mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Move include/Config and include/Support into include/llvm/Config, include/llvm/ADT and include/llvm/Support. From here on out, all LLVM public header files must be under include/llvm/. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16137 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			570 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			570 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Graph.cpp - Implements Graph class --------------------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements Graph for helping in trace generation This graph gets used by
 | 
						|
// "ProfilePaths" class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Graph.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using std::vector;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
const graphListElement *findNodeInList(const Graph::nodeList &NL,
 | 
						|
					      Node *N) {
 | 
						|
  for(Graph::nodeList::const_iterator NI = NL.begin(), NE=NL.end(); NI != NE; 
 | 
						|
      ++NI)
 | 
						|
    if (*NI->element== *N)
 | 
						|
      return &*NI;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
 | 
						|
  for(Graph::nodeList::iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI)
 | 
						|
    if (*NI->element== *N)
 | 
						|
      return &*NI;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//graph constructor with root and exit specified
 | 
						|
Graph::Graph(std::vector<Node*> n, std::vector<Edge> e, 
 | 
						|
	     Node *rt, Node *lt){
 | 
						|
  strt=rt;
 | 
						|
  ext=lt;
 | 
						|
  for(vector<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
 | 
						|
    //nodes[*x] = list<graphListElement>();
 | 
						|
    nodes[*x] = vector<graphListElement>();
 | 
						|
 | 
						|
  for(vector<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
 | 
						|
    Edge ee=*x;
 | 
						|
    int w=ee.getWeight();
 | 
						|
    //nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w, ee.getRandId()));   
 | 
						|
    nodes[ee.getFirst()].push_back(graphListElement(ee.getSecond(),w, ee.getRandId()));
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
//sorting edgelist, called by backEdgeVist ONLY!!!
 | 
						|
Graph::nodeList &Graph::sortNodeList(Node *par, nodeList &nl, vector<Edge> &be){
 | 
						|
  assert(par && "null node pointer");
 | 
						|
  BasicBlock *bbPar = par->getElement();
 | 
						|
  
 | 
						|
  if(nl.size()<=1) return nl;
 | 
						|
  if(getExit() == par) return nl;
 | 
						|
 | 
						|
  for(nodeList::iterator NLI = nl.begin(), NLE = nl.end()-1; NLI != NLE; ++NLI){
 | 
						|
    nodeList::iterator min = NLI;
 | 
						|
    for(nodeList::iterator LI = NLI+1, LE = nl.end(); LI!=LE; ++LI){
 | 
						|
      //if LI < min, min = LI
 | 
						|
      if(min->element->getElement() == LI->element->getElement() &&
 | 
						|
         min->element == getExit()){
 | 
						|
 | 
						|
        //same successors: so might be exit???
 | 
						|
        //if it is exit, then see which is backedge
 | 
						|
        //check if LI is a left back edge!
 | 
						|
 | 
						|
        TerminatorInst *tti = par->getElement()->getTerminator();
 | 
						|
        BranchInst *ti =  cast<BranchInst>(tti);
 | 
						|
 | 
						|
        assert(ti && "not a branch");
 | 
						|
        assert(ti->getNumSuccessors()==2 && "less successors!");
 | 
						|
        
 | 
						|
        BasicBlock *tB = ti->getSuccessor(0);
 | 
						|
        BasicBlock *fB = ti->getSuccessor(1);
 | 
						|
        //so one of LI or min must be back edge!
 | 
						|
        //Algo: if succ(0)!=LI (and so !=min) then succ(0) is backedge
 | 
						|
        //and then see which of min or LI is backedge
 | 
						|
        //THEN if LI is in be, then min=LI
 | 
						|
        if(LI->element->getElement() != tB){//so backedge must be made min!
 | 
						|
          for(vector<Edge>::iterator VBEI = be.begin(), VBEE = be.end();
 | 
						|
              VBEI != VBEE; ++VBEI){
 | 
						|
            if(VBEI->getRandId() == LI->randId){
 | 
						|
              min = LI;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            else if(VBEI->getRandId() == min->randId)
 | 
						|
              break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else{// if(LI->element->getElement() != fB)
 | 
						|
          for(vector<Edge>::iterator VBEI = be.begin(), VBEE = be.end();
 | 
						|
              VBEI != VBEE; ++VBEI){
 | 
						|
            if(VBEI->getRandId() == min->randId){
 | 
						|
              min = LI;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            else if(VBEI->getRandId() == LI->randId)
 | 
						|
              break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      else if (min->element->getElement() != LI->element->getElement()){
 | 
						|
        TerminatorInst *tti = par->getElement()->getTerminator();
 | 
						|
        BranchInst *ti =  cast<BranchInst>(tti);
 | 
						|
        assert(ti && "not a branch");
 | 
						|
 | 
						|
        if(ti->getNumSuccessors()<=1) continue;
 | 
						|
        
 | 
						|
        assert(ti->getNumSuccessors()==2 && "less successors!");
 | 
						|
        
 | 
						|
        BasicBlock *tB = ti->getSuccessor(0);
 | 
						|
        BasicBlock *fB = ti->getSuccessor(1);
 | 
						|
        
 | 
						|
        if(tB == LI->element->getElement() || fB == min->element->getElement())
 | 
						|
          min = LI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    graphListElement tmpElmnt = *min;
 | 
						|
    *min = *NLI;
 | 
						|
    *NLI = tmpElmnt;
 | 
						|
  }
 | 
						|
  return nl;
 | 
						|
}
 | 
						|
 | 
						|
//check whether graph has an edge
 | 
						|
//having an edge simply means that there is an edge in the graph
 | 
						|
//which has same endpoints as the given edge
 | 
						|
bool Graph::hasEdge(Edge ed){
 | 
						|
  if(ed.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  nodeList &nli= nodes[ed.getFirst()]; //getNodeList(ed.getFirst());
 | 
						|
  Node *nd2=ed.getSecond();
 | 
						|
 | 
						|
  return (findNodeInList(nli,nd2)!=NULL);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//check whether graph has an edge, with a given wt
 | 
						|
//having an edge simply means that there is an edge in the graph
 | 
						|
//which has same endpoints as the given edge
 | 
						|
//This function checks, moreover, that the wt of edge matches too
 | 
						|
bool Graph::hasEdgeAndWt(Edge ed){
 | 
						|
  if(ed.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Node *nd2=ed.getSecond();
 | 
						|
  nodeList &nli = nodes[ed.getFirst()];//getNodeList(ed.getFirst());
 | 
						|
  
 | 
						|
  for(nodeList::iterator NI=nli.begin(), NE=nli.end(); NI!=NE; ++NI)
 | 
						|
    if(*NI->element == *nd2 && ed.getWeight()==NI->weight)
 | 
						|
      return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//add a node
 | 
						|
void Graph::addNode(Node *nd){
 | 
						|
  vector<Node *> lt=getAllNodes();
 | 
						|
 | 
						|
  for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
 | 
						|
    if(**LI==*nd)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  //chng
 | 
						|
  nodes[nd] =vector<graphListElement>(); //list<graphListElement>();
 | 
						|
}
 | 
						|
 | 
						|
//add an edge
 | 
						|
//this adds an edge ONLY when 
 | 
						|
//the edge to be added does not already exist
 | 
						|
//we "equate" two edges here only with their 
 | 
						|
//end points
 | 
						|
void Graph::addEdge(Edge ed, int w){
 | 
						|
  nodeList &ndList = nodes[ed.getFirst()];
 | 
						|
  Node *nd2=ed.getSecond();
 | 
						|
 | 
						|
  if(findNodeInList(nodes[ed.getFirst()], nd2))
 | 
						|
    return;
 | 
						|
 
 | 
						|
  //ndList.push_front(graphListElement(nd2,w, ed.getRandId()));
 | 
						|
  ndList.push_back(graphListElement(nd2,w, ed.getRandId()));//chng
 | 
						|
  //sortNodeList(ed.getFirst(), ndList);
 | 
						|
 | 
						|
  //sort(ndList.begin(), ndList.end(), NodeListSort());
 | 
						|
}
 | 
						|
 | 
						|
//add an edge EVEN IF such an edge already exists
 | 
						|
//this may make a multi-graph
 | 
						|
//which does happen when we add dummy edges
 | 
						|
//to the graph, for compensating for back-edges
 | 
						|
void Graph::addEdgeForce(Edge ed){
 | 
						|
  //nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
 | 
						|
  //ed.getWeight(), ed.getRandId()));
 | 
						|
  nodes[ed.getFirst()].push_back
 | 
						|
    (graphListElement(ed.getSecond(), ed.getWeight(), ed.getRandId()));
 | 
						|
 | 
						|
  //sortNodeList(ed.getFirst(), nodes[ed.getFirst()]);
 | 
						|
  //sort(nodes[ed.getFirst()].begin(), nodes[ed.getFirst()].end(), NodeListSort());
 | 
						|
}
 | 
						|
 | 
						|
//remove an edge
 | 
						|
//Note that it removes just one edge,
 | 
						|
//the first edge that is encountered
 | 
						|
void Graph::removeEdge(Edge ed){
 | 
						|
  nodeList &ndList = nodes[ed.getFirst()];
 | 
						|
  Node &nd2 = *ed.getSecond();
 | 
						|
 | 
						|
  for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
 | 
						|
    if(*NI->element == nd2) {
 | 
						|
      ndList.erase(NI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//remove an edge with a given wt
 | 
						|
//Note that it removes just one edge,
 | 
						|
//the first edge that is encountered
 | 
						|
void Graph::removeEdgeWithWt(Edge ed){
 | 
						|
  nodeList &ndList = nodes[ed.getFirst()];
 | 
						|
  Node &nd2 = *ed.getSecond();
 | 
						|
 | 
						|
  for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
 | 
						|
    if(*NI->element == nd2 && NI->weight==ed.getWeight()) {
 | 
						|
      ndList.erase(NI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//set the weight of an edge
 | 
						|
void Graph::setWeight(Edge ed){
 | 
						|
  graphListElement *El = findNodeInList(nodes[ed.getFirst()], ed.getSecond());
 | 
						|
  if (El)
 | 
						|
    El->weight=ed.getWeight();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//get the list of successor nodes
 | 
						|
vector<Node *> Graph::getSuccNodes(Node *nd){
 | 
						|
  nodeMapTy::const_iterator nli = nodes.find(nd);
 | 
						|
  assert(nli != nodes.end() && "Node must be in nodes map");
 | 
						|
  const nodeList &nl = getNodeList(nd);//getSortedNodeList(nd);
 | 
						|
 | 
						|
  vector<Node *> lt;
 | 
						|
  for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
 | 
						|
    lt.push_back(NI->element);
 | 
						|
 | 
						|
  return lt;
 | 
						|
}
 | 
						|
 | 
						|
//get the number of outgoing edges
 | 
						|
int Graph::getNumberOfOutgoingEdges(Node *nd) const {
 | 
						|
  nodeMapTy::const_iterator nli = nodes.find(nd);
 | 
						|
  assert(nli != nodes.end() && "Node must be in nodes map");
 | 
						|
  const nodeList &nl = nli->second;
 | 
						|
 | 
						|
  int count=0;
 | 
						|
  for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
 | 
						|
    count++;
 | 
						|
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
//get the list of predecessor nodes
 | 
						|
vector<Node *> Graph::getPredNodes(Node *nd){
 | 
						|
  vector<Node *> lt;
 | 
						|
  for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
 | 
						|
    Node *lnode=EI->first;
 | 
						|
    const nodeList &nl = getNodeList(lnode);
 | 
						|
 | 
						|
    const graphListElement *N = findNodeInList(nl, nd);
 | 
						|
    if (N) lt.push_back(lnode);
 | 
						|
  }
 | 
						|
  return lt;
 | 
						|
}
 | 
						|
 | 
						|
//get the number of predecessor nodes
 | 
						|
int Graph::getNumberOfIncomingEdges(Node *nd){
 | 
						|
  int count=0;
 | 
						|
  for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
 | 
						|
    Node *lnode=EI->first;
 | 
						|
    const nodeList &nl = getNodeList(lnode);
 | 
						|
    for(Graph::nodeList::const_iterator NI = nl.begin(), NE=nl.end(); NI != NE; 
 | 
						|
	++NI)
 | 
						|
      if (*NI->element== *nd)
 | 
						|
	count++;
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
//get the list of all the vertices in graph
 | 
						|
vector<Node *> Graph::getAllNodes() const{
 | 
						|
  vector<Node *> lt;
 | 
						|
  for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
 | 
						|
    lt.push_back(x->first);
 | 
						|
 | 
						|
  return lt;
 | 
						|
}
 | 
						|
 | 
						|
//get the list of all the vertices in graph
 | 
						|
vector<Node *> Graph::getAllNodes(){
 | 
						|
  vector<Node *> lt;
 | 
						|
  for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
 | 
						|
    lt.push_back(x->first);
 | 
						|
 | 
						|
  return lt;
 | 
						|
}
 | 
						|
 | 
						|
//class to compare two nodes in graph
 | 
						|
//based on their wt: this is used in
 | 
						|
//finding the maximal spanning tree
 | 
						|
struct compare_nodes {
 | 
						|
  bool operator()(Node *n1, Node *n2){
 | 
						|
    return n1->getWeight() < n2->getWeight();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static void printNode(Node *nd){
 | 
						|
  std::cerr<<"Node:"<<nd->getElement()->getName()<<"\n";
 | 
						|
}
 | 
						|
 | 
						|
//Get the Maximal spanning tree (also a graph)
 | 
						|
//of the graph
 | 
						|
Graph* Graph::getMaxSpanningTree(){
 | 
						|
  //assume connected graph
 | 
						|
 
 | 
						|
  Graph *st=new Graph();//max spanning tree, undirected edges
 | 
						|
  int inf=9999999;//largest key
 | 
						|
  vector<Node *> lt = getAllNodes();
 | 
						|
  
 | 
						|
  //initially put all vertices in vector vt
 | 
						|
  //assign wt(root)=0
 | 
						|
  //wt(others)=infinity
 | 
						|
  //
 | 
						|
  //now:
 | 
						|
  //pull out u: a vertex frm vt of min wt
 | 
						|
  //for all vertices w in vt, 
 | 
						|
  //if wt(w) greater than 
 | 
						|
  //the wt(u->w), then assign
 | 
						|
  //wt(w) to be wt(u->w).
 | 
						|
  //
 | 
						|
  //make parent(u)=w in the spanning tree
 | 
						|
  //keep pulling out vertices from vt till it is empty
 | 
						|
 | 
						|
  vector<Node *> vt;
 | 
						|
  
 | 
						|
  std::map<Node*, Node* > parent;
 | 
						|
  std::map<Node*, int > ed_weight;
 | 
						|
 | 
						|
  //initialize: wt(root)=0, wt(others)=infinity
 | 
						|
  //parent(root)=NULL, parent(others) not defined (but not null)
 | 
						|
  for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
 | 
						|
    Node *thisNode=*LI;
 | 
						|
    if(*thisNode == *getRoot()){
 | 
						|
      thisNode->setWeight(0);
 | 
						|
      parent[thisNode]=NULL;
 | 
						|
      ed_weight[thisNode]=0;
 | 
						|
    }
 | 
						|
    else{ 
 | 
						|
      thisNode->setWeight(inf);
 | 
						|
    }
 | 
						|
    st->addNode(thisNode);//add all nodes to spanning tree
 | 
						|
    //we later need to assign edges in the tree
 | 
						|
    vt.push_back(thisNode); //pushed all nodes in vt
 | 
						|
  }
 | 
						|
 | 
						|
  //keep pulling out vertex of min wt from vt
 | 
						|
  while(!vt.empty()){
 | 
						|
    Node *u=*(min_element(vt.begin(), vt.end(), compare_nodes()));
 | 
						|
    DEBUG(std::cerr<<"popped wt"<<(u)->getWeight()<<"\n";
 | 
						|
          printNode(u));
 | 
						|
 | 
						|
    if(parent[u]!=NULL){ //so not root
 | 
						|
      Edge edge(parent[u],u, ed_weight[u]); //assign edge in spanning tree
 | 
						|
      st->addEdge(edge,ed_weight[u]);
 | 
						|
 | 
						|
      DEBUG(std::cerr<<"added:\n";
 | 
						|
            printEdge(edge));
 | 
						|
    }
 | 
						|
 | 
						|
    //vt.erase(u);
 | 
						|
    
 | 
						|
    //remove u frm vt
 | 
						|
    for(vector<Node *>::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){
 | 
						|
      if(**VI==*u){
 | 
						|
	vt.erase(VI);
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    //assign wt(v) to all adjacent vertices v of u
 | 
						|
    //only if v is in vt
 | 
						|
    Graph::nodeList &nl = getNodeList(u);
 | 
						|
    for(nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
 | 
						|
      Node *v=NI->element;
 | 
						|
      int weight=-NI->weight;
 | 
						|
      //check if v is in vt
 | 
						|
      bool contains=false;
 | 
						|
      for(vector<Node *>::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){
 | 
						|
	if(**VI==*v){
 | 
						|
	  contains=true;
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
      }
 | 
						|
      DEBUG(std::cerr<<"wt:v->wt"<<weight<<":"<<v->getWeight()<<"\n";
 | 
						|
            printNode(v);std::cerr<<"node wt:"<<(*v).weight<<"\n");
 | 
						|
 | 
						|
      //so if v in in vt, change wt(v) to wt(u->v)
 | 
						|
      //only if wt(u->v)<wt(v)
 | 
						|
      if(contains && weight<v->getWeight()){
 | 
						|
	parent[v]=u;
 | 
						|
	ed_weight[v]=weight;
 | 
						|
	v->setWeight(weight);
 | 
						|
 | 
						|
	DEBUG(std::cerr<<v->getWeight()<<":Set weight------\n";
 | 
						|
              printGraph();
 | 
						|
              printEdge(Edge(u,v,weight)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return st;
 | 
						|
}
 | 
						|
 | 
						|
//print the graph (for debugging)   
 | 
						|
void Graph::printGraph(){
 | 
						|
   vector<Node *> lt=getAllNodes();
 | 
						|
   std::cerr<<"Graph---------------------\n";
 | 
						|
   for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
 | 
						|
     std::cerr<<((*LI)->getElement())->getName()<<"->";
 | 
						|
     Graph::nodeList &nl = getNodeList(*LI);
 | 
						|
     for(Graph::nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
 | 
						|
       std::cerr<<":"<<"("<<(NI->element->getElement())
 | 
						|
	 ->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
 | 
						|
     }
 | 
						|
     std::cerr<<"--------\n";
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//get a list of nodes in the graph
 | 
						|
//in r-topological sorted order
 | 
						|
//note that we assumed graph to be connected
 | 
						|
vector<Node *> Graph::reverseTopologicalSort(){
 | 
						|
  vector <Node *> toReturn;
 | 
						|
  vector<Node *> lt=getAllNodes();
 | 
						|
  for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
 | 
						|
    if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
 | 
						|
      DFS_Visit(*LI, toReturn);
 | 
						|
  }
 | 
						|
 | 
						|
  return toReturn;
 | 
						|
}
 | 
						|
 | 
						|
//a private method for doing DFS traversal of graph
 | 
						|
//this is used in determining the reverse topological sort 
 | 
						|
//of the graph
 | 
						|
void Graph::DFS_Visit(Node *nd, vector<Node *> &toReturn){
 | 
						|
  nd->setWeight(GREY);
 | 
						|
  vector<Node *> lt=getSuccNodes(nd);
 | 
						|
  for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
 | 
						|
    if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
 | 
						|
      DFS_Visit(*LI, toReturn);
 | 
						|
  }
 | 
						|
  toReturn.push_back(nd);
 | 
						|
}
 | 
						|
 | 
						|
//Ordinarily, the graph is directional
 | 
						|
//this converts the graph into an 
 | 
						|
//undirectional graph
 | 
						|
//This is done by adding an edge
 | 
						|
//v->u for all existing edges u->v
 | 
						|
void Graph::makeUnDirectional(){
 | 
						|
  vector<Node* > allNodes=getAllNodes();
 | 
						|
  for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; 
 | 
						|
      ++NI) {
 | 
						|
    nodeList &nl = getNodeList(*NI);
 | 
						|
    for(nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE; ++NLI){
 | 
						|
      Edge ed(NLI->element, *NI, NLI->weight);
 | 
						|
      if(!hasEdgeAndWt(ed)){
 | 
						|
	DEBUG(std::cerr<<"######doesn't hv\n";
 | 
						|
              printEdge(ed));
 | 
						|
	addEdgeForce(ed);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//reverse the sign of weights on edges
 | 
						|
//this way, max-spanning tree could be obtained
 | 
						|
//using min-spanning tree, and vice versa
 | 
						|
void Graph::reverseWts(){
 | 
						|
  vector<Node *> allNodes=getAllNodes();
 | 
						|
  for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; 
 | 
						|
      ++NI) {
 | 
						|
    nodeList &node_list = getNodeList(*NI);
 | 
						|
    for(nodeList::iterator NLI=nodes[*NI].begin(), NLE=nodes[*NI].end(); 
 | 
						|
	NLI!=NLE; ++NLI)
 | 
						|
      NLI->weight=-NLI->weight;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//getting the backedges in a graph
 | 
						|
//Its a variation of DFS to get the backedges in the graph
 | 
						|
//We get back edges by associating a time
 | 
						|
//and a color with each vertex.
 | 
						|
//The time of a vertex is the time when it was first visited
 | 
						|
//The color of a vertex is initially WHITE,
 | 
						|
//Changes to GREY when it is first visited,
 | 
						|
//and changes to BLACK when ALL its neighbors
 | 
						|
//have been visited
 | 
						|
//So we have a back edge when we meet a successor of
 | 
						|
//a node with smaller time, and GREY color
 | 
						|
void Graph::getBackEdges(vector<Edge > &be, std::map<Node *, int> &d){
 | 
						|
  std::map<Node *, Color > color;
 | 
						|
  int time=0;
 | 
						|
 | 
						|
  getBackEdgesVisit(getRoot(), be, color, d, time);
 | 
						|
}
 | 
						|
 | 
						|
//helper function to get back edges: it is called by 
 | 
						|
//the "getBackEdges" function above
 | 
						|
void Graph::getBackEdgesVisit(Node *u, vector<Edge > &be,
 | 
						|
			      std::map<Node *, Color > &color,
 | 
						|
			      std::map<Node *, int > &d, int &time) {
 | 
						|
  color[u]=GREY;
 | 
						|
  time++;
 | 
						|
  d[u]=time;
 | 
						|
 | 
						|
  vector<graphListElement> &succ_list = getNodeList(u);
 | 
						|
  
 | 
						|
  for(vector<graphListElement>::iterator vl=succ_list.begin(), 
 | 
						|
	ve=succ_list.end(); vl!=ve; ++vl){
 | 
						|
    Node *v=vl->element;
 | 
						|
    if(color[v]!=GREY && color[v]!=BLACK){
 | 
						|
      getBackEdgesVisit(v, be, color, d, time);
 | 
						|
    }
 | 
						|
    
 | 
						|
    //now checking for d and f vals
 | 
						|
    if(color[v]==GREY){
 | 
						|
      //so v is ancestor of u if time of u > time of v
 | 
						|
      if(d[u] >= d[v]){
 | 
						|
	Edge *ed=new Edge(u, v,vl->weight, vl->randId);
 | 
						|
	if (!(*u == *getExit() && *v == *getRoot()))
 | 
						|
	  be.push_back(*ed);      // choose the forward edges
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  color[u]=BLACK;//done with visiting the node and its neighbors
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 |