mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1688 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1688 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the pass which converts floating point instructions from
 | 
						|
// pseudo registers into register stack instructions.  This pass uses live
 | 
						|
// variable information to indicate where the FPn registers are used and their
 | 
						|
// lifetimes.
 | 
						|
//
 | 
						|
// The x87 hardware tracks liveness of the stack registers, so it is necessary
 | 
						|
// to implement exact liveness tracking between basic blocks. The CFG edges are
 | 
						|
// partitioned into bundles where the same FP registers must be live in
 | 
						|
// identical stack positions. Instructions are inserted at the end of each basic
 | 
						|
// block to rearrange the live registers to match the outgoing bundle.
 | 
						|
//
 | 
						|
// This approach avoids splitting critical edges at the potential cost of more
 | 
						|
// live register shuffling instructions when critical edges are present.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/EdgeBundles.h"
 | 
						|
#include "llvm/CodeGen/LivePhysRegs.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <bitset>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-codegen"
 | 
						|
 | 
						|
STATISTIC(NumFXCH, "Number of fxch instructions inserted");
 | 
						|
STATISTIC(NumFP  , "Number of floating point instructions");
 | 
						|
 | 
						|
namespace {
 | 
						|
  const unsigned ScratchFPReg = 7;
 | 
						|
 | 
						|
  struct FPS : public MachineFunctionPass {
 | 
						|
    static char ID;
 | 
						|
    FPS() : MachineFunctionPass(ID) {
 | 
						|
      initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
 | 
						|
      // This is really only to keep valgrind quiet.
 | 
						|
      // The logic in isLive() is too much for it.
 | 
						|
      memset(Stack, 0, sizeof(Stack));
 | 
						|
      memset(RegMap, 0, sizeof(RegMap));
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<EdgeBundles>();
 | 
						|
      AU.addPreservedID(MachineLoopInfoID);
 | 
						|
      AU.addPreservedID(MachineDominatorsID);
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    const char *getPassName() const override { return "X86 FP Stackifier"; }
 | 
						|
 | 
						|
  private:
 | 
						|
    const TargetInstrInfo *TII; // Machine instruction info.
 | 
						|
 | 
						|
    // Two CFG edges are related if they leave the same block, or enter the same
 | 
						|
    // block. The transitive closure of an edge under this relation is a
 | 
						|
    // LiveBundle. It represents a set of CFG edges where the live FP stack
 | 
						|
    // registers must be allocated identically in the x87 stack.
 | 
						|
    //
 | 
						|
    // A LiveBundle is usually all the edges leaving a block, or all the edges
 | 
						|
    // entering a block, but it can contain more edges if critical edges are
 | 
						|
    // present.
 | 
						|
    //
 | 
						|
    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
 | 
						|
    // but the exact mapping of FP registers to stack slots is fixed later.
 | 
						|
    struct LiveBundle {
 | 
						|
      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
 | 
						|
      unsigned Mask;
 | 
						|
 | 
						|
      // Number of pre-assigned live registers in FixStack. This is 0 when the
 | 
						|
      // stack order has not yet been fixed.
 | 
						|
      unsigned FixCount;
 | 
						|
 | 
						|
      // Assigned stack order for live-in registers.
 | 
						|
      // FixStack[i] == getStackEntry(i) for all i < FixCount.
 | 
						|
      unsigned char FixStack[8];
 | 
						|
 | 
						|
      LiveBundle() : Mask(0), FixCount(0) {}
 | 
						|
 | 
						|
      // Have the live registers been assigned a stack order yet?
 | 
						|
      bool isFixed() const { return !Mask || FixCount; }
 | 
						|
    };
 | 
						|
 | 
						|
    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
 | 
						|
    // with no live FP registers.
 | 
						|
    SmallVector<LiveBundle, 8> LiveBundles;
 | 
						|
 | 
						|
    // The edge bundle analysis provides indices into the LiveBundles vector.
 | 
						|
    EdgeBundles *Bundles;
 | 
						|
 | 
						|
    // Return a bitmask of FP registers in block's live-in list.
 | 
						|
    static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
 | 
						|
      unsigned Mask = 0;
 | 
						|
      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
 | 
						|
           E = MBB->livein_end(); I != E; ++I) {
 | 
						|
        unsigned Reg = *I;
 | 
						|
        if (Reg < X86::FP0 || Reg > X86::FP6)
 | 
						|
          continue;
 | 
						|
        Mask |= 1 << (Reg - X86::FP0);
 | 
						|
      }
 | 
						|
      return Mask;
 | 
						|
    }
 | 
						|
 | 
						|
    // Partition all the CFG edges into LiveBundles.
 | 
						|
    void bundleCFG(MachineFunction &MF);
 | 
						|
 | 
						|
    MachineBasicBlock *MBB;     // Current basic block
 | 
						|
 | 
						|
    // The hardware keeps track of how many FP registers are live, so we have
 | 
						|
    // to model that exactly. Usually, each live register corresponds to an
 | 
						|
    // FP<n> register, but when dealing with calls, returns, and inline
 | 
						|
    // assembly, it is sometimes necessary to have live scratch registers.
 | 
						|
    unsigned Stack[8];          // FP<n> Registers in each stack slot...
 | 
						|
    unsigned StackTop;          // The current top of the FP stack.
 | 
						|
 | 
						|
    enum {
 | 
						|
      NumFPRegs = 8             // Including scratch pseudo-registers.
 | 
						|
    };
 | 
						|
 | 
						|
    // For each live FP<n> register, point to its Stack[] entry.
 | 
						|
    // The first entries correspond to FP0-FP6, the rest are scratch registers
 | 
						|
    // used when we need slightly different live registers than what the
 | 
						|
    // register allocator thinks.
 | 
						|
    unsigned RegMap[NumFPRegs];
 | 
						|
 | 
						|
    // Set up our stack model to match the incoming registers to MBB.
 | 
						|
    void setupBlockStack();
 | 
						|
 | 
						|
    // Shuffle live registers to match the expectations of successor blocks.
 | 
						|
    void finishBlockStack();
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
    void dumpStack() const {
 | 
						|
      dbgs() << "Stack contents:";
 | 
						|
      for (unsigned i = 0; i != StackTop; ++i) {
 | 
						|
        dbgs() << " FP" << Stack[i];
 | 
						|
        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /// getSlot - Return the stack slot number a particular register number is
 | 
						|
    /// in.
 | 
						|
    unsigned getSlot(unsigned RegNo) const {
 | 
						|
      assert(RegNo < NumFPRegs && "Regno out of range!");
 | 
						|
      return RegMap[RegNo];
 | 
						|
    }
 | 
						|
 | 
						|
    /// isLive - Is RegNo currently live in the stack?
 | 
						|
    bool isLive(unsigned RegNo) const {
 | 
						|
      unsigned Slot = getSlot(RegNo);
 | 
						|
      return Slot < StackTop && Stack[Slot] == RegNo;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
 | 
						|
    unsigned getStackEntry(unsigned STi) const {
 | 
						|
      if (STi >= StackTop)
 | 
						|
        report_fatal_error("Access past stack top!");
 | 
						|
      return Stack[StackTop-1-STi];
 | 
						|
    }
 | 
						|
 | 
						|
    /// getSTReg - Return the X86::ST(i) register which contains the specified
 | 
						|
    /// FP<RegNo> register.
 | 
						|
    unsigned getSTReg(unsigned RegNo) const {
 | 
						|
      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
 | 
						|
    }
 | 
						|
 | 
						|
    // pushReg - Push the specified FP<n> register onto the stack.
 | 
						|
    void pushReg(unsigned Reg) {
 | 
						|
      assert(Reg < NumFPRegs && "Register number out of range!");
 | 
						|
      if (StackTop >= 8)
 | 
						|
        report_fatal_error("Stack overflow!");
 | 
						|
      Stack[StackTop] = Reg;
 | 
						|
      RegMap[Reg] = StackTop++;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
 | 
						|
    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
 | 
						|
      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
 | 
						|
      if (isAtTop(RegNo)) return;
 | 
						|
 | 
						|
      unsigned STReg = getSTReg(RegNo);
 | 
						|
      unsigned RegOnTop = getStackEntry(0);
 | 
						|
 | 
						|
      // Swap the slots the regs are in.
 | 
						|
      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
 | 
						|
 | 
						|
      // Swap stack slot contents.
 | 
						|
      if (RegMap[RegOnTop] >= StackTop)
 | 
						|
        report_fatal_error("Access past stack top!");
 | 
						|
      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
 | 
						|
 | 
						|
      // Emit an fxch to update the runtime processors version of the state.
 | 
						|
      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
 | 
						|
      ++NumFXCH;
 | 
						|
    }
 | 
						|
 | 
						|
    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
 | 
						|
      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
 | 
						|
      unsigned STReg = getSTReg(RegNo);
 | 
						|
      pushReg(AsReg);   // New register on top of stack
 | 
						|
 | 
						|
      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
 | 
						|
    }
 | 
						|
 | 
						|
    /// popStackAfter - Pop the current value off of the top of the FP stack
 | 
						|
    /// after the specified instruction.
 | 
						|
    void popStackAfter(MachineBasicBlock::iterator &I);
 | 
						|
 | 
						|
    /// freeStackSlotAfter - Free the specified register from the register
 | 
						|
    /// stack, so that it is no longer in a register.  If the register is
 | 
						|
    /// currently at the top of the stack, we just pop the current instruction,
 | 
						|
    /// otherwise we store the current top-of-stack into the specified slot,
 | 
						|
    /// then pop the top of stack.
 | 
						|
    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
 | 
						|
 | 
						|
    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
 | 
						|
    /// instruction.
 | 
						|
    MachineBasicBlock::iterator
 | 
						|
    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
 | 
						|
 | 
						|
    /// Adjust the live registers to be the set in Mask.
 | 
						|
    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
 | 
						|
 | 
						|
    /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
 | 
						|
    /// st(0), FP reg FixStack[1] is st(1) etc.
 | 
						|
    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
 | 
						|
                         MachineBasicBlock::iterator I);
 | 
						|
 | 
						|
    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
 | 
						|
 | 
						|
    void handleCall(MachineBasicBlock::iterator &I);
 | 
						|
    void handleZeroArgFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleOneArgFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
 | 
						|
    void handleTwoArgFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleCompareFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleCondMovFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleSpecialFP(MachineBasicBlock::iterator &I);
 | 
						|
 | 
						|
    // Check if a COPY instruction is using FP registers.
 | 
						|
    static bool isFPCopy(MachineInstr *MI) {
 | 
						|
      unsigned DstReg = MI->getOperand(0).getReg();
 | 
						|
      unsigned SrcReg = MI->getOperand(1).getReg();
 | 
						|
 | 
						|
      return X86::RFP80RegClass.contains(DstReg) ||
 | 
						|
        X86::RFP80RegClass.contains(SrcReg);
 | 
						|
    }
 | 
						|
 | 
						|
    void setKillFlags(MachineBasicBlock &MBB) const;
 | 
						|
  };
 | 
						|
  char FPS::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
 | 
						|
 | 
						|
/// getFPReg - Return the X86::FPx register number for the specified operand.
 | 
						|
/// For example, this returns 3 for X86::FP3.
 | 
						|
static unsigned getFPReg(const MachineOperand &MO) {
 | 
						|
  assert(MO.isReg() && "Expected an FP register!");
 | 
						|
  unsigned Reg = MO.getReg();
 | 
						|
  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
 | 
						|
  return Reg - X86::FP0;
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
 | 
						|
/// register references into FP stack references.
 | 
						|
///
 | 
						|
bool FPS::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  // We only need to run this pass if there are any FP registers used in this
 | 
						|
  // function.  If it is all integer, there is nothing for us to do!
 | 
						|
  bool FPIsUsed = false;
 | 
						|
 | 
						|
  static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
 | 
						|
  for (unsigned i = 0; i <= 6; ++i)
 | 
						|
    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
 | 
						|
      FPIsUsed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Early exit.
 | 
						|
  if (!FPIsUsed) return false;
 | 
						|
 | 
						|
  Bundles = &getAnalysis<EdgeBundles>();
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
 | 
						|
  // Prepare cross-MBB liveness.
 | 
						|
  bundleCFG(MF);
 | 
						|
 | 
						|
  StackTop = 0;
 | 
						|
 | 
						|
  // Process the function in depth first order so that we process at least one
 | 
						|
  // of the predecessors for every reachable block in the function.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 8> Processed;
 | 
						|
  MachineBasicBlock *Entry = MF.begin();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
 | 
						|
    Changed |= processBasicBlock(MF, *BB);
 | 
						|
 | 
						|
  // Process any unreachable blocks in arbitrary order now.
 | 
						|
  if (MF.size() != Processed.size())
 | 
						|
    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
 | 
						|
      if (Processed.insert(BB).second)
 | 
						|
        Changed |= processBasicBlock(MF, *BB);
 | 
						|
 | 
						|
  LiveBundles.clear();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
 | 
						|
/// live-out sets for the FP registers. Consistent means that the set of
 | 
						|
/// registers live-out from a block is identical to the live-in set of all
 | 
						|
/// successors. This is not enforced by the normal live-in lists since
 | 
						|
/// registers may be implicitly defined, or not used by all successors.
 | 
						|
void FPS::bundleCFG(MachineFunction &MF) {
 | 
						|
  assert(LiveBundles.empty() && "Stale data in LiveBundles");
 | 
						|
  LiveBundles.resize(Bundles->getNumBundles());
 | 
						|
 | 
						|
  // Gather the actual live-in masks for all MBBs.
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock *MBB = I;
 | 
						|
    const unsigned Mask = calcLiveInMask(MBB);
 | 
						|
    if (!Mask)
 | 
						|
      continue;
 | 
						|
    // Update MBB ingoing bundle mask.
 | 
						|
    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// processBasicBlock - Loop over all of the instructions in the basic block,
 | 
						|
/// transforming FP instructions into their stack form.
 | 
						|
///
 | 
						|
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
 | 
						|
  bool Changed = false;
 | 
						|
  MBB = &BB;
 | 
						|
 | 
						|
  setKillFlags(BB);
 | 
						|
  setupBlockStack();
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
 | 
						|
    MachineInstr *MI = I;
 | 
						|
    uint64_t Flags = MI->getDesc().TSFlags;
 | 
						|
 | 
						|
    unsigned FPInstClass = Flags & X86II::FPTypeMask;
 | 
						|
    if (MI->isInlineAsm())
 | 
						|
      FPInstClass = X86II::SpecialFP;
 | 
						|
 | 
						|
    if (MI->isCopy() && isFPCopy(MI))
 | 
						|
      FPInstClass = X86II::SpecialFP;
 | 
						|
 | 
						|
    if (MI->isImplicitDef() &&
 | 
						|
        X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
 | 
						|
      FPInstClass = X86II::SpecialFP;
 | 
						|
 | 
						|
    if (MI->isCall())
 | 
						|
      FPInstClass = X86II::SpecialFP;
 | 
						|
 | 
						|
    if (FPInstClass == X86II::NotFP)
 | 
						|
      continue;  // Efficiently ignore non-fp insts!
 | 
						|
 | 
						|
    MachineInstr *PrevMI = nullptr;
 | 
						|
    if (I != BB.begin())
 | 
						|
      PrevMI = std::prev(I);
 | 
						|
 | 
						|
    ++NumFP;  // Keep track of # of pseudo instrs
 | 
						|
    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
 | 
						|
 | 
						|
    // Get dead variables list now because the MI pointer may be deleted as part
 | 
						|
    // of processing!
 | 
						|
    SmallVector<unsigned, 8> DeadRegs;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDead())
 | 
						|
        DeadRegs.push_back(MO.getReg());
 | 
						|
    }
 | 
						|
 | 
						|
    switch (FPInstClass) {
 | 
						|
    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
 | 
						|
    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
 | 
						|
    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
 | 
						|
    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
 | 
						|
    case X86II::CompareFP:  handleCompareFP(I); break;
 | 
						|
    case X86II::CondMovFP:  handleCondMovFP(I); break;
 | 
						|
    case X86II::SpecialFP:  handleSpecialFP(I); break;
 | 
						|
    default: llvm_unreachable("Unknown FP Type!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if any of the values defined by this instruction are dead
 | 
						|
    // after definition.  If so, pop them.
 | 
						|
    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
 | 
						|
      unsigned Reg = DeadRegs[i];
 | 
						|
      // Check if Reg is live on the stack. An inline-asm register operand that
 | 
						|
      // is in the clobber list and marked dead might not be live on the stack.
 | 
						|
      if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
 | 
						|
        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
 | 
						|
        freeStackSlotAfter(I, Reg-X86::FP0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Print out all of the instructions expanded to if -debug
 | 
						|
    DEBUG(
 | 
						|
      MachineBasicBlock::iterator PrevI(PrevMI);
 | 
						|
      if (I == PrevI) {
 | 
						|
        dbgs() << "Just deleted pseudo instruction\n";
 | 
						|
      } else {
 | 
						|
        MachineBasicBlock::iterator Start = I;
 | 
						|
        // Rewind to first instruction newly inserted.
 | 
						|
        while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
 | 
						|
        dbgs() << "Inserted instructions:\n\t";
 | 
						|
        Start->print(dbgs());
 | 
						|
        while (++Start != std::next(I)) {}
 | 
						|
      }
 | 
						|
      dumpStack();
 | 
						|
    );
 | 
						|
    (void)PrevMI;
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  finishBlockStack();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// setupBlockStack - Use the live bundles to set up our model of the stack
 | 
						|
/// to match predecessors' live out stack.
 | 
						|
void FPS::setupBlockStack() {
 | 
						|
  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
 | 
						|
               << " derived from " << MBB->getName() << ".\n");
 | 
						|
  StackTop = 0;
 | 
						|
  // Get the live-in bundle for MBB.
 | 
						|
  const LiveBundle &Bundle =
 | 
						|
    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
 | 
						|
 | 
						|
  if (!Bundle.Mask) {
 | 
						|
    DEBUG(dbgs() << "Block has no FP live-ins.\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Depth-first iteration should ensure that we always have an assigned stack.
 | 
						|
  assert(Bundle.isFixed() && "Reached block before any predecessors");
 | 
						|
 | 
						|
  // Push the fixed live-in registers.
 | 
						|
  for (unsigned i = Bundle.FixCount; i > 0; --i) {
 | 
						|
    MBB->addLiveIn(X86::ST0+i-1);
 | 
						|
    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
 | 
						|
                 << unsigned(Bundle.FixStack[i-1]) << '\n');
 | 
						|
    pushReg(Bundle.FixStack[i-1]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Kill off unwanted live-ins. This can happen with a critical edge.
 | 
						|
  // FIXME: We could keep these live registers around as zombies. They may need
 | 
						|
  // to be revived at the end of a short block. It might save a few instrs.
 | 
						|
  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
 | 
						|
  DEBUG(MBB->dump());
 | 
						|
}
 | 
						|
 | 
						|
/// finishBlockStack - Revive live-outs that are implicitly defined out of
 | 
						|
/// MBB. Shuffle live registers to match the expected fixed stack of any
 | 
						|
/// predecessors, and ensure that all predecessors are expecting the same
 | 
						|
/// stack.
 | 
						|
void FPS::finishBlockStack() {
 | 
						|
  // The RET handling below takes care of return blocks for us.
 | 
						|
  if (MBB->succ_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
 | 
						|
               << " derived from " << MBB->getName() << ".\n");
 | 
						|
 | 
						|
  // Get MBB's live-out bundle.
 | 
						|
  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
 | 
						|
  LiveBundle &Bundle = LiveBundles[BundleIdx];
 | 
						|
 | 
						|
  // We may need to kill and define some registers to match successors.
 | 
						|
  // FIXME: This can probably be combined with the shuffle below.
 | 
						|
  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
 | 
						|
  adjustLiveRegs(Bundle.Mask, Term);
 | 
						|
 | 
						|
  if (!Bundle.Mask) {
 | 
						|
    DEBUG(dbgs() << "No live-outs.\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Has the stack order been fixed yet?
 | 
						|
  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
 | 
						|
  if (Bundle.isFixed()) {
 | 
						|
    DEBUG(dbgs() << "Shuffling stack to match.\n");
 | 
						|
    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
 | 
						|
  } else {
 | 
						|
    // Not fixed yet, we get to choose.
 | 
						|
    DEBUG(dbgs() << "Fixing stack order now.\n");
 | 
						|
    Bundle.FixCount = StackTop;
 | 
						|
    for (unsigned i = 0; i < StackTop; ++i)
 | 
						|
      Bundle.FixStack[i] = getStackEntry(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Efficient Lookup Table Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct TableEntry {
 | 
						|
    uint16_t from;
 | 
						|
    uint16_t to;
 | 
						|
    bool operator<(const TableEntry &TE) const { return from < TE.from; }
 | 
						|
    friend bool operator<(const TableEntry &TE, unsigned V) {
 | 
						|
      return TE.from < V;
 | 
						|
    }
 | 
						|
    friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
 | 
						|
                                                const TableEntry &TE) {
 | 
						|
      return V < TE.from;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
 | 
						|
  for (unsigned i = 0; i != NumEntries-1; ++i)
 | 
						|
    if (!(Table[i] < Table[i+1])) return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
 | 
						|
  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
 | 
						|
  if (I != Table+N && I->from == Opcode)
 | 
						|
    return I->to;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef NDEBUG
 | 
						|
#define ASSERT_SORTED(TABLE)
 | 
						|
#else
 | 
						|
#define ASSERT_SORTED(TABLE)                                              \
 | 
						|
  { static bool TABLE##Checked = false;                                   \
 | 
						|
    if (!TABLE##Checked) {                                                \
 | 
						|
       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
 | 
						|
              "All lookup tables must be sorted for efficient access!");  \
 | 
						|
       TABLE##Checked = true;                                             \
 | 
						|
    }                                                                     \
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Register File -> Register Stack Mapping Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// OpcodeTable - Sorted map of register instructions to their stack version.
 | 
						|
// The first element is an register file pseudo instruction, the second is the
 | 
						|
// concrete X86 instruction which uses the register stack.
 | 
						|
//
 | 
						|
static const TableEntry OpcodeTable[] = {
 | 
						|
  { X86::ABS_Fp32     , X86::ABS_F     },
 | 
						|
  { X86::ABS_Fp64     , X86::ABS_F     },
 | 
						|
  { X86::ABS_Fp80     , X86::ABS_F     },
 | 
						|
  { X86::ADD_Fp32m    , X86::ADD_F32m  },
 | 
						|
  { X86::ADD_Fp64m    , X86::ADD_F64m  },
 | 
						|
  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
 | 
						|
  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
 | 
						|
  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
 | 
						|
  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
 | 
						|
  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
 | 
						|
  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
 | 
						|
  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
 | 
						|
  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
 | 
						|
  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
 | 
						|
  { X86::CHS_Fp32     , X86::CHS_F     },
 | 
						|
  { X86::CHS_Fp64     , X86::CHS_F     },
 | 
						|
  { X86::CHS_Fp80     , X86::CHS_F     },
 | 
						|
  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
 | 
						|
  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
 | 
						|
  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
 | 
						|
  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
 | 
						|
  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
 | 
						|
  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
 | 
						|
  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
 | 
						|
  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
 | 
						|
  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
 | 
						|
  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
 | 
						|
  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
 | 
						|
  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
 | 
						|
  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
 | 
						|
  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
 | 
						|
  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
 | 
						|
  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
 | 
						|
  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
 | 
						|
  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
 | 
						|
  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
 | 
						|
  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
 | 
						|
  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
 | 
						|
  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
 | 
						|
  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
 | 
						|
  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
 | 
						|
  { X86::COS_Fp32     , X86::COS_F     },
 | 
						|
  { X86::COS_Fp64     , X86::COS_F     },
 | 
						|
  { X86::COS_Fp80     , X86::COS_F     },
 | 
						|
  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
 | 
						|
  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
 | 
						|
  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
 | 
						|
  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
 | 
						|
  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
 | 
						|
  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
 | 
						|
  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
 | 
						|
  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
 | 
						|
  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
 | 
						|
  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
 | 
						|
  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
 | 
						|
  { X86::DIV_Fp32m    , X86::DIV_F32m  },
 | 
						|
  { X86::DIV_Fp64m    , X86::DIV_F64m  },
 | 
						|
  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
 | 
						|
  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
 | 
						|
  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
 | 
						|
  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
 | 
						|
  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
 | 
						|
  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
 | 
						|
  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
 | 
						|
  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
 | 
						|
  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
 | 
						|
  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
 | 
						|
  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
 | 
						|
  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
 | 
						|
  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
 | 
						|
  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
 | 
						|
  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
 | 
						|
  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
 | 
						|
  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
 | 
						|
  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
 | 
						|
  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
 | 
						|
  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
 | 
						|
  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
 | 
						|
  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
 | 
						|
  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
 | 
						|
  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
 | 
						|
  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
 | 
						|
  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
 | 
						|
  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
 | 
						|
  { X86::IST_Fp16m32  , X86::IST_F16m  },
 | 
						|
  { X86::IST_Fp16m64  , X86::IST_F16m  },
 | 
						|
  { X86::IST_Fp16m80  , X86::IST_F16m  },
 | 
						|
  { X86::IST_Fp32m32  , X86::IST_F32m  },
 | 
						|
  { X86::IST_Fp32m64  , X86::IST_F32m  },
 | 
						|
  { X86::IST_Fp32m80  , X86::IST_F32m  },
 | 
						|
  { X86::IST_Fp64m32  , X86::IST_FP64m },
 | 
						|
  { X86::IST_Fp64m64  , X86::IST_FP64m },
 | 
						|
  { X86::IST_Fp64m80  , X86::IST_FP64m },
 | 
						|
  { X86::LD_Fp032     , X86::LD_F0     },
 | 
						|
  { X86::LD_Fp064     , X86::LD_F0     },
 | 
						|
  { X86::LD_Fp080     , X86::LD_F0     },
 | 
						|
  { X86::LD_Fp132     , X86::LD_F1     },
 | 
						|
  { X86::LD_Fp164     , X86::LD_F1     },
 | 
						|
  { X86::LD_Fp180     , X86::LD_F1     },
 | 
						|
  { X86::LD_Fp32m     , X86::LD_F32m   },
 | 
						|
  { X86::LD_Fp32m64   , X86::LD_F32m   },
 | 
						|
  { X86::LD_Fp32m80   , X86::LD_F32m   },
 | 
						|
  { X86::LD_Fp64m     , X86::LD_F64m   },
 | 
						|
  { X86::LD_Fp64m80   , X86::LD_F64m   },
 | 
						|
  { X86::LD_Fp80m     , X86::LD_F80m   },
 | 
						|
  { X86::MUL_Fp32m    , X86::MUL_F32m  },
 | 
						|
  { X86::MUL_Fp64m    , X86::MUL_F64m  },
 | 
						|
  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
 | 
						|
  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
 | 
						|
  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
 | 
						|
  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
 | 
						|
  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
 | 
						|
  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
 | 
						|
  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
 | 
						|
  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
 | 
						|
  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
 | 
						|
  { X86::SIN_Fp32     , X86::SIN_F     },
 | 
						|
  { X86::SIN_Fp64     , X86::SIN_F     },
 | 
						|
  { X86::SIN_Fp80     , X86::SIN_F     },
 | 
						|
  { X86::SQRT_Fp32    , X86::SQRT_F    },
 | 
						|
  { X86::SQRT_Fp64    , X86::SQRT_F    },
 | 
						|
  { X86::SQRT_Fp80    , X86::SQRT_F    },
 | 
						|
  { X86::ST_Fp32m     , X86::ST_F32m   },
 | 
						|
  { X86::ST_Fp64m     , X86::ST_F64m   },
 | 
						|
  { X86::ST_Fp64m32   , X86::ST_F32m   },
 | 
						|
  { X86::ST_Fp80m32   , X86::ST_F32m   },
 | 
						|
  { X86::ST_Fp80m64   , X86::ST_F64m   },
 | 
						|
  { X86::ST_FpP80m    , X86::ST_FP80m  },
 | 
						|
  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
 | 
						|
  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
 | 
						|
  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
 | 
						|
  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
 | 
						|
  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
 | 
						|
  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
 | 
						|
  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
 | 
						|
  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
 | 
						|
  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
 | 
						|
  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
 | 
						|
  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
 | 
						|
  { X86::SUB_Fp32m    , X86::SUB_F32m  },
 | 
						|
  { X86::SUB_Fp64m    , X86::SUB_F64m  },
 | 
						|
  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
 | 
						|
  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
 | 
						|
  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
 | 
						|
  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
 | 
						|
  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
 | 
						|
  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
 | 
						|
  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
 | 
						|
  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
 | 
						|
  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
 | 
						|
  { X86::TST_Fp32     , X86::TST_F     },
 | 
						|
  { X86::TST_Fp64     , X86::TST_F     },
 | 
						|
  { X86::TST_Fp80     , X86::TST_F     },
 | 
						|
  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
 | 
						|
  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
 | 
						|
  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
 | 
						|
  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
 | 
						|
  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
 | 
						|
  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
 | 
						|
};
 | 
						|
 | 
						|
static unsigned getConcreteOpcode(unsigned Opcode) {
 | 
						|
  ASSERT_SORTED(OpcodeTable);
 | 
						|
  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
 | 
						|
  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
 | 
						|
  return Opc;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// PopTable - Sorted map of instructions to their popping version.  The first
 | 
						|
// element is an instruction, the second is the version which pops.
 | 
						|
//
 | 
						|
static const TableEntry PopTable[] = {
 | 
						|
  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
 | 
						|
 | 
						|
  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
 | 
						|
  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
 | 
						|
 | 
						|
  { X86::IST_F16m  , X86::IST_FP16m   },
 | 
						|
  { X86::IST_F32m  , X86::IST_FP32m   },
 | 
						|
 | 
						|
  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
 | 
						|
 | 
						|
  { X86::ST_F32m   , X86::ST_FP32m    },
 | 
						|
  { X86::ST_F64m   , X86::ST_FP64m    },
 | 
						|
  { X86::ST_Frr    , X86::ST_FPrr     },
 | 
						|
 | 
						|
  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
 | 
						|
  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
 | 
						|
 | 
						|
  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
 | 
						|
 | 
						|
  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
 | 
						|
  { X86::UCOM_Fr   , X86::UCOM_FPr    },
 | 
						|
};
 | 
						|
 | 
						|
/// popStackAfter - Pop the current value off of the top of the FP stack after
 | 
						|
/// the specified instruction.  This attempts to be sneaky and combine the pop
 | 
						|
/// into the instruction itself if possible.  The iterator is left pointing to
 | 
						|
/// the last instruction, be it a new pop instruction inserted, or the old
 | 
						|
/// instruction if it was modified in place.
 | 
						|
///
 | 
						|
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr* MI = I;
 | 
						|
  DebugLoc dl = MI->getDebugLoc();
 | 
						|
  ASSERT_SORTED(PopTable);
 | 
						|
  if (StackTop == 0)
 | 
						|
    report_fatal_error("Cannot pop empty stack!");
 | 
						|
  RegMap[Stack[--StackTop]] = ~0;     // Update state
 | 
						|
 | 
						|
  // Check to see if there is a popping version of this instruction...
 | 
						|
  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
 | 
						|
  if (Opcode != -1) {
 | 
						|
    I->setDesc(TII->get(Opcode));
 | 
						|
    if (Opcode == X86::UCOM_FPPr)
 | 
						|
      I->RemoveOperand(0);
 | 
						|
  } else {    // Insert an explicit pop
 | 
						|
    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// freeStackSlotAfter - Free the specified register from the register stack, so
 | 
						|
/// that it is no longer in a register.  If the register is currently at the top
 | 
						|
/// of the stack, we just pop the current instruction, otherwise we store the
 | 
						|
/// current top-of-stack into the specified slot, then pop the top of stack.
 | 
						|
void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
 | 
						|
  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
 | 
						|
    popStackAfter(I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, store the top of stack into the dead slot, killing the operand
 | 
						|
  // without having to add in an explicit xchg then pop.
 | 
						|
  //
 | 
						|
  I = freeStackSlotBefore(++I, FPRegNo);
 | 
						|
}
 | 
						|
 | 
						|
/// freeStackSlotBefore - Free the specified register without trying any
 | 
						|
/// folding.
 | 
						|
MachineBasicBlock::iterator
 | 
						|
FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
 | 
						|
  unsigned STReg    = getSTReg(FPRegNo);
 | 
						|
  unsigned OldSlot  = getSlot(FPRegNo);
 | 
						|
  unsigned TopReg   = Stack[StackTop-1];
 | 
						|
  Stack[OldSlot]    = TopReg;
 | 
						|
  RegMap[TopReg]    = OldSlot;
 | 
						|
  RegMap[FPRegNo]   = ~0;
 | 
						|
  Stack[--StackTop] = ~0;
 | 
						|
  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
 | 
						|
      .addReg(STReg)
 | 
						|
      .getInstr();
 | 
						|
}
 | 
						|
 | 
						|
/// adjustLiveRegs - Kill and revive registers such that exactly the FP
 | 
						|
/// registers with a bit in Mask are live.
 | 
						|
void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
 | 
						|
  unsigned Defs = Mask;
 | 
						|
  unsigned Kills = 0;
 | 
						|
  for (unsigned i = 0; i < StackTop; ++i) {
 | 
						|
    unsigned RegNo = Stack[i];
 | 
						|
    if (!(Defs & (1 << RegNo)))
 | 
						|
      // This register is live, but we don't want it.
 | 
						|
      Kills |= (1 << RegNo);
 | 
						|
    else
 | 
						|
      // We don't need to imp-def this live register.
 | 
						|
      Defs &= ~(1 << RegNo);
 | 
						|
  }
 | 
						|
  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
 | 
						|
 | 
						|
  // Produce implicit-defs for free by using killed registers.
 | 
						|
  while (Kills && Defs) {
 | 
						|
    unsigned KReg = countTrailingZeros(Kills);
 | 
						|
    unsigned DReg = countTrailingZeros(Defs);
 | 
						|
    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
 | 
						|
    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
 | 
						|
    std::swap(RegMap[KReg], RegMap[DReg]);
 | 
						|
    Kills &= ~(1 << KReg);
 | 
						|
    Defs &= ~(1 << DReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Kill registers by popping.
 | 
						|
  if (Kills && I != MBB->begin()) {
 | 
						|
    MachineBasicBlock::iterator I2 = std::prev(I);
 | 
						|
    while (StackTop) {
 | 
						|
      unsigned KReg = getStackEntry(0);
 | 
						|
      if (!(Kills & (1 << KReg)))
 | 
						|
        break;
 | 
						|
      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
 | 
						|
      popStackAfter(I2);
 | 
						|
      Kills &= ~(1 << KReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Manually kill the rest.
 | 
						|
  while (Kills) {
 | 
						|
    unsigned KReg = countTrailingZeros(Kills);
 | 
						|
    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
 | 
						|
    freeStackSlotBefore(I, KReg);
 | 
						|
    Kills &= ~(1 << KReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Load zeros for all the imp-defs.
 | 
						|
  while(Defs) {
 | 
						|
    unsigned DReg = countTrailingZeros(Defs);
 | 
						|
    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
 | 
						|
    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
 | 
						|
    pushReg(DReg);
 | 
						|
    Defs &= ~(1 << DReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we should have the correct registers live.
 | 
						|
  DEBUG(dumpStack());
 | 
						|
  assert(StackTop == countPopulation(Mask) && "Live count mismatch");
 | 
						|
}
 | 
						|
 | 
						|
/// shuffleStackTop - emit fxch instructions before I to shuffle the top
 | 
						|
/// FixCount entries into the order given by FixStack.
 | 
						|
/// FIXME: Is there a better algorithm than insertion sort?
 | 
						|
void FPS::shuffleStackTop(const unsigned char *FixStack,
 | 
						|
                          unsigned FixCount,
 | 
						|
                          MachineBasicBlock::iterator I) {
 | 
						|
  // Move items into place, starting from the desired stack bottom.
 | 
						|
  while (FixCount--) {
 | 
						|
    // Old register at position FixCount.
 | 
						|
    unsigned OldReg = getStackEntry(FixCount);
 | 
						|
    // Desired register at position FixCount.
 | 
						|
    unsigned Reg = FixStack[FixCount];
 | 
						|
    if (Reg == OldReg)
 | 
						|
      continue;
 | 
						|
    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
 | 
						|
    moveToTop(Reg, I);
 | 
						|
    if (FixCount > 0)
 | 
						|
      moveToTop(OldReg, I);
 | 
						|
  }
 | 
						|
  DEBUG(dumpStack());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Instruction transformation implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void FPS::handleCall(MachineBasicBlock::iterator &I) {
 | 
						|
  unsigned STReturns = 0;
 | 
						|
 | 
						|
  for (const auto &MO : I->operands()) {
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned R = MO.getReg() - X86::FP0;
 | 
						|
 | 
						|
    if (R < 8) {
 | 
						|
      assert(MO.isDef() && MO.isImplicit());
 | 
						|
      STReturns |= 1 << R;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned N = countTrailingOnes(STReturns);
 | 
						|
 | 
						|
  // FP registers used for function return must be consecutive starting at
 | 
						|
  // FP0.
 | 
						|
  assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
 | 
						|
 | 
						|
  for (unsigned I = 0; I < N; ++I)
 | 
						|
    pushReg(N - I - 1);
 | 
						|
}
 | 
						|
 | 
						|
/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
 | 
						|
///
 | 
						|
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = I;
 | 
						|
  unsigned DestReg = getFPReg(MI->getOperand(0));
 | 
						|
 | 
						|
  // Change from the pseudo instruction to the concrete instruction.
 | 
						|
  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
 | 
						|
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | 
						|
 | 
						|
  // Result gets pushed on the stack.
 | 
						|
  pushReg(DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// handleOneArgFP - fst <mem>, ST(0)
 | 
						|
///
 | 
						|
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = I;
 | 
						|
  unsigned NumOps = MI->getDesc().getNumOperands();
 | 
						|
  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
 | 
						|
         "Can only handle fst* & ftst instructions!");
 | 
						|
 | 
						|
  // Is this the last use of the source register?
 | 
						|
  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
 | 
						|
  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
 | 
						|
 | 
						|
  // FISTP64m is strange because there isn't a non-popping versions.
 | 
						|
  // If we have one _and_ we don't want to pop the operand, duplicate the value
 | 
						|
  // on the stack instead of moving it.  This ensure that popping the value is
 | 
						|
  // always ok.
 | 
						|
  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
 | 
						|
  //
 | 
						|
  if (!KillsSrc &&
 | 
						|
      (MI->getOpcode() == X86::IST_Fp64m32 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp16m32 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp32m32 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp64m32 ||
 | 
						|
       MI->getOpcode() == X86::IST_Fp64m64 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp16m64 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp32m64 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp64m64 ||
 | 
						|
       MI->getOpcode() == X86::IST_Fp64m80 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp16m80 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp32m80 ||
 | 
						|
       MI->getOpcode() == X86::ISTT_Fp64m80 ||
 | 
						|
       MI->getOpcode() == X86::ST_FpP80m)) {
 | 
						|
    duplicateToTop(Reg, ScratchFPReg, I);
 | 
						|
  } else {
 | 
						|
    moveToTop(Reg, I);            // Move to the top of the stack...
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert from the pseudo instruction to the concrete instruction.
 | 
						|
  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
 | 
						|
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | 
						|
 | 
						|
  if (MI->getOpcode() == X86::IST_FP64m ||
 | 
						|
      MI->getOpcode() == X86::ISTT_FP16m ||
 | 
						|
      MI->getOpcode() == X86::ISTT_FP32m ||
 | 
						|
      MI->getOpcode() == X86::ISTT_FP64m ||
 | 
						|
      MI->getOpcode() == X86::ST_FP80m) {
 | 
						|
    if (StackTop == 0)
 | 
						|
      report_fatal_error("Stack empty??");
 | 
						|
    --StackTop;
 | 
						|
  } else if (KillsSrc) { // Last use of operand?
 | 
						|
    popStackAfter(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// handleOneArgFPRW: Handle instructions that read from the top of stack and
 | 
						|
/// replace the value with a newly computed value.  These instructions may have
 | 
						|
/// non-fp operands after their FP operands.
 | 
						|
///
 | 
						|
///  Examples:
 | 
						|
///     R1 = fchs R2
 | 
						|
///     R1 = fadd R2, [mem]
 | 
						|
///
 | 
						|
void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = I;
 | 
						|
#ifndef NDEBUG
 | 
						|
  unsigned NumOps = MI->getDesc().getNumOperands();
 | 
						|
  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Is this the last use of the source register?
 | 
						|
  unsigned Reg = getFPReg(MI->getOperand(1));
 | 
						|
  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
 | 
						|
 | 
						|
  if (KillsSrc) {
 | 
						|
    // If this is the last use of the source register, just make sure it's on
 | 
						|
    // the top of the stack.
 | 
						|
    moveToTop(Reg, I);
 | 
						|
    if (StackTop == 0)
 | 
						|
      report_fatal_error("Stack cannot be empty!");
 | 
						|
    --StackTop;
 | 
						|
    pushReg(getFPReg(MI->getOperand(0)));
 | 
						|
  } else {
 | 
						|
    // If this is not the last use of the source register, _copy_ it to the top
 | 
						|
    // of the stack.
 | 
						|
    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Change from the pseudo instruction to the concrete instruction.
 | 
						|
  MI->RemoveOperand(1);   // Drop the source operand.
 | 
						|
  MI->RemoveOperand(0);   // Drop the destination operand.
 | 
						|
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Define tables of various ways to map pseudo instructions
 | 
						|
//
 | 
						|
 | 
						|
// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
 | 
						|
static const TableEntry ForwardST0Table[] = {
 | 
						|
  { X86::ADD_Fp32  , X86::ADD_FST0r },
 | 
						|
  { X86::ADD_Fp64  , X86::ADD_FST0r },
 | 
						|
  { X86::ADD_Fp80  , X86::ADD_FST0r },
 | 
						|
  { X86::DIV_Fp32  , X86::DIV_FST0r },
 | 
						|
  { X86::DIV_Fp64  , X86::DIV_FST0r },
 | 
						|
  { X86::DIV_Fp80  , X86::DIV_FST0r },
 | 
						|
  { X86::MUL_Fp32  , X86::MUL_FST0r },
 | 
						|
  { X86::MUL_Fp64  , X86::MUL_FST0r },
 | 
						|
  { X86::MUL_Fp80  , X86::MUL_FST0r },
 | 
						|
  { X86::SUB_Fp32  , X86::SUB_FST0r },
 | 
						|
  { X86::SUB_Fp64  , X86::SUB_FST0r },
 | 
						|
  { X86::SUB_Fp80  , X86::SUB_FST0r },
 | 
						|
};
 | 
						|
 | 
						|
// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
 | 
						|
static const TableEntry ReverseST0Table[] = {
 | 
						|
  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
 | 
						|
  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
 | 
						|
  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
 | 
						|
  { X86::DIV_Fp32  , X86::DIVR_FST0r },
 | 
						|
  { X86::DIV_Fp64  , X86::DIVR_FST0r },
 | 
						|
  { X86::DIV_Fp80  , X86::DIVR_FST0r },
 | 
						|
  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
 | 
						|
  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
 | 
						|
  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
 | 
						|
  { X86::SUB_Fp32  , X86::SUBR_FST0r },
 | 
						|
  { X86::SUB_Fp64  , X86::SUBR_FST0r },
 | 
						|
  { X86::SUB_Fp80  , X86::SUBR_FST0r },
 | 
						|
};
 | 
						|
 | 
						|
// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
 | 
						|
static const TableEntry ForwardSTiTable[] = {
 | 
						|
  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
 | 
						|
  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
 | 
						|
  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
 | 
						|
  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
 | 
						|
  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
 | 
						|
  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
 | 
						|
  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
 | 
						|
  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
 | 
						|
  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
 | 
						|
  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
 | 
						|
  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
 | 
						|
  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
 | 
						|
};
 | 
						|
 | 
						|
// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
 | 
						|
static const TableEntry ReverseSTiTable[] = {
 | 
						|
  { X86::ADD_Fp32  , X86::ADD_FrST0 },
 | 
						|
  { X86::ADD_Fp64  , X86::ADD_FrST0 },
 | 
						|
  { X86::ADD_Fp80  , X86::ADD_FrST0 },
 | 
						|
  { X86::DIV_Fp32  , X86::DIV_FrST0 },
 | 
						|
  { X86::DIV_Fp64  , X86::DIV_FrST0 },
 | 
						|
  { X86::DIV_Fp80  , X86::DIV_FrST0 },
 | 
						|
  { X86::MUL_Fp32  , X86::MUL_FrST0 },
 | 
						|
  { X86::MUL_Fp64  , X86::MUL_FrST0 },
 | 
						|
  { X86::MUL_Fp80  , X86::MUL_FrST0 },
 | 
						|
  { X86::SUB_Fp32  , X86::SUB_FrST0 },
 | 
						|
  { X86::SUB_Fp64  , X86::SUB_FrST0 },
 | 
						|
  { X86::SUB_Fp80  , X86::SUB_FrST0 },
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
 | 
						|
/// instructions which need to be simplified and possibly transformed.
 | 
						|
///
 | 
						|
/// Result: ST(0) = fsub  ST(0), ST(i)
 | 
						|
///         ST(i) = fsub  ST(0), ST(i)
 | 
						|
///         ST(0) = fsubr ST(0), ST(i)
 | 
						|
///         ST(i) = fsubr ST(0), ST(i)
 | 
						|
///
 | 
						|
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
 | 
						|
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | 
						|
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | 
						|
  MachineInstr *MI = I;
 | 
						|
 | 
						|
  unsigned NumOperands = MI->getDesc().getNumOperands();
 | 
						|
  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
 | 
						|
  unsigned Dest = getFPReg(MI->getOperand(0));
 | 
						|
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | 
						|
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | 
						|
  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
 | 
						|
  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | 
						|
  DebugLoc dl = MI->getDebugLoc();
 | 
						|
 | 
						|
  unsigned TOS = getStackEntry(0);
 | 
						|
 | 
						|
  // One of our operands must be on the top of the stack.  If neither is yet, we
 | 
						|
  // need to move one.
 | 
						|
  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
 | 
						|
    // We can choose to move either operand to the top of the stack.  If one of
 | 
						|
    // the operands is killed by this instruction, we want that one so that we
 | 
						|
    // can update right on top of the old version.
 | 
						|
    if (KillsOp0) {
 | 
						|
      moveToTop(Op0, I);         // Move dead operand to TOS.
 | 
						|
      TOS = Op0;
 | 
						|
    } else if (KillsOp1) {
 | 
						|
      moveToTop(Op1, I);
 | 
						|
      TOS = Op1;
 | 
						|
    } else {
 | 
						|
      // All of the operands are live after this instruction executes, so we
 | 
						|
      // cannot update on top of any operand.  Because of this, we must
 | 
						|
      // duplicate one of the stack elements to the top.  It doesn't matter
 | 
						|
      // which one we pick.
 | 
						|
      //
 | 
						|
      duplicateToTop(Op0, Dest, I);
 | 
						|
      Op0 = TOS = Dest;
 | 
						|
      KillsOp0 = true;
 | 
						|
    }
 | 
						|
  } else if (!KillsOp0 && !KillsOp1) {
 | 
						|
    // If we DO have one of our operands at the top of the stack, but we don't
 | 
						|
    // have a dead operand, we must duplicate one of the operands to a new slot
 | 
						|
    // on the stack.
 | 
						|
    duplicateToTop(Op0, Dest, I);
 | 
						|
    Op0 = TOS = Dest;
 | 
						|
    KillsOp0 = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that one of our operands is on the top of the stack, and at
 | 
						|
  // least one of our operands is killed by this instruction.
 | 
						|
  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
 | 
						|
         "Stack conditions not set up right!");
 | 
						|
 | 
						|
  // We decide which form to use based on what is on the top of the stack, and
 | 
						|
  // which operand is killed by this instruction.
 | 
						|
  const TableEntry *InstTable;
 | 
						|
  bool isForward = TOS == Op0;
 | 
						|
  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
 | 
						|
  if (updateST0) {
 | 
						|
    if (isForward)
 | 
						|
      InstTable = ForwardST0Table;
 | 
						|
    else
 | 
						|
      InstTable = ReverseST0Table;
 | 
						|
  } else {
 | 
						|
    if (isForward)
 | 
						|
      InstTable = ForwardSTiTable;
 | 
						|
    else
 | 
						|
      InstTable = ReverseSTiTable;
 | 
						|
  }
 | 
						|
 | 
						|
  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
 | 
						|
                      MI->getOpcode());
 | 
						|
  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
 | 
						|
 | 
						|
  // NotTOS - The register which is not on the top of stack...
 | 
						|
  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
 | 
						|
 | 
						|
  // Replace the old instruction with a new instruction
 | 
						|
  MBB->remove(I++);
 | 
						|
  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
 | 
						|
 | 
						|
  // If both operands are killed, pop one off of the stack in addition to
 | 
						|
  // overwriting the other one.
 | 
						|
  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
 | 
						|
    assert(!updateST0 && "Should have updated other operand!");
 | 
						|
    popStackAfter(I);   // Pop the top of stack
 | 
						|
  }
 | 
						|
 | 
						|
  // Update stack information so that we know the destination register is now on
 | 
						|
  // the stack.
 | 
						|
  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
 | 
						|
  assert(UpdatedSlot < StackTop && Dest < 7);
 | 
						|
  Stack[UpdatedSlot]   = Dest;
 | 
						|
  RegMap[Dest]         = UpdatedSlot;
 | 
						|
  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
 | 
						|
}
 | 
						|
 | 
						|
/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
 | 
						|
/// register arguments and no explicit destinations.
 | 
						|
///
 | 
						|
void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
 | 
						|
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | 
						|
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | 
						|
  MachineInstr *MI = I;
 | 
						|
 | 
						|
  unsigned NumOperands = MI->getDesc().getNumOperands();
 | 
						|
  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
 | 
						|
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | 
						|
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | 
						|
  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
 | 
						|
  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | 
						|
 | 
						|
  // Make sure the first operand is on the top of stack, the other one can be
 | 
						|
  // anywhere.
 | 
						|
  moveToTop(Op0, I);
 | 
						|
 | 
						|
  // Change from the pseudo instruction to the concrete instruction.
 | 
						|
  MI->getOperand(0).setReg(getSTReg(Op1));
 | 
						|
  MI->RemoveOperand(1);
 | 
						|
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | 
						|
 | 
						|
  // If any of the operands are killed by this instruction, free them.
 | 
						|
  if (KillsOp0) freeStackSlotAfter(I, Op0);
 | 
						|
  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
 | 
						|
}
 | 
						|
 | 
						|
/// handleCondMovFP - Handle two address conditional move instructions.  These
 | 
						|
/// instructions move a st(i) register to st(0) iff a condition is true.  These
 | 
						|
/// instructions require that the first operand is at the top of the stack, but
 | 
						|
/// otherwise don't modify the stack at all.
 | 
						|
void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = I;
 | 
						|
 | 
						|
  unsigned Op0 = getFPReg(MI->getOperand(0));
 | 
						|
  unsigned Op1 = getFPReg(MI->getOperand(2));
 | 
						|
  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | 
						|
 | 
						|
  // The first operand *must* be on the top of the stack.
 | 
						|
  moveToTop(Op0, I);
 | 
						|
 | 
						|
  // Change the second operand to the stack register that the operand is in.
 | 
						|
  // Change from the pseudo instruction to the concrete instruction.
 | 
						|
  MI->RemoveOperand(0);
 | 
						|
  MI->RemoveOperand(1);
 | 
						|
  MI->getOperand(0).setReg(getSTReg(Op1));
 | 
						|
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | 
						|
 | 
						|
  // If we kill the second operand, make sure to pop it from the stack.
 | 
						|
  if (Op0 != Op1 && KillsOp1) {
 | 
						|
    // Get this value off of the register stack.
 | 
						|
    freeStackSlotAfter(I, Op1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// handleSpecialFP - Handle special instructions which behave unlike other
 | 
						|
/// floating point instructions.  This is primarily intended for use by pseudo
 | 
						|
/// instructions.
 | 
						|
///
 | 
						|
void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
 | 
						|
  MachineInstr *MI = Inst;
 | 
						|
 | 
						|
  if (MI->isCall()) {
 | 
						|
    handleCall(Inst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default: llvm_unreachable("Unknown SpecialFP instruction!");
 | 
						|
  case TargetOpcode::COPY: {
 | 
						|
    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
 | 
						|
    const MachineOperand &MO1 = MI->getOperand(1);
 | 
						|
    const MachineOperand &MO0 = MI->getOperand(0);
 | 
						|
    bool KillsSrc = MI->killsRegister(MO1.getReg());
 | 
						|
 | 
						|
    // FP <- FP copy.
 | 
						|
    unsigned DstFP = getFPReg(MO0);
 | 
						|
    unsigned SrcFP = getFPReg(MO1);
 | 
						|
    assert(isLive(SrcFP) && "Cannot copy dead register");
 | 
						|
    if (KillsSrc) {
 | 
						|
      // If the input operand is killed, we can just change the owner of the
 | 
						|
      // incoming stack slot into the result.
 | 
						|
      unsigned Slot = getSlot(SrcFP);
 | 
						|
      Stack[Slot] = DstFP;
 | 
						|
      RegMap[DstFP] = Slot;
 | 
						|
    } else {
 | 
						|
      // For COPY we just duplicate the specified value to a new stack slot.
 | 
						|
      // This could be made better, but would require substantial changes.
 | 
						|
      duplicateToTop(SrcFP, DstFP, Inst);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case TargetOpcode::IMPLICIT_DEF: {
 | 
						|
    // All FP registers must be explicitly defined, so load a 0 instead.
 | 
						|
    unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
 | 
						|
    DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
 | 
						|
    BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
 | 
						|
    pushReg(Reg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case TargetOpcode::INLINEASM: {
 | 
						|
    // The inline asm MachineInstr currently only *uses* FP registers for the
 | 
						|
    // 'f' constraint.  These should be turned into the current ST(x) register
 | 
						|
    // in the machine instr.
 | 
						|
    //
 | 
						|
    // There are special rules for x87 inline assembly. The compiler must know
 | 
						|
    // exactly how many registers are popped and pushed implicitly by the asm.
 | 
						|
    // Otherwise it is not possible to restore the stack state after the inline
 | 
						|
    // asm.
 | 
						|
    //
 | 
						|
    // There are 3 kinds of input operands:
 | 
						|
    //
 | 
						|
    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
 | 
						|
    //    popped input operand must be in a fixed stack slot, and it is either
 | 
						|
    //    tied to an output operand, or in the clobber list. The MI has ST use
 | 
						|
    //    and def operands for these inputs.
 | 
						|
    //
 | 
						|
    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
 | 
						|
    //    preserved by the inline asm. The fixed stack slots must be STn-STm
 | 
						|
    //    following the popped inputs. A fixed input operand cannot be tied to
 | 
						|
    //    an output or appear in the clobber list. The MI has ST use operands
 | 
						|
    //    and no defs for these inputs.
 | 
						|
    //
 | 
						|
    // 3. Preserved inputs. These inputs use the "f" constraint which is
 | 
						|
    //    represented as an FP register. The inline asm won't change these
 | 
						|
    //    stack slots.
 | 
						|
    //
 | 
						|
    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
 | 
						|
    // registers do not count as output operands. The inline asm changes the
 | 
						|
    // stack as if it popped all the popped inputs and then pushed all the
 | 
						|
    // output operands.
 | 
						|
 | 
						|
    // Scan the assembly for ST registers used, defined and clobbered. We can
 | 
						|
    // only tell clobbers from defs by looking at the asm descriptor.
 | 
						|
    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
 | 
						|
    unsigned NumOps = 0;
 | 
						|
    SmallSet<unsigned, 1> FRegIdx;
 | 
						|
    unsigned RCID;
 | 
						|
 | 
						|
    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
 | 
						|
         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
 | 
						|
      unsigned Flags = MI->getOperand(i).getImm();
 | 
						|
 | 
						|
      NumOps = InlineAsm::getNumOperandRegisters(Flags);
 | 
						|
      if (NumOps != 1)
 | 
						|
        continue;
 | 
						|
      const MachineOperand &MO = MI->getOperand(i + 1);
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
      unsigned STReg = MO.getReg() - X86::FP0;
 | 
						|
      if (STReg >= 8)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the flag has a register class constraint, this must be an operand
 | 
						|
      // with constraint "f". Record its index and continue.
 | 
						|
      if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
 | 
						|
        FRegIdx.insert(i + 1);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (InlineAsm::getKind(Flags)) {
 | 
						|
      case InlineAsm::Kind_RegUse:
 | 
						|
        STUses |= (1u << STReg);
 | 
						|
        break;
 | 
						|
      case InlineAsm::Kind_RegDef:
 | 
						|
      case InlineAsm::Kind_RegDefEarlyClobber:
 | 
						|
        STDefs |= (1u << STReg);
 | 
						|
        if (MO.isDead())
 | 
						|
          STDeadDefs |= (1u << STReg);
 | 
						|
        break;
 | 
						|
      case InlineAsm::Kind_Clobber:
 | 
						|
        STClobbers |= (1u << STReg);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (STUses && !isMask_32(STUses))
 | 
						|
      MI->emitError("fixed input regs must be last on the x87 stack");
 | 
						|
    unsigned NumSTUses = countTrailingOnes(STUses);
 | 
						|
 | 
						|
    // Defs must be contiguous from the stack top. ST0-STn.
 | 
						|
    if (STDefs && !isMask_32(STDefs)) {
 | 
						|
      MI->emitError("output regs must be last on the x87 stack");
 | 
						|
      STDefs = NextPowerOf2(STDefs) - 1;
 | 
						|
    }
 | 
						|
    unsigned NumSTDefs = countTrailingOnes(STDefs);
 | 
						|
 | 
						|
    // So must the clobbered stack slots. ST0-STm, m >= n.
 | 
						|
    if (STClobbers && !isMask_32(STDefs | STClobbers))
 | 
						|
      MI->emitError("clobbers must be last on the x87 stack");
 | 
						|
 | 
						|
    // Popped inputs are the ones that are also clobbered or defined.
 | 
						|
    unsigned STPopped = STUses & (STDefs | STClobbers);
 | 
						|
    if (STPopped && !isMask_32(STPopped))
 | 
						|
      MI->emitError("implicitly popped regs must be last on the x87 stack");
 | 
						|
    unsigned NumSTPopped = countTrailingOnes(STPopped);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
 | 
						|
                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    // If any input operand uses constraint "f", all output register
 | 
						|
    // constraints must be early-clobber defs.
 | 
						|
    for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
 | 
						|
      if (FRegIdx.count(I)) {
 | 
						|
        assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
 | 
						|
               "Operands with constraint \"f\" cannot overlap with defs");
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Collect all FP registers (register operands with constraints "t", "u",
 | 
						|
    // and "f") to kill afer the instruction.
 | 
						|
    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &Op = MI->getOperand(i);
 | 
						|
      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | 
						|
        continue;
 | 
						|
      unsigned FPReg = getFPReg(Op);
 | 
						|
 | 
						|
      // If we kill this operand, make sure to pop it from the stack after the
 | 
						|
      // asm.  We just remember it for now, and pop them all off at the end in
 | 
						|
      // a batch.
 | 
						|
      if (Op.isUse() && Op.isKill())
 | 
						|
        FPKills |= 1U << FPReg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not include registers that are implicitly popped by defs/clobbers.
 | 
						|
    FPKills &= ~(STDefs | STClobbers);
 | 
						|
 | 
						|
    // Now we can rearrange the live registers to match what was requested.
 | 
						|
    unsigned char STUsesArray[8];
 | 
						|
 | 
						|
    for (unsigned I = 0; I < NumSTUses; ++I)
 | 
						|
      STUsesArray[I] = I;
 | 
						|
 | 
						|
    shuffleStackTop(STUsesArray, NumSTUses, Inst);
 | 
						|
    DEBUG({dbgs() << "Before asm: "; dumpStack();});
 | 
						|
 | 
						|
    // With the stack layout fixed, rewrite the FP registers.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &Op = MI->getOperand(i);
 | 
						|
      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned FPReg = getFPReg(Op);
 | 
						|
 | 
						|
      if (FRegIdx.count(i))
 | 
						|
        // Operand with constraint "f".
 | 
						|
        Op.setReg(getSTReg(FPReg));
 | 
						|
      else
 | 
						|
        // Operand with a single register class constraint ("t" or "u").
 | 
						|
        Op.setReg(X86::ST0 + FPReg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Simulate the inline asm popping its inputs and pushing its outputs.
 | 
						|
    StackTop -= NumSTPopped;
 | 
						|
 | 
						|
    for (unsigned i = 0; i < NumSTDefs; ++i)
 | 
						|
      pushReg(NumSTDefs - i - 1);
 | 
						|
 | 
						|
    // If this asm kills any FP registers (is the last use of them) we must
 | 
						|
    // explicitly emit pop instructions for them.  Do this now after the asm has
 | 
						|
    // executed so that the ST(x) numbers are not off (which would happen if we
 | 
						|
    // did this inline with operand rewriting).
 | 
						|
    //
 | 
						|
    // Note: this might be a non-optimal pop sequence.  We might be able to do
 | 
						|
    // better by trying to pop in stack order or something.
 | 
						|
    while (FPKills) {
 | 
						|
      unsigned FPReg = countTrailingZeros(FPKills);
 | 
						|
      if (isLive(FPReg))
 | 
						|
        freeStackSlotAfter(Inst, FPReg);
 | 
						|
      FPKills &= ~(1U << FPReg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't delete the inline asm!
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86::WIN_FTOL_32:
 | 
						|
  case X86::WIN_FTOL_64: {
 | 
						|
    // Push the operand into ST0.
 | 
						|
    MachineOperand &Op = MI->getOperand(0);
 | 
						|
    assert(Op.isUse() && Op.isReg() &&
 | 
						|
      Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
 | 
						|
    unsigned FPReg = getFPReg(Op);
 | 
						|
    if (Op.isKill())
 | 
						|
      moveToTop(FPReg, Inst);
 | 
						|
    else
 | 
						|
      duplicateToTop(FPReg, FPReg, Inst);
 | 
						|
 | 
						|
    // Emit the call. This will pop the operand.
 | 
						|
    BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
 | 
						|
      .addExternalSymbol("_ftol2")
 | 
						|
      .addReg(X86::ST0, RegState::ImplicitKill)
 | 
						|
      .addReg(X86::ECX, RegState::ImplicitDefine)
 | 
						|
      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
 | 
						|
      .addReg(X86::EDX, RegState::Define | RegState::Implicit)
 | 
						|
      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
 | 
						|
    --StackTop;
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86::RETQ:
 | 
						|
  case X86::RETL:
 | 
						|
  case X86::RETIL:
 | 
						|
  case X86::RETIQ:
 | 
						|
    // If RET has an FP register use operand, pass the first one in ST(0) and
 | 
						|
    // the second one in ST(1).
 | 
						|
 | 
						|
    // Find the register operands.
 | 
						|
    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
 | 
						|
    unsigned LiveMask = 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &Op = MI->getOperand(i);
 | 
						|
      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | 
						|
        continue;
 | 
						|
      // FP Register uses must be kills unless there are two uses of the same
 | 
						|
      // register, in which case only one will be a kill.
 | 
						|
      assert(Op.isUse() &&
 | 
						|
             (Op.isKill() ||                        // Marked kill.
 | 
						|
              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
 | 
						|
              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
 | 
						|
             "Ret only defs operands, and values aren't live beyond it");
 | 
						|
 | 
						|
      if (FirstFPRegOp == ~0U)
 | 
						|
        FirstFPRegOp = getFPReg(Op);
 | 
						|
      else {
 | 
						|
        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
 | 
						|
        SecondFPRegOp = getFPReg(Op);
 | 
						|
      }
 | 
						|
      LiveMask |= (1 << getFPReg(Op));
 | 
						|
 | 
						|
      // Remove the operand so that later passes don't see it.
 | 
						|
      MI->RemoveOperand(i);
 | 
						|
      --i, --e;
 | 
						|
    }
 | 
						|
 | 
						|
    // We may have been carrying spurious live-ins, so make sure only the returned
 | 
						|
    // registers are left live.
 | 
						|
    adjustLiveRegs(LiveMask, MI);
 | 
						|
    if (!LiveMask) return;  // Quick check to see if any are possible.
 | 
						|
 | 
						|
    // There are only four possibilities here:
 | 
						|
    // 1) we are returning a single FP value.  In this case, it has to be in
 | 
						|
    //    ST(0) already, so just declare success by removing the value from the
 | 
						|
    //    FP Stack.
 | 
						|
    if (SecondFPRegOp == ~0U) {
 | 
						|
      // Assert that the top of stack contains the right FP register.
 | 
						|
      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
 | 
						|
             "Top of stack not the right register for RET!");
 | 
						|
 | 
						|
      // Ok, everything is good, mark the value as not being on the stack
 | 
						|
      // anymore so that our assertion about the stack being empty at end of
 | 
						|
      // block doesn't fire.
 | 
						|
      StackTop = 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we are returning two values:
 | 
						|
    // 2) If returning the same value for both, we only have one thing in the FP
 | 
						|
    //    stack.  Consider:  RET FP1, FP1
 | 
						|
    if (StackTop == 1) {
 | 
						|
      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
 | 
						|
             "Stack misconfiguration for RET!");
 | 
						|
 | 
						|
      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
 | 
						|
      // register to hold it.
 | 
						|
      unsigned NewReg = ScratchFPReg;
 | 
						|
      duplicateToTop(FirstFPRegOp, NewReg, MI);
 | 
						|
      FirstFPRegOp = NewReg;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Okay we know we have two different FPx operands now:
 | 
						|
    assert(StackTop == 2 && "Must have two values live!");
 | 
						|
 | 
						|
    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
 | 
						|
    ///    in ST(1).  In this case, emit an fxch.
 | 
						|
    if (getStackEntry(0) == SecondFPRegOp) {
 | 
						|
      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
 | 
						|
      moveToTop(FirstFPRegOp, MI);
 | 
						|
    }
 | 
						|
 | 
						|
    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
 | 
						|
    /// ST(1).  Just remove both from our understanding of the stack and return.
 | 
						|
    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
 | 
						|
    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
 | 
						|
    StackTop = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Inst = MBB->erase(Inst);  // Remove the pseudo instruction
 | 
						|
 | 
						|
  // We want to leave I pointing to the previous instruction, but what if we
 | 
						|
  // just erased the first instruction?
 | 
						|
  if (Inst == MBB->begin()) {
 | 
						|
    DEBUG(dbgs() << "Inserting dummy KILL\n");
 | 
						|
    Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
 | 
						|
  } else
 | 
						|
    --Inst;
 | 
						|
}
 | 
						|
 | 
						|
void FPS::setKillFlags(MachineBasicBlock &MBB) const {
 | 
						|
  const TargetRegisterInfo *TRI =
 | 
						|
      MBB.getParent()->getSubtarget().getRegisterInfo();
 | 
						|
  LivePhysRegs LPR(TRI);
 | 
						|
 | 
						|
  LPR.addLiveOuts(&MBB);
 | 
						|
 | 
						|
  for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    std::bitset<8> Defs;
 | 
						|
    SmallVector<MachineOperand *, 2> Uses;
 | 
						|
    MachineInstr &MI = *I;
 | 
						|
 | 
						|
    for (auto &MO : I->operands()) {
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned Reg = MO.getReg() - X86::FP0;
 | 
						|
 | 
						|
      if (Reg >= 8)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (MO.isDef()) {
 | 
						|
        Defs.set(Reg);
 | 
						|
        if (!LPR.contains(MO.getReg()))
 | 
						|
          MO.setIsDead();
 | 
						|
      } else
 | 
						|
        Uses.push_back(&MO);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto *MO : Uses)
 | 
						|
      if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
 | 
						|
        MO->setIsKill();
 | 
						|
 | 
						|
    LPR.stepBackward(MI);
 | 
						|
  }
 | 
						|
}
 |