mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			237 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions performs analyses on basic blocks, and instructions
 | |
| // contained within basic blocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// FindFunctionBackedges - Analyze the specified function to find all of the
 | |
| /// loop backedges in the function and return them.  This is a relatively cheap
 | |
| /// (compared to computing dominators and loop info) analysis.
 | |
| ///
 | |
| /// The output is added to Result, as pairs of <from,to> edge info.
 | |
| void llvm::FindFunctionBackedges(const Function &F,
 | |
|      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
 | |
|   const BasicBlock *BB = &F.getEntryBlock();
 | |
|   if (succ_begin(BB) == succ_end(BB))
 | |
|     return;
 | |
| 
 | |
|   SmallPtrSet<const BasicBlock*, 8> Visited;
 | |
|   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
 | |
|   SmallPtrSet<const BasicBlock*, 8> InStack;
 | |
| 
 | |
|   Visited.insert(BB);
 | |
|   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | |
|   InStack.insert(BB);
 | |
|   do {
 | |
|     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
 | |
|     const BasicBlock *ParentBB = Top.first;
 | |
|     succ_const_iterator &I = Top.second;
 | |
| 
 | |
|     bool FoundNew = false;
 | |
|     while (I != succ_end(ParentBB)) {
 | |
|       BB = *I++;
 | |
|       if (Visited.insert(BB).second) {
 | |
|         FoundNew = true;
 | |
|         break;
 | |
|       }
 | |
|       // Successor is in VisitStack, it's a back edge.
 | |
|       if (InStack.count(BB))
 | |
|         Result.push_back(std::make_pair(ParentBB, BB));
 | |
|     }
 | |
| 
 | |
|     if (FoundNew) {
 | |
|       // Go down one level if there is a unvisited successor.
 | |
|       InStack.insert(BB);
 | |
|       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | |
|     } else {
 | |
|       // Go up one level.
 | |
|       InStack.erase(VisitStack.pop_back_val().first);
 | |
|     }
 | |
|   } while (!VisitStack.empty());
 | |
| }
 | |
| 
 | |
| /// GetSuccessorNumber - Search for the specified successor of basic block BB
 | |
| /// and return its position in the terminator instruction's list of
 | |
| /// successors.  It is an error to call this with a block that is not a
 | |
| /// successor.
 | |
| unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   TerminatorInst *Term = BB->getTerminator();
 | |
| #ifndef NDEBUG
 | |
|   unsigned e = Term->getNumSuccessors();
 | |
| #endif
 | |
|   for (unsigned i = 0; ; ++i) {
 | |
|     assert(i != e && "Didn't find edge?");
 | |
|     if (Term->getSuccessor(i) == Succ)
 | |
|       return i;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isCriticalEdge - Return true if the specified edge is a critical edge.
 | |
| /// Critical edges are edges from a block with multiple successors to a block
 | |
| /// with multiple predecessors.
 | |
| bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
 | |
|                           bool AllowIdenticalEdges) {
 | |
|   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
 | |
|   if (TI->getNumSuccessors() == 1) return false;
 | |
| 
 | |
|   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | |
|   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
 | |
| 
 | |
|   // If there is more than one predecessor, this is a critical edge...
 | |
|   assert(I != E && "No preds, but we have an edge to the block?");
 | |
|   const BasicBlock *FirstPred = *I;
 | |
|   ++I;        // Skip one edge due to the incoming arc from TI.
 | |
|   if (!AllowIdenticalEdges)
 | |
|     return I != E;
 | |
| 
 | |
|   // If AllowIdenticalEdges is true, then we allow this edge to be considered
 | |
|   // non-critical iff all preds come from TI's block.
 | |
|   for (; I != E; ++I)
 | |
|     if (*I != FirstPred)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // LoopInfo contains a mapping from basic block to the innermost loop. Find
 | |
| // the outermost loop in the loop nest that contains BB.
 | |
| static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
 | |
|   const Loop *L = LI->getLoopFor(BB);
 | |
|   if (L) {
 | |
|     while (const Loop *Parent = L->getParentLoop())
 | |
|       L = Parent;
 | |
|   }
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| // True if there is a loop which contains both BB1 and BB2.
 | |
| static bool loopContainsBoth(const LoopInfo *LI,
 | |
|                              const BasicBlock *BB1, const BasicBlock *BB2) {
 | |
|   const Loop *L1 = getOutermostLoop(LI, BB1);
 | |
|   const Loop *L2 = getOutermostLoop(LI, BB2);
 | |
|   return L1 != nullptr && L1 == L2;
 | |
| }
 | |
| 
 | |
| static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
 | |
|                                         BasicBlock *StopBB,
 | |
|                                         const DominatorTree *DT,
 | |
|                                         const LoopInfo *LI) {
 | |
|   // When the stop block is unreachable, it's dominated from everywhere,
 | |
|   // regardless of whether there's a path between the two blocks.
 | |
|   if (DT && !DT->isReachableFromEntry(StopBB))
 | |
|     DT = nullptr;
 | |
| 
 | |
|   // Limit the number of blocks we visit. The goal is to avoid run-away compile
 | |
|   // times on large CFGs without hampering sensible code. Arbitrarily chosen.
 | |
|   unsigned Limit = 32;
 | |
|   SmallSet<const BasicBlock*, 64> Visited;
 | |
|   do {
 | |
|     BasicBlock *BB = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(BB).second)
 | |
|       continue;
 | |
|     if (BB == StopBB)
 | |
|       return true;
 | |
|     if (DT && DT->dominates(BB, StopBB))
 | |
|       return true;
 | |
|     if (LI && loopContainsBoth(LI, BB, StopBB))
 | |
|       return true;
 | |
| 
 | |
|     if (!--Limit) {
 | |
|       // We haven't been able to prove it one way or the other. Conservatively
 | |
|       // answer true -- that there is potentially a path.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
 | |
|       // All blocks in a single loop are reachable from all other blocks. From
 | |
|       // any of these blocks, we can skip directly to the exits of the loop,
 | |
|       // ignoring any other blocks inside the loop body.
 | |
|       Outer->getExitBlocks(Worklist);
 | |
|     } else {
 | |
|       Worklist.append(succ_begin(BB), succ_end(BB));
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // We have exhausted all possible paths and are certain that 'To' can not be
 | |
|   // reached from 'From'.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
 | |
|                                   const DominatorTree *DT, const LoopInfo *LI) {
 | |
|   assert(A->getParent() == B->getParent() &&
 | |
|          "This analysis is function-local!");
 | |
| 
 | |
|   SmallVector<BasicBlock*, 32> Worklist;
 | |
|   Worklist.push_back(const_cast<BasicBlock*>(A));
 | |
| 
 | |
|   return isPotentiallyReachableInner(Worklist, const_cast<BasicBlock*>(B),
 | |
|                                      DT, LI);
 | |
| }
 | |
| 
 | |
| bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
 | |
|                                   const DominatorTree *DT, const LoopInfo *LI) {
 | |
|   assert(A->getParent()->getParent() == B->getParent()->getParent() &&
 | |
|          "This analysis is function-local!");
 | |
| 
 | |
|   SmallVector<BasicBlock*, 32> Worklist;
 | |
| 
 | |
|   if (A->getParent() == B->getParent()) {
 | |
|     // The same block case is special because it's the only time we're looking
 | |
|     // within a single block to see which instruction comes first. Once we
 | |
|     // start looking at multiple blocks, the first instruction of the block is
 | |
|     // reachable, so we only need to determine reachability between whole
 | |
|     // blocks.
 | |
|     BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
 | |
| 
 | |
|     // If the block is in a loop then we can reach any instruction in the block
 | |
|     // from any other instruction in the block by going around a backedge.
 | |
|     if (LI && LI->getLoopFor(BB) != nullptr)
 | |
|       return true;
 | |
| 
 | |
|     // Linear scan, start at 'A', see whether we hit 'B' or the end first.
 | |
|     for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
 | |
|       if (&*I == B)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Can't be in a loop if it's the entry block -- the entry block may not
 | |
|     // have predecessors.
 | |
|     if (BB == &BB->getParent()->getEntryBlock())
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, continue doing the normal per-BB CFG walk.
 | |
|     Worklist.append(succ_begin(BB), succ_end(BB));
 | |
| 
 | |
|     if (Worklist.empty()) {
 | |
|       // We've proven that there's no path!
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
 | |
|   }
 | |
| 
 | |
|   if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
 | |
|     return true;
 | |
|   if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
 | |
|     return false;
 | |
| 
 | |
|   return isPotentiallyReachableInner(Worklist,
 | |
|                                      const_cast<BasicBlock*>(B->getParent()),
 | |
|                                      DT, LI);
 | |
| }
 |