
 | |
|     (*I)->print(std::cerr);
 | |
|   });
 | |
| 
 | |
| 
 | |
|   DEBUG(std::cerr << "New Machine Function" << "\n");
 | |
|   DEBUG(std::cerr << BB->getParent() << "\n");
 | |
| 
 | |
|   BB->getParent()->getBasicBlockList().erase(BB);
 | |
| 
 | |
| }
 | |
| 
 |