mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Move include/Config and include/Support into include/llvm/Config, include/llvm/ADT and include/llvm/Support. From here on out, all LLVM public header files must be under include/llvm/. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16137 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			635 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			635 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- PRE.cpp - Partial Redundancy Elimination ---------------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the well-known Partial Redundancy Elimination
 | 
						|
// optimization, using an SSA formulation based on e-paths.  See this paper for
 | 
						|
// more information:
 | 
						|
//
 | 
						|
//  E-path_PRE: partial redundancy elimination made easy
 | 
						|
//  By: Dhananjay M. Dhamdhere   In: ACM SIGPLAN Notices. Vol 37, #8, 2002
 | 
						|
//    http://doi.acm.org/10.1145/596992.597004
 | 
						|
//
 | 
						|
// This file actually implements a sparse version of the algorithm, using SSA
 | 
						|
// and CFG properties instead of bit-vectors.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/ValueNumbering.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/hash_set"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumExprsEliminated("pre", "Number of expressions constantified");
 | 
						|
  Statistic<> NumRedundant      ("pre", "Number of redundant exprs eliminated");
 | 
						|
  Statistic<> NumInserted       ("pre", "Number of expressions inserted");
 | 
						|
 | 
						|
  struct PRE : public FunctionPass {
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequiredID(BreakCriticalEdgesID);  // No critical edges for now!
 | 
						|
      AU.addRequired<PostDominatorTree>();
 | 
						|
      AU.addRequired<PostDominanceFrontier>();
 | 
						|
      AU.addRequired<DominatorSet>();
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<DominanceFrontier>();
 | 
						|
      AU.addRequired<ValueNumbering>();
 | 
						|
    }
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  private:
 | 
						|
    // Block information - Map basic blocks in a function back and forth to
 | 
						|
    // unsigned integers.
 | 
						|
    std::vector<BasicBlock*> BlockMapping;
 | 
						|
    hash_map<BasicBlock*, unsigned> BlockNumbering;
 | 
						|
 | 
						|
    // ProcessedExpressions - Keep track of which expressions have already been
 | 
						|
    // processed.
 | 
						|
    hash_set<Instruction*> ProcessedExpressions;
 | 
						|
 | 
						|
    // Provide access to the various analyses used...
 | 
						|
    DominatorSet      *DS;
 | 
						|
    DominatorTree     *DT; PostDominatorTree *PDT;
 | 
						|
    DominanceFrontier *DF; PostDominanceFrontier *PDF;
 | 
						|
    ValueNumbering    *VN;
 | 
						|
 | 
						|
    // AvailableBlocks - Contain a mapping of blocks with available expression
 | 
						|
    // values to the expression value itself.  This can be used as an efficient
 | 
						|
    // way to find out if the expression is available in the block, and if so,
 | 
						|
    // which version to use.  This map is only used while processing a single
 | 
						|
    // expression.
 | 
						|
    //
 | 
						|
    typedef hash_map<BasicBlock*, Instruction*> AvailableBlocksTy;
 | 
						|
    AvailableBlocksTy AvailableBlocks;
 | 
						|
 | 
						|
    bool ProcessBlock(BasicBlock *BB);
 | 
						|
    
 | 
						|
    // Anticipatibility calculation...
 | 
						|
    void MarkPostDominatingBlocksAnticipatible(PostDominatorTree::Node *N,
 | 
						|
                                               std::vector<char> &AntBlocks,
 | 
						|
                                               Instruction *Occurrence);
 | 
						|
    void CalculateAnticipatiblityForOccurrence(unsigned BlockNo,
 | 
						|
                                              std::vector<char> &AntBlocks,
 | 
						|
                                              Instruction *Occurrence);
 | 
						|
    void CalculateAnticipatibleBlocks(const std::map<unsigned, Instruction*> &D,
 | 
						|
                                      std::vector<char> &AnticipatibleBlocks);
 | 
						|
 | 
						|
    // PRE for an expression
 | 
						|
    void MarkOccurrenceAvailableInAllDominatedBlocks(Instruction *Occurrence,
 | 
						|
                                                     BasicBlock *StartBlock);
 | 
						|
    void ReplaceDominatedAvailableOccurrencesWith(Instruction *NewOcc,
 | 
						|
                                                  DominatorTree::Node *N);
 | 
						|
    bool ProcessExpression(Instruction *I);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<PRE> Z("pre", "Partial Redundancy Elimination");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool PRE::runOnFunction(Function &F) {
 | 
						|
  VN  = &getAnalysis<ValueNumbering>();
 | 
						|
  DS  = &getAnalysis<DominatorSet>();
 | 
						|
  DT  = &getAnalysis<DominatorTree>();
 | 
						|
  DF  = &getAnalysis<DominanceFrontier>();
 | 
						|
  PDT = &getAnalysis<PostDominatorTree>();
 | 
						|
  PDF = &getAnalysis<PostDominanceFrontier>();
 | 
						|
 | 
						|
  DEBUG(std::cerr << "\n*** Running PRE on func '" << F.getName() << "'...\n");
 | 
						|
 | 
						|
  // Number the basic blocks based on a reverse post-order traversal of the CFG
 | 
						|
  // so that all predecessors of a block (ignoring back edges) are visited
 | 
						|
  // before a block is visited.
 | 
						|
  //
 | 
						|
  BlockMapping.reserve(F.size());
 | 
						|
  {
 | 
						|
    ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
    DEBUG(std::cerr << "Block order: ");
 | 
						|
    for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | 
						|
           E = RPOT.end(); I != E; ++I) {
 | 
						|
      // Keep track of mapping...
 | 
						|
      BasicBlock *BB = *I;
 | 
						|
      BlockNumbering.insert(std::make_pair(BB, BlockMapping.size()));
 | 
						|
      BlockMapping.push_back(BB);
 | 
						|
      DEBUG(std::cerr << BB->getName() << " ");
 | 
						|
    }
 | 
						|
    DEBUG(std::cerr << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse the current function depth-first in dominator-tree order.  This
 | 
						|
  // ensures that we see all definitions before their uses (except for PHI
 | 
						|
  // nodes), allowing us to hoist dependent expressions correctly.
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0, e = BlockMapping.size(); i != e; ++i)
 | 
						|
    Changed |= ProcessBlock(BlockMapping[i]);
 | 
						|
 | 
						|
  // Free memory
 | 
						|
  BlockMapping.clear();
 | 
						|
  BlockNumbering.clear();
 | 
						|
  ProcessedExpressions.clear();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ProcessBlock - Process any expressions first seen in this block...
 | 
						|
//
 | 
						|
bool PRE::ProcessBlock(BasicBlock *BB) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // PRE expressions first defined in this block...
 | 
						|
  Instruction *PrevInst = 0;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); )
 | 
						|
    if (ProcessExpression(I)) {
 | 
						|
      // The current instruction may have been deleted, make sure to back up to
 | 
						|
      // PrevInst instead.
 | 
						|
      if (PrevInst)
 | 
						|
        I = PrevInst;
 | 
						|
      else
 | 
						|
        I = BB->begin();
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      PrevInst = I++;
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void PRE::MarkPostDominatingBlocksAnticipatible(PostDominatorTree::Node *N,
 | 
						|
                                                std::vector<char> &AntBlocks,
 | 
						|
                                                Instruction *Occurrence) {
 | 
						|
  unsigned BlockNo = BlockNumbering[N->getBlock()];
 | 
						|
 | 
						|
  if (AntBlocks[BlockNo]) return;  // Already known to be anticipatible??
 | 
						|
 | 
						|
  // Check to see if any of the operands are defined in this block, if so, the
 | 
						|
  // entry of this block does not anticipate the expression.  This computes
 | 
						|
  // "transparency".
 | 
						|
  for (unsigned i = 0, e = Occurrence->getNumOperands(); i != e; ++i)
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(Occurrence->getOperand(i)))
 | 
						|
      if (I->getParent() == N->getBlock())  // Operand is defined in this block!
 | 
						|
        return;
 | 
						|
 | 
						|
  if (isa<LoadInst>(Occurrence))
 | 
						|
    return;        // FIXME: compute transparency for load instructions using AA
 | 
						|
 | 
						|
  // Insert block into AntBlocks list...
 | 
						|
  AntBlocks[BlockNo] = true;
 | 
						|
 | 
						|
  for (PostDominatorTree::Node::iterator I = N->begin(), E = N->end(); I != E;
 | 
						|
       ++I)
 | 
						|
    MarkPostDominatingBlocksAnticipatible(*I, AntBlocks, Occurrence);
 | 
						|
}
 | 
						|
 | 
						|
void PRE::CalculateAnticipatiblityForOccurrence(unsigned BlockNo,
 | 
						|
                                                std::vector<char> &AntBlocks,
 | 
						|
                                                Instruction *Occurrence) {
 | 
						|
  if (AntBlocks[BlockNo]) return;  // Block already anticipatible!
 | 
						|
 | 
						|
  BasicBlock *BB = BlockMapping[BlockNo];
 | 
						|
 | 
						|
  // For each occurrence, mark all post-dominated blocks as anticipatible...
 | 
						|
  MarkPostDominatingBlocksAnticipatible(PDT->getNode(BB), AntBlocks,
 | 
						|
                                        Occurrence);
 | 
						|
 | 
						|
  // Next, mark any blocks in the post-dominance frontier as anticipatible iff
 | 
						|
  // all successors are anticipatible.
 | 
						|
  //
 | 
						|
  PostDominanceFrontier::iterator PDFI = PDF->find(BB);
 | 
						|
  if (PDFI != DF->end())
 | 
						|
    for (std::set<BasicBlock*>::iterator DI = PDFI->second.begin();
 | 
						|
         DI != PDFI->second.end(); ++DI) {
 | 
						|
      BasicBlock *PDFBlock = *DI;
 | 
						|
      bool AllSuccessorsAnticipatible = true;
 | 
						|
      for (succ_iterator SI = succ_begin(PDFBlock), SE = succ_end(PDFBlock);
 | 
						|
           SI != SE; ++SI)
 | 
						|
        if (!AntBlocks[BlockNumbering[*SI]]) {
 | 
						|
          AllSuccessorsAnticipatible = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (AllSuccessorsAnticipatible)
 | 
						|
        CalculateAnticipatiblityForOccurrence(BlockNumbering[PDFBlock],
 | 
						|
                                              AntBlocks, Occurrence);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void PRE::CalculateAnticipatibleBlocks(const std::map<unsigned,
 | 
						|
                                                      Instruction*> &Defs,
 | 
						|
                                       std::vector<char> &AntBlocks) {
 | 
						|
  // Initialize to zeros...
 | 
						|
  AntBlocks.resize(BlockMapping.size());
 | 
						|
 | 
						|
  // Loop over all of the expressions...
 | 
						|
  for (std::map<unsigned, Instruction*>::const_iterator I = Defs.begin(),
 | 
						|
         E = Defs.end(); I != E; ++I)
 | 
						|
    CalculateAnticipatiblityForOccurrence(I->first, AntBlocks, I->second);
 | 
						|
}
 | 
						|
 | 
						|
/// MarkOccurrenceAvailableInAllDominatedBlocks - Add entries to AvailableBlocks
 | 
						|
/// for all nodes dominated by the occurrence to indicate that it is now the
 | 
						|
/// available occurrence to use in any of these blocks.
 | 
						|
///
 | 
						|
void PRE::MarkOccurrenceAvailableInAllDominatedBlocks(Instruction *Occurrence,
 | 
						|
                                                      BasicBlock *BB) {
 | 
						|
  // FIXME: There are much more efficient ways to get the blocks dominated
 | 
						|
  // by a block.  Use them.
 | 
						|
  //
 | 
						|
  DominatorTree::Node *N = DT->getNode(Occurrence->getParent());
 | 
						|
  for (df_iterator<DominatorTree::Node*> DI = df_begin(N), E = df_end(N);
 | 
						|
       DI != E; ++DI)
 | 
						|
    AvailableBlocks[(*DI)->getBlock()] = Occurrence;
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceDominatedAvailableOccurrencesWith - This loops over the region
 | 
						|
/// dominated by N, replacing any available expressions with NewOcc.
 | 
						|
void PRE::ReplaceDominatedAvailableOccurrencesWith(Instruction *NewOcc,
 | 
						|
                                                   DominatorTree::Node *N) {
 | 
						|
  BasicBlock *BB = N->getBlock();
 | 
						|
  Instruction *&ExistingAvailableVal = AvailableBlocks[BB];
 | 
						|
 | 
						|
  // If there isn't a definition already active in this node, make this the new
 | 
						|
  // active definition...
 | 
						|
  if (ExistingAvailableVal == 0) {
 | 
						|
    ExistingAvailableVal = NewOcc;
 | 
						|
    
 | 
						|
    for (DominatorTree::Node::iterator I = N->begin(), E = N->end(); I != E;++I)
 | 
						|
      ReplaceDominatedAvailableOccurrencesWith(NewOcc, *I);
 | 
						|
  } else {
 | 
						|
    // If there is already an active definition in this block, replace it with
 | 
						|
    // NewOcc, and force it into all dominated blocks.
 | 
						|
    DEBUG(std::cerr << "  Replacing dominated occ %"
 | 
						|
          << ExistingAvailableVal->getName() << " with %" << NewOcc->getName()
 | 
						|
          << "\n");
 | 
						|
    assert(ExistingAvailableVal != NewOcc && "NewOcc already inserted??");
 | 
						|
    ExistingAvailableVal->replaceAllUsesWith(NewOcc);
 | 
						|
    ++NumRedundant;
 | 
						|
 | 
						|
    assert(ExistingAvailableVal->getParent() == BB &&
 | 
						|
           "OldOcc not defined in current block?");
 | 
						|
    BB->getInstList().erase(ExistingAvailableVal);
 | 
						|
 | 
						|
    // Mark NewOCC as the Available expression in all blocks dominated by BB
 | 
						|
    for (df_iterator<DominatorTree::Node*> DI = df_begin(N), E = df_end(N);
 | 
						|
         DI != E; ++DI)
 | 
						|
      AvailableBlocks[(*DI)->getBlock()] = NewOcc;
 | 
						|
  }  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ProcessExpression - Given an expression (instruction) process the
 | 
						|
/// instruction to remove any partial redundancies induced by equivalent
 | 
						|
/// computations.  Note that we only need to PRE each expression once, so we
 | 
						|
/// keep track of whether an expression has been PRE'd already, and don't PRE an
 | 
						|
/// expression again.  Expressions may be seen multiple times because process
 | 
						|
/// the entire equivalence class at once, which may leave expressions later in
 | 
						|
/// the control path.
 | 
						|
///
 | 
						|
bool PRE::ProcessExpression(Instruction *Expr) {
 | 
						|
  if (Expr->mayWriteToMemory() || Expr->getType() == Type::VoidTy ||
 | 
						|
      isa<PHINode>(Expr))
 | 
						|
    return false;         // Cannot move expression
 | 
						|
  if (ProcessedExpressions.count(Expr)) return false; // Already processed.
 | 
						|
 | 
						|
  // Ok, this is the first time we have seen the expression.  Build a set of
 | 
						|
  // equivalent expressions using SSA def/use information.  We consider
 | 
						|
  // expressions to be equivalent if they are the same opcode and have
 | 
						|
  // equivalent operands.  As a special case for SSA, values produced by PHI
 | 
						|
  // nodes are considered to be equivalent to all of their operands.
 | 
						|
  //
 | 
						|
  std::vector<Value*> Values;
 | 
						|
  VN->getEqualNumberNodes(Expr, Values);
 | 
						|
 | 
						|
#if 0
 | 
						|
  // FIXME: This should handle PHI nodes correctly.  To do this, we need to
 | 
						|
  // consider expressions of the following form equivalent to this set of
 | 
						|
  // expressions:
 | 
						|
  //
 | 
						|
  // If an operand is a PHI node, add any occurrences of the expression with the
 | 
						|
  // PHI operand replaced with the PHI node operands.  This is only valid if the
 | 
						|
  // PHI operand occurrences exist in blocks post-dominated by the incoming edge
 | 
						|
  // of the PHI node.
 | 
						|
#endif
 | 
						|
 | 
						|
  // We have to be careful to handle expression definitions which dominated by
 | 
						|
  // other expressions.  These can be directly eliminated in favor of their
 | 
						|
  // dominating value.  Keep track of which blocks contain definitions (the key)
 | 
						|
  // and if a block contains a definition, which instruction it is.
 | 
						|
  //
 | 
						|
  std::map<unsigned, Instruction*> Definitions;
 | 
						|
  Definitions.insert(std::make_pair(BlockNumbering[Expr->getParent()], Expr));
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Look at all of the equal values.  If any of the values is not an
 | 
						|
  // instruction, replace all other expressions immediately with it (it must be
 | 
						|
  // an argument or a constant or something). Otherwise, convert the list of
 | 
						|
  // values into a list of expression (instruction) definitions ordering
 | 
						|
  // according to their dominator tree ordering.
 | 
						|
  //
 | 
						|
  Value *NonInstValue = 0;
 | 
						|
  for (unsigned i = 0, e = Values.size(); i != e; ++i)
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(Values[i])) {
 | 
						|
      Instruction *&BlockInst = Definitions[BlockNumbering[I->getParent()]];
 | 
						|
      if (BlockInst && BlockInst != I) {    // Eliminate direct redundancy
 | 
						|
        if (DS->dominates(I, BlockInst)) {  // I dom BlockInst
 | 
						|
          BlockInst->replaceAllUsesWith(I);
 | 
						|
          BlockInst->getParent()->getInstList().erase(BlockInst);
 | 
						|
        } else {                            // BlockInst dom I
 | 
						|
          I->replaceAllUsesWith(BlockInst);
 | 
						|
          I->getParent()->getInstList().erase(I);
 | 
						|
          I = BlockInst;
 | 
						|
        }
 | 
						|
        ++NumRedundant;
 | 
						|
      }
 | 
						|
      BlockInst = I;
 | 
						|
    } else {
 | 
						|
      NonInstValue = Values[i];
 | 
						|
    }
 | 
						|
 | 
						|
  std::vector<Value*>().swap(Values);  // Done with the values list
 | 
						|
 | 
						|
  if (NonInstValue) {
 | 
						|
    // This is the good, though unlikely, case where we find out that this
 | 
						|
    // expression is equal to a constant or argument directly.  We can replace
 | 
						|
    // this and all of the other equivalent instructions with the value
 | 
						|
    // directly.
 | 
						|
    //
 | 
						|
    for (std::map<unsigned, Instruction*>::iterator I = Definitions.begin(),
 | 
						|
           E = Definitions.end(); I != E; ++I) {
 | 
						|
      Instruction *Inst = I->second;
 | 
						|
      // Replace the value with the specified non-instruction value.
 | 
						|
      Inst->replaceAllUsesWith(NonInstValue);       // Fixup any uses
 | 
						|
      Inst->getParent()->getInstList().erase(Inst); // Erase the instruction
 | 
						|
    }
 | 
						|
    NumExprsEliminated += Definitions.size();
 | 
						|
    return true;   // Program modified!
 | 
						|
  }
 | 
						|
 | 
						|
  // There are no expressions equal to this one.  Exit early.
 | 
						|
  assert(!Definitions.empty() && "no equal expressions??");
 | 
						|
#if 0
 | 
						|
  if (Definitions.size() == 1) {
 | 
						|
    ProcessedExpressions.insert(Definitions.begin()->second);
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  DEBUG(std::cerr << "\n====--- Expression: " << *Expr);
 | 
						|
  const Type *ExprType = Expr->getType();
 | 
						|
 | 
						|
  // AnticipatibleBlocks - Blocks where the current expression is anticipatible.
 | 
						|
  // This is logically std::vector<bool> but using 'char' for performance.
 | 
						|
  std::vector<char> AnticipatibleBlocks;
 | 
						|
 | 
						|
  // Calculate all of the blocks which the current expression is anticipatible.
 | 
						|
  CalculateAnticipatibleBlocks(Definitions, AnticipatibleBlocks);
 | 
						|
 | 
						|
  // Print out anticipatible blocks...
 | 
						|
  DEBUG(std::cerr << "AntBlocks: ";
 | 
						|
        for (unsigned i = 0, e = AnticipatibleBlocks.size(); i != e; ++i)
 | 
						|
          if (AnticipatibleBlocks[i])
 | 
						|
            std::cerr << BlockMapping[i]->getName() <<" ";
 | 
						|
        std::cerr << "\n";);
 | 
						|
  
 | 
						|
 | 
						|
 | 
						|
  // AvailabilityFrontier - Calculates the availability frontier for the current
 | 
						|
  // expression.  The availability frontier contains the blocks on the dominance
 | 
						|
  // frontier of the current available expressions, iff they anticipate a
 | 
						|
  // definition of the expression.
 | 
						|
  hash_set<unsigned> AvailabilityFrontier;
 | 
						|
 | 
						|
  Instruction *NonPHIOccurrence = 0;
 | 
						|
 | 
						|
  while (!Definitions.empty() || !AvailabilityFrontier.empty()) {
 | 
						|
    if (!Definitions.empty() &&
 | 
						|
        (AvailabilityFrontier.empty() ||
 | 
						|
         Definitions.begin()->first < *AvailabilityFrontier.begin())) {
 | 
						|
      Instruction *Occurrence = Definitions.begin()->second;
 | 
						|
      BasicBlock *BB = Occurrence->getParent();
 | 
						|
      Definitions.erase(Definitions.begin());
 | 
						|
 | 
						|
      DEBUG(std::cerr << "PROCESSING Occurrence: " << *Occurrence);
 | 
						|
 | 
						|
      // Check to see if there is already an incoming value for this block...
 | 
						|
      AvailableBlocksTy::iterator LBI = AvailableBlocks.find(BB);
 | 
						|
      if (LBI != AvailableBlocks.end()) {
 | 
						|
        // Yes, there is a dominating definition for this block.  Replace this
 | 
						|
        // occurrence with the incoming value.
 | 
						|
        if (LBI->second != Occurrence) {
 | 
						|
          DEBUG(std::cerr << "  replacing with: " << *LBI->second);
 | 
						|
          Occurrence->replaceAllUsesWith(LBI->second);
 | 
						|
          BB->getInstList().erase(Occurrence);   // Delete instruction
 | 
						|
          ++NumRedundant;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        ProcessedExpressions.insert(Occurrence);
 | 
						|
        if (!isa<PHINode>(Occurrence))
 | 
						|
          NonPHIOccurrence = Occurrence;  // Keep an occurrence of this expr
 | 
						|
 | 
						|
        // Okay, there is no incoming value for this block, so this expression
 | 
						|
        // is a new definition that is good for this block and all blocks
 | 
						|
        // dominated by it.  Add this information to the AvailableBlocks map.
 | 
						|
        //
 | 
						|
        MarkOccurrenceAvailableInAllDominatedBlocks(Occurrence, BB);
 | 
						|
 | 
						|
        // Update the dominance frontier for the definitions so far... if a node
 | 
						|
        // in the dominator frontier now has all of its predecessors available,
 | 
						|
        // and the block is in an anticipatible region, we can insert a PHI node
 | 
						|
        // in that block.
 | 
						|
        DominanceFrontier::iterator DFI = DF->find(BB);
 | 
						|
        if (DFI != DF->end()) {
 | 
						|
          for (std::set<BasicBlock*>::iterator DI = DFI->second.begin();
 | 
						|
               DI != DFI->second.end(); ++DI) {
 | 
						|
            BasicBlock *DFBlock = *DI;
 | 
						|
            unsigned DFBlockID = BlockNumbering[DFBlock];
 | 
						|
            if (AnticipatibleBlocks[DFBlockID]) {
 | 
						|
              // Check to see if any of the predecessors of this block on the
 | 
						|
              // frontier are not available...
 | 
						|
              bool AnyNotAvailable = false;
 | 
						|
              for (pred_iterator PI = pred_begin(DFBlock),
 | 
						|
                     PE = pred_end(DFBlock); PI != PE; ++PI)
 | 
						|
                if (!AvailableBlocks.count(*PI)) {
 | 
						|
                  AnyNotAvailable = true;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
            
 | 
						|
              // If any predecessor blocks are not available, add the node to
 | 
						|
              // the current expression dominance frontier.
 | 
						|
              if (AnyNotAvailable) {
 | 
						|
                AvailabilityFrontier.insert(DFBlockID);
 | 
						|
              } else {
 | 
						|
                // This block is no longer in the availability frontier, it IS
 | 
						|
                // available.
 | 
						|
                AvailabilityFrontier.erase(DFBlockID);
 | 
						|
 | 
						|
                // If all of the predecessor blocks are available (and the block
 | 
						|
                // anticipates a definition along the path to the exit), we need
 | 
						|
                // to insert a new PHI node in this block.  This block serves as
 | 
						|
                // a new definition for the expression, extending the available
 | 
						|
                // region.
 | 
						|
                //
 | 
						|
                PHINode *PN = new PHINode(ExprType, Expr->getName()+".pre",
 | 
						|
                                          DFBlock->begin());
 | 
						|
                ProcessedExpressions.insert(PN);
 | 
						|
 | 
						|
                DEBUG(std::cerr << "  INSERTING PHI on frontier: " << *PN);
 | 
						|
 | 
						|
                // Add the incoming blocks for the PHI node
 | 
						|
                for (pred_iterator PI = pred_begin(DFBlock),
 | 
						|
                       PE = pred_end(DFBlock); PI != PE; ++PI)
 | 
						|
                  if (*PI != DFBlock)
 | 
						|
                    PN->addIncoming(AvailableBlocks[*PI], *PI);
 | 
						|
                  else                          // edge from the current block
 | 
						|
                    PN->addIncoming(PN, DFBlock);
 | 
						|
 | 
						|
                Instruction *&BlockOcc = Definitions[DFBlockID];
 | 
						|
                if (BlockOcc) {
 | 
						|
                  DEBUG(std::cerr <<"    PHI superceeds occurrence: "<<
 | 
						|
                        *BlockOcc);
 | 
						|
                  BlockOcc->replaceAllUsesWith(PN);
 | 
						|
                  BlockOcc->getParent()->getInstList().erase(BlockOcc);
 | 
						|
                  ++NumRedundant;
 | 
						|
                }
 | 
						|
                BlockOcc = PN;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Otherwise we must be looking at a node in the availability frontier!
 | 
						|
      unsigned AFBlockID = *AvailabilityFrontier.begin();
 | 
						|
      AvailabilityFrontier.erase(AvailabilityFrontier.begin());
 | 
						|
      BasicBlock *AFBlock = BlockMapping[AFBlockID];
 | 
						|
 | 
						|
      // We eliminate the partial redundancy on this frontier by inserting a PHI
 | 
						|
      // node into this block, merging any incoming available versions into the
 | 
						|
      // PHI and inserting a new computation into predecessors without an
 | 
						|
      // incoming value.  Note that we would have to insert the expression on
 | 
						|
      // the edge if the predecessor didn't anticipate the expression and we
 | 
						|
      // didn't break critical edges.
 | 
						|
      //
 | 
						|
      PHINode *PN = new PHINode(ExprType, Expr->getName()+".PRE",
 | 
						|
                                AFBlock->begin());
 | 
						|
      DEBUG(std::cerr << "INSERTING PHI for PR: " << *PN);
 | 
						|
 | 
						|
      // If there is a pending occurrence in this block, make sure to replace it
 | 
						|
      // with the PHI node...
 | 
						|
      std::map<unsigned, Instruction*>::iterator EDFI =
 | 
						|
        Definitions.find(AFBlockID);
 | 
						|
      if (EDFI != Definitions.end()) {
 | 
						|
        // There is already an occurrence in this block.  Replace it with PN and
 | 
						|
        // remove it.
 | 
						|
        Instruction *OldOcc = EDFI->second;
 | 
						|
        DEBUG(std::cerr << "  Replaces occurrence: " << *OldOcc);
 | 
						|
        OldOcc->replaceAllUsesWith(PN);
 | 
						|
        AFBlock->getInstList().erase(OldOcc);
 | 
						|
        Definitions.erase(EDFI);
 | 
						|
        ++NumRedundant;
 | 
						|
      }
 | 
						|
 | 
						|
      for (pred_iterator PI = pred_begin(AFBlock), PE = pred_end(AFBlock);
 | 
						|
           PI != PE; ++PI) {
 | 
						|
        BasicBlock *Pred = *PI;
 | 
						|
        AvailableBlocksTy::iterator LBI = AvailableBlocks.find(Pred);
 | 
						|
        if (LBI != AvailableBlocks.end()) {    // If there is a available value
 | 
						|
          PN->addIncoming(LBI->second, Pred);  // for this pred, use it.
 | 
						|
        } else {                         // No available value yet...
 | 
						|
          unsigned PredID = BlockNumbering[Pred];
 | 
						|
 | 
						|
          // Is the predecessor the same block that we inserted the PHI into?
 | 
						|
          // (self loop)
 | 
						|
          if (Pred == AFBlock) {
 | 
						|
            // Yes, reuse the incoming value here...
 | 
						|
            PN->addIncoming(PN, Pred);
 | 
						|
          } else {
 | 
						|
            // No, we must insert a new computation into this block and add it
 | 
						|
            // to the definitions list...
 | 
						|
            assert(NonPHIOccurrence && "No non-phi occurrences seen so far???");
 | 
						|
            Instruction *New = NonPHIOccurrence->clone();
 | 
						|
            New->setName(NonPHIOccurrence->getName() + ".PRE-inserted");
 | 
						|
            ProcessedExpressions.insert(New);
 | 
						|
 | 
						|
            DEBUG(std::cerr << "  INSERTING OCCURRRENCE: " << *New);
 | 
						|
 | 
						|
            // Insert it into the bottom of the predecessor, right before the
 | 
						|
            // terminator instruction...
 | 
						|
            Pred->getInstList().insert(Pred->getTerminator(), New);
 | 
						|
 | 
						|
            // Make this block be the available definition for any blocks it
 | 
						|
            // dominates.  The ONLY case that this can affect more than just the
 | 
						|
            // block itself is when we are moving a computation to a loop
 | 
						|
            // header.  In all other cases, because we don't have critical
 | 
						|
            // edges, the node is guaranteed to only dominate itself.
 | 
						|
            //
 | 
						|
            ReplaceDominatedAvailableOccurrencesWith(New, DT->getNode(Pred));
 | 
						|
 | 
						|
            // Add it as an incoming value on this edge to the PHI node
 | 
						|
            PN->addIncoming(New, Pred);
 | 
						|
            NonPHIOccurrence = New;
 | 
						|
            NumInserted++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Find out if there is already an available value in this block.  If so,
 | 
						|
      // we need to replace the available value with the PHI node.  This can
 | 
						|
      // only happen when we just inserted a PHI node on a backedge.
 | 
						|
      //
 | 
						|
      AvailableBlocksTy::iterator LBBlockAvailableValIt =
 | 
						|
        AvailableBlocks.find(AFBlock);
 | 
						|
      if (LBBlockAvailableValIt != AvailableBlocks.end()) {
 | 
						|
        if (LBBlockAvailableValIt->second->getParent() == AFBlock) {
 | 
						|
          Instruction *OldVal = LBBlockAvailableValIt->second;
 | 
						|
          OldVal->replaceAllUsesWith(PN);        // Use the new PHI node now
 | 
						|
          ++NumRedundant;
 | 
						|
          DEBUG(std::cerr << "  PHI replaces available value: %"
 | 
						|
                << OldVal->getName() << "\n");
 | 
						|
          
 | 
						|
          // Loop over all of the blocks dominated by this PHI node, and change
 | 
						|
          // the AvailableBlocks entries to be the PHI node instead of the old
 | 
						|
          // instruction.
 | 
						|
          MarkOccurrenceAvailableInAllDominatedBlocks(PN, AFBlock);
 | 
						|
          
 | 
						|
          AFBlock->getInstList().erase(OldVal);  // Delete old instruction!
 | 
						|
 | 
						|
          // The resultant PHI node is a new definition of the value!
 | 
						|
          Definitions.insert(std::make_pair(AFBlockID, PN));
 | 
						|
        } else {
 | 
						|
          // If the value is not defined in this block, that means that an
 | 
						|
          // inserted occurrence in a predecessor is now the live value for the
 | 
						|
          // region (occurs when hoisting loop invariants, f.e.).  In this case,
 | 
						|
          // the PHI node should actually just be removed.
 | 
						|
          assert(PN->use_empty() && "No uses should exist for dead PHI node!");
 | 
						|
          PN->getParent()->getInstList().erase(PN);            
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // The resultant PHI node is a new definition of the value!
 | 
						|
        Definitions.insert(std::make_pair(AFBlockID, PN));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AvailableBlocks.clear();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 |