mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	MIOperands/ConstMIOperands are classes iterating over the MachineOperand of a MachineInstr, however MachineInstr::mop_iterator does the same thing. I assume these two iterators exist to have a uniform interface to iterate over the operands of a machine instruction bundle and a single machine instruction. However in practice I find it more confusing to have 2 different iterator classes, so this patch transforms (nearly all) the code to use mop_iterators. The only exception being MIOperands::anlayzePhysReg() and MIOperands::analyzeVirtReg() still needing an equivalent, I leave that as an exercise for the next patch. Differential Revision: http://reviews.llvm.org/D9932 This version is slightly modified from the proposed revision in that it introduces MachineInstr::getOperandNo to avoid the extra counting variable in the few loops that previously used MIOperands::getOperandNo. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238539 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1292 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1292 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexagon-pei"
 | 
						|
 | 
						|
#include "HexagonFrameLowering.h"
 | 
						|
#include "Hexagon.h"
 | 
						|
#include "HexagonInstrInfo.h"
 | 
						|
#include "HexagonMachineFunctionInfo.h"
 | 
						|
#include "HexagonRegisterInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "HexagonTargetMachine.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachinePostDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterScavenging.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
 | 
						|
// Hexagon stack frame layout as defined by the ABI:
 | 
						|
//
 | 
						|
//                                                       Incoming arguments
 | 
						|
//                                                       passed via stack
 | 
						|
//                                                                      |
 | 
						|
//                                                                      |
 | 
						|
//        SP during function's                 FP during function's     |
 | 
						|
//    +-- runtime (top of stack)               runtime (bottom) --+     |
 | 
						|
//    |                                                           |     |
 | 
						|
// --++---------------------+------------------+-----------------++-+-------
 | 
						|
//   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
 | 
						|
//   |   called functions   |  local objects   |  local objects  |FP|
 | 
						|
// --+----------------------+------------------+-----------------+--+-------
 | 
						|
//    <-    size known    -> <- size unknown -> <- size known  ->
 | 
						|
//
 | 
						|
// Low address                                                 High address
 | 
						|
//
 | 
						|
// <--- stack growth
 | 
						|
//
 | 
						|
//
 | 
						|
// - In any circumstances, the outgoing function arguments are always accessi-
 | 
						|
//   ble using the SP, and the incoming arguments are accessible using the FP.
 | 
						|
// - If the local objects are not aligned, they can always be accessed using
 | 
						|
//   the FP.
 | 
						|
// - If there are no variable-sized objects, the local objects can always be
 | 
						|
//   accessed using the SP, regardless whether they are aligned or not. (The
 | 
						|
//   alignment padding will be at the bottom of the stack (highest address),
 | 
						|
//   and so the offset with respect to the SP will be known at the compile-
 | 
						|
//   -time.)
 | 
						|
//
 | 
						|
// The only complication occurs if there are both, local aligned objects, and
 | 
						|
// dynamically allocated (variable-sized) objects. The alignment pad will be
 | 
						|
// placed between the FP and the local objects, thus preventing the use of the
 | 
						|
// FP to access the local objects. At the same time, the variable-sized objects
 | 
						|
// will be between the SP and the local objects, thus introducing an unknown
 | 
						|
// distance from the SP to the locals.
 | 
						|
//
 | 
						|
// To avoid this problem, a new register is created that holds the aligned
 | 
						|
// address of the bottom of the stack, referred in the sources as AP (aligned
 | 
						|
// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
 | 
						|
// that aligns AP to the required boundary (a maximum of the alignments of
 | 
						|
// all stack objects, fixed- and variable-sized). All local objects[1] will
 | 
						|
// then use AP as the base pointer.
 | 
						|
// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
 | 
						|
// their name from being allocated at fixed locations on the stack, relative
 | 
						|
// to the FP. In the presence of dynamic allocation and local alignment, such
 | 
						|
// objects can only be accessed through the FP.
 | 
						|
//
 | 
						|
// Illustration of the AP:
 | 
						|
//                                                                FP --+
 | 
						|
//                                                                     |
 | 
						|
// ---------------+---------------------+-----+-----------------------++-+--
 | 
						|
//   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
 | 
						|
//   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
 | 
						|
// ---------------+---------------------+-----+-----------------+-----+--+--
 | 
						|
//                                      |<-- Multiple of the -->|
 | 
						|
//                                           stack alignment    +-- AP
 | 
						|
//
 | 
						|
// The AP is set up at the beginning of the function. Since it is not a dedi-
 | 
						|
// cated (reserved) register, it needs to be kept live throughout the function
 | 
						|
// to be available as the base register for local object accesses.
 | 
						|
// Normally, an address of a stack objects is obtained by a pseudo-instruction
 | 
						|
// TFR_FI. To access local objects with the AP register present, a different
 | 
						|
// pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
 | 
						|
// argument compared to TFR_FI: the first input register is the AP register.
 | 
						|
// This keeps the register live between its definition and its uses.
 | 
						|
 | 
						|
// The AP register is originally set up using pseudo-instruction ALIGNA:
 | 
						|
//   AP = ALIGNA A
 | 
						|
// where
 | 
						|
//   A  - required stack alignment
 | 
						|
// The alignment value must be the maximum of all alignments required by
 | 
						|
// any stack object.
 | 
						|
 | 
						|
// The dynamic allocation uses a pseudo-instruction ALLOCA:
 | 
						|
//   Rd = ALLOCA Rs, A
 | 
						|
// where
 | 
						|
//   Rd - address of the allocated space
 | 
						|
//   Rs - minimum size (the actual allocated can be larger to accommodate
 | 
						|
//        alignment)
 | 
						|
//   A  - required alignment
 | 
						|
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
 | 
						|
    cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
 | 
						|
 | 
						|
 | 
						|
static cl::opt<int> NumberScavengerSlots("number-scavenger-slots",
 | 
						|
    cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
 | 
						|
    cl::ZeroOrMore);
 | 
						|
 | 
						|
static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
 | 
						|
    cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
 | 
						|
    cl::init(6), cl::ZeroOrMore);
 | 
						|
 | 
						|
static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
 | 
						|
    cl::Hidden, cl::desc("Specify Os spill func threshold"),
 | 
						|
    cl::init(1), cl::ZeroOrMore);
 | 
						|
 | 
						|
static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
 | 
						|
    cl::init(true), cl::Hidden, cl::ZeroOrMore,
 | 
						|
    cl::desc("Enable stack frame shrink wrapping"));
 | 
						|
 | 
						|
static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
 | 
						|
    "shrink-wraps"));
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// Map a register pair Reg to the subregister that has the greater "number",
 | 
						|
  /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
 | 
						|
  unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
 | 
						|
                                  bool hireg = true) {
 | 
						|
    if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
 | 
						|
      return Reg;
 | 
						|
 | 
						|
    unsigned RegNo = 0;
 | 
						|
    for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
 | 
						|
      if (hireg) {
 | 
						|
        if (*SubRegs > RegNo)
 | 
						|
          RegNo = *SubRegs;
 | 
						|
      } else {
 | 
						|
        if (!RegNo || *SubRegs < RegNo)
 | 
						|
          RegNo = *SubRegs;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return RegNo;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the callee saved register with the largest id in the vector.
 | 
						|
  unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
 | 
						|
                                const TargetRegisterInfo &TRI) {
 | 
						|
    assert(Hexagon::R1 > 0 &&
 | 
						|
           "Assume physical registers are encoded as positive integers");
 | 
						|
    if (CSI.empty())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
 | 
						|
    for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
 | 
						|
      unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
 | 
						|
      if (Reg > Max)
 | 
						|
        Max = Reg;
 | 
						|
    }
 | 
						|
    return Max;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Checks if the basic block contains any instruction that needs a stack
 | 
						|
  /// frame to be already in place.
 | 
						|
  bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) {
 | 
						|
    for (auto &I : MBB) {
 | 
						|
      const MachineInstr *MI = &I;
 | 
						|
      if (MI->isCall())
 | 
						|
        return true;
 | 
						|
      unsigned Opc = MI->getOpcode();
 | 
						|
      switch (Opc) {
 | 
						|
        case Hexagon::ALLOCA:
 | 
						|
        case Hexagon::ALIGNA:
 | 
						|
          return true;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      // Check individual operands.
 | 
						|
      for (const MachineOperand &MO : MI->operands()) {
 | 
						|
        // While the presence of a frame index does not prove that a stack
 | 
						|
        // frame will be required, all frame indexes should be within alloc-
 | 
						|
        // frame/deallocframe. Otherwise, the code that translates a frame
 | 
						|
        // index into an offset would have to be aware of the placement of
 | 
						|
        // the frame creation/destruction instructions.
 | 
						|
        if (MO.isFI())
 | 
						|
          return true;
 | 
						|
        if (!MO.isReg())
 | 
						|
          continue;
 | 
						|
        unsigned R = MO.getReg();
 | 
						|
        // Virtual registers will need scavenging, which then may require
 | 
						|
        // a stack slot.
 | 
						|
        if (TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
          return true;
 | 
						|
        if (CSR[R])
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns true if MBB has a machine instructions that indicates a tail call
 | 
						|
  /// in the block.
 | 
						|
  bool hasTailCall(const MachineBasicBlock &MBB) {
 | 
						|
    MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
 | 
						|
    unsigned RetOpc = I->getOpcode();
 | 
						|
    return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns true if MBB contains an instruction that returns.
 | 
						|
  bool hasReturn(const MachineBasicBlock &MBB) {
 | 
						|
    for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
 | 
						|
      if (I->isReturn())
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Implements shrink-wrapping of the stack frame. By default, stack frame
 | 
						|
/// is created in the function entry block, and is cleaned up in every block
 | 
						|
/// that returns. This function finds alternate blocks: one for the frame
 | 
						|
/// setup (prolog) and one for the cleanup (epilog).
 | 
						|
void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
 | 
						|
      MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
 | 
						|
  static unsigned ShrinkCounter = 0;
 | 
						|
 | 
						|
  if (ShrinkLimit.getPosition()) {
 | 
						|
    if (ShrinkCounter >= ShrinkLimit)
 | 
						|
      return;
 | 
						|
    ShrinkCounter++;
 | 
						|
  }
 | 
						|
 | 
						|
  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
 | 
						|
  auto &HRI = *HST.getRegisterInfo();
 | 
						|
 | 
						|
  MachineDominatorTree MDT;
 | 
						|
  MDT.runOnMachineFunction(MF);
 | 
						|
  MachinePostDominatorTree MPT;
 | 
						|
  MPT.runOnMachineFunction(MF);
 | 
						|
 | 
						|
  typedef DenseMap<unsigned,unsigned> UnsignedMap;
 | 
						|
  UnsignedMap RPO;
 | 
						|
  typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
 | 
						|
  RPOTType RPOT(&MF);
 | 
						|
  unsigned RPON = 0;
 | 
						|
  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
 | 
						|
    RPO[(*I)->getNumber()] = RPON++;
 | 
						|
 | 
						|
  // Don't process functions that have loops, at least for now. Placement
 | 
						|
  // of prolog and epilog must take loop structure into account. For simpli-
 | 
						|
  // city don't do it right now.
 | 
						|
  for (auto &I : MF) {
 | 
						|
    unsigned BN = RPO[I.getNumber()];
 | 
						|
    for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
 | 
						|
      // If found a back-edge, return.
 | 
						|
      if (RPO[(*SI)->getNumber()] <= BN)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect the set of blocks that need a stack frame to execute. Scan
 | 
						|
  // each block for uses/defs of callee-saved registers, calls, etc.
 | 
						|
  SmallVector<MachineBasicBlock*,16> SFBlocks;
 | 
						|
  BitVector CSR(Hexagon::NUM_TARGET_REGS);
 | 
						|
  for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
 | 
						|
    CSR[*P] = true;
 | 
						|
 | 
						|
  for (auto &I : MF)
 | 
						|
    if (needsStackFrame(I, CSR))
 | 
						|
      SFBlocks.push_back(&I);
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "Blocks needing SF: {";
 | 
						|
    for (auto &B : SFBlocks)
 | 
						|
      dbgs() << " BB#" << B->getNumber();
 | 
						|
    dbgs() << " }\n";
 | 
						|
  });
 | 
						|
  // No frame needed?
 | 
						|
  if (SFBlocks.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Pick a common dominator and a common post-dominator.
 | 
						|
  MachineBasicBlock *DomB = SFBlocks[0];
 | 
						|
  for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
 | 
						|
    DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
 | 
						|
    if (!DomB)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  MachineBasicBlock *PDomB = SFBlocks[0];
 | 
						|
  for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
 | 
						|
    PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
 | 
						|
    if (!PDomB)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "Computed dom block: BB#";
 | 
						|
    if (DomB) dbgs() << DomB->getNumber();
 | 
						|
    else      dbgs() << "<null>";
 | 
						|
    dbgs() << ", computed pdom block: BB#";
 | 
						|
    if (PDomB) dbgs() << PDomB->getNumber();
 | 
						|
    else       dbgs() << "<null>";
 | 
						|
    dbgs() << "\n";
 | 
						|
  });
 | 
						|
  if (!DomB || !PDomB)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
 | 
						|
  if (!MDT.dominates(DomB, PDomB)) {
 | 
						|
    DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!MPT.dominates(PDomB, DomB)) {
 | 
						|
    DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, everything seems right.
 | 
						|
  PrologB = DomB;
 | 
						|
  EpilogB = PDomB;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform most of the PEI work here:
 | 
						|
/// - saving/restoring of the callee-saved registers,
 | 
						|
/// - stack frame creation and destruction.
 | 
						|
/// Normally, this work is distributed among various functions, but doing it
 | 
						|
/// in one place allows shrink-wrapping of the stack frame.
 | 
						|
void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
 | 
						|
                                        MachineBasicBlock &MBB) const {
 | 
						|
  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
 | 
						|
  auto &HRI = *HST.getRegisterInfo();
 | 
						|
 | 
						|
  assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
 | 
						|
 | 
						|
  MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
 | 
						|
  if (EnableShrinkWrapping)
 | 
						|
    findShrunkPrologEpilog(MF, PrologB, EpilogB);
 | 
						|
 | 
						|
  insertCSRSpillsInBlock(*PrologB, CSI, HRI);
 | 
						|
  insertPrologueInBlock(*PrologB);
 | 
						|
 | 
						|
  if (EpilogB) {
 | 
						|
    insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
 | 
						|
    insertEpilogueInBlock(*EpilogB);
 | 
						|
  } else {
 | 
						|
    for (auto &B : MF)
 | 
						|
      if (!B.empty() && B.back().isReturn())
 | 
						|
        insertCSRRestoresInBlock(B, CSI, HRI);
 | 
						|
 | 
						|
    for (auto &B : MF)
 | 
						|
      if (!B.empty() && B.back().isReturn())
 | 
						|
        insertEpilogueInBlock(B);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MachineModuleInfo &MMI = MF.getMMI();
 | 
						|
  MachineBasicBlock::iterator MBBI = MBB.begin();
 | 
						|
  auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
 | 
						|
  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
 | 
						|
  auto &HII = *HST.getInstrInfo();
 | 
						|
  auto &HRI = *HST.getRegisterInfo();
 | 
						|
  DebugLoc dl;
 | 
						|
 | 
						|
  unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
 | 
						|
 | 
						|
  // Calculate the total stack frame size.
 | 
						|
  // Get the number of bytes to allocate from the FrameInfo.
 | 
						|
  unsigned FrameSize = MFI->getStackSize();
 | 
						|
  // Round up the max call frame size to the max alignment on the stack.
 | 
						|
  unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign);
 | 
						|
  MFI->setMaxCallFrameSize(MaxCFA);
 | 
						|
 | 
						|
  FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign);
 | 
						|
  MFI->setStackSize(FrameSize);
 | 
						|
 | 
						|
  bool AlignStack = (MaxAlign > getStackAlignment());
 | 
						|
 | 
						|
  // Check if frame moves are needed for EH.
 | 
						|
  bool needsFrameMoves = MMI.hasDebugInfo() ||
 | 
						|
    MF.getFunction()->needsUnwindTableEntry();
 | 
						|
 | 
						|
  // Get the number of bytes to allocate from the FrameInfo.
 | 
						|
  unsigned NumBytes = MFI->getStackSize();
 | 
						|
  unsigned SP = HRI.getStackRegister();
 | 
						|
  unsigned MaxCF = MFI->getMaxCallFrameSize();
 | 
						|
  MachineBasicBlock::iterator InsertPt = MBB.begin();
 | 
						|
 | 
						|
  auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
 | 
						|
 | 
						|
  for (auto MI : AdjustRegs) {
 | 
						|
    assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
 | 
						|
    expandAlloca(MI, HII, SP, MaxCF);
 | 
						|
    MI->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  //
 | 
						|
  // Only insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
 | 
						|
  // that this shouldn't be required, but doing so now because gcc does and
 | 
						|
  // gdb can't break at the start of the function without it.  Will remove if
 | 
						|
  // this turns out to be a gdb bug.
 | 
						|
  //
 | 
						|
  bool NoOpt = (HTM.getOptLevel() == CodeGenOpt::None);
 | 
						|
  if (!NoOpt && !FuncInfo->hasClobberLR() && !hasFP(MF))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check for overflow.
 | 
						|
  // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
 | 
						|
  const unsigned int ALLOCFRAME_MAX = 16384;
 | 
						|
 | 
						|
  // Create a dummy memory operand to avoid allocframe from being treated as
 | 
						|
  // a volatile memory reference.
 | 
						|
  MachineMemOperand *MMO =
 | 
						|
    MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
 | 
						|
                            4, 4);
 | 
						|
 | 
						|
  if (NumBytes >= ALLOCFRAME_MAX) {
 | 
						|
    // Emit allocframe(#0).
 | 
						|
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
 | 
						|
      .addImm(0)
 | 
						|
      .addMemOperand(MMO);
 | 
						|
 | 
						|
    // Subtract offset from frame pointer.
 | 
						|
    // We use a caller-saved non-parameter register for that.
 | 
						|
    unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
 | 
						|
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
 | 
						|
            CallerSavedReg).addImm(NumBytes);
 | 
						|
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
 | 
						|
      .addReg(SP)
 | 
						|
      .addReg(CallerSavedReg);
 | 
						|
  } else {
 | 
						|
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
 | 
						|
      .addImm(NumBytes)
 | 
						|
      .addMemOperand(MMO);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AlignStack) {
 | 
						|
    BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
 | 
						|
        .addReg(SP)
 | 
						|
        .addImm(-int64_t(MaxAlign));
 | 
						|
  }
 | 
						|
 | 
						|
  if (needsFrameMoves) {
 | 
						|
    std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
 | 
						|
    MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
 | 
						|
 | 
						|
    // Advance CFA. DW_CFA_def_cfa
 | 
						|
    unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
 | 
						|
    unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
 | 
						|
 | 
						|
    // CFA = FP + 8
 | 
						|
    unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
 | 
						|
                                               FrameLabel, DwFPReg, -8));
 | 
						|
    BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
           .addCFIIndex(CFIIndex);
 | 
						|
 | 
						|
    // R31 (return addr) = CFA - #4
 | 
						|
    CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
 | 
						|
                                               FrameLabel, DwRAReg, -4));
 | 
						|
    BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
           .addCFIIndex(CFIIndex);
 | 
						|
 | 
						|
    // R30 (frame ptr) = CFA - #8)
 | 
						|
    CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
 | 
						|
                                               FrameLabel, DwFPReg, -8));
 | 
						|
    BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
           .addCFIIndex(CFIIndex);
 | 
						|
 | 
						|
    unsigned int regsToMove[] = {
 | 
						|
      Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
 | 
						|
      Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
 | 
						|
      Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
 | 
						|
      Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
 | 
						|
      Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,  Hexagon::D10,
 | 
						|
      Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister
 | 
						|
    };
 | 
						|
 | 
						|
    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
 | 
						|
 | 
						|
    for (unsigned i = 0; regsToMove[i] != Hexagon::NoRegister; ++i) {
 | 
						|
      for (unsigned I = 0, E = CSI.size(); I < E; ++I) {
 | 
						|
        if (CSI[I].getReg() == regsToMove[i]) {
 | 
						|
          // Subtract 8 to make room for R30 and R31, which are added above.
 | 
						|
          int64_t Offset = getFrameIndexOffset(MF, CSI[I].getFrameIdx()) - 8;
 | 
						|
 | 
						|
          if (regsToMove[i] < Hexagon::D0 || regsToMove[i] > Hexagon::D15) {
 | 
						|
            unsigned DwarfReg = HRI.getDwarfRegNum(regsToMove[i], true);
 | 
						|
            unsigned CFIIndex = MMI.addFrameInst(
 | 
						|
                                    MCCFIInstruction::createOffset(FrameLabel,
 | 
						|
                                                        DwarfReg, Offset));
 | 
						|
            BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
                   .addCFIIndex(CFIIndex);
 | 
						|
          } else {
 | 
						|
            // Split the double regs into subregs, and generate appropriate
 | 
						|
            // cfi_offsets.
 | 
						|
            // The only reason, we are split double regs is, llvm-mc does not
 | 
						|
            // understand paired registers for cfi_offset.
 | 
						|
            // Eg .cfi_offset r1:0, -64
 | 
						|
            unsigned HiReg = getMax32BitSubRegister(regsToMove[i], HRI);
 | 
						|
            unsigned LoReg = getMax32BitSubRegister(regsToMove[i], HRI, false);
 | 
						|
            unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
 | 
						|
            unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
 | 
						|
            unsigned HiCFIIndex = MMI.addFrameInst(
 | 
						|
                                    MCCFIInstruction::createOffset(FrameLabel,
 | 
						|
                                                        HiDwarfReg, Offset+4));
 | 
						|
            BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
                   .addCFIIndex(HiCFIIndex);
 | 
						|
            unsigned LoCFIIndex = MMI.addFrameInst(
 | 
						|
                                    MCCFIInstruction::createOffset(FrameLabel,
 | 
						|
                                                        LoDwarfReg, Offset));
 | 
						|
            BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
                   .addCFIIndex(LoCFIIndex);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } // for CSI.size()
 | 
						|
    } // for regsToMove
 | 
						|
  } // needsFrameMoves
 | 
						|
}
 | 
						|
 | 
						|
void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  //
 | 
						|
  // Only insert deallocframe if we need to.  Also at -O0.  See comment
 | 
						|
  // in insertPrologueInBlock above.
 | 
						|
  //
 | 
						|
  if (!hasFP(MF) && MF.getTarget().getOptLevel() != CodeGenOpt::None)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
 | 
						|
  auto &HII = *HST.getInstrInfo();
 | 
						|
  auto &HRI = *HST.getRegisterInfo();
 | 
						|
  unsigned SP = HRI.getStackRegister();
 | 
						|
 | 
						|
  MachineInstr *RetI = nullptr;
 | 
						|
  for (auto &I : MBB) {
 | 
						|
    if (!I.isReturn())
 | 
						|
      continue;
 | 
						|
    RetI = &I;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
 | 
						|
  DebugLoc DL;
 | 
						|
  if (InsertPt != MBB.end())
 | 
						|
    DL = InsertPt->getDebugLoc();
 | 
						|
  else if (!MBB.empty())
 | 
						|
    DL = std::prev(MBB.end())->getDebugLoc();
 | 
						|
 | 
						|
  // Handle EH_RETURN.
 | 
						|
  if (RetOpc == Hexagon::EH_RETURN_JMPR) {
 | 
						|
    BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
 | 
						|
    BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
 | 
						|
        .addReg(SP)
 | 
						|
        .addReg(Hexagon::R28);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
 | 
						|
  // frame instruction if we encounter it.
 | 
						|
  if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
 | 
						|
    MachineBasicBlock::iterator It = RetI;
 | 
						|
    ++It;
 | 
						|
    // Delete all instructions after the RESTORE (except labels).
 | 
						|
    while (It != MBB.end()) {
 | 
						|
      if (!It->isLabel())
 | 
						|
        It = MBB.erase(It);
 | 
						|
      else
 | 
						|
        ++It;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // It is possible that the restoring code is a call to a library function.
 | 
						|
  // All of the restore* functions include "deallocframe", so we need to make
 | 
						|
  // sure that we don't add an extra one.
 | 
						|
  bool NeedsDeallocframe = true;
 | 
						|
  if (!MBB.empty() && InsertPt != MBB.begin()) {
 | 
						|
    MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
 | 
						|
    unsigned COpc = PrevIt->getOpcode();
 | 
						|
    if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
 | 
						|
      NeedsDeallocframe = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NeedsDeallocframe)
 | 
						|
    return;
 | 
						|
  // If the returning instruction is JMPret, replace it with dealloc_return,
 | 
						|
  // otherwise just add deallocframe. The function could be returning via a
 | 
						|
  // tail call.
 | 
						|
  if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
 | 
						|
    BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  unsigned NewOpc = Hexagon::L4_return;
 | 
						|
  MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
 | 
						|
  // Transfer the function live-out registers.
 | 
						|
  NewI->copyImplicitOps(MF, RetI);
 | 
						|
  MBB.erase(RetI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  const HexagonMachineFunctionInfo *FuncInfo =
 | 
						|
    MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  return MFI->hasCalls() || MFI->getStackSize() > 0 ||
 | 
						|
         FuncInfo->hasClobberLR();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
enum SpillKind {
 | 
						|
  SK_ToMem,
 | 
						|
  SK_FromMem,
 | 
						|
  SK_FromMemTailcall
 | 
						|
};
 | 
						|
 | 
						|
static const char *
 | 
						|
getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) {
 | 
						|
  const char * V4SpillToMemoryFunctions[] = {
 | 
						|
    "__save_r16_through_r17",
 | 
						|
    "__save_r16_through_r19",
 | 
						|
    "__save_r16_through_r21",
 | 
						|
    "__save_r16_through_r23",
 | 
						|
    "__save_r16_through_r25",
 | 
						|
    "__save_r16_through_r27" };
 | 
						|
 | 
						|
  const char * V4SpillFromMemoryFunctions[] = {
 | 
						|
    "__restore_r16_through_r17_and_deallocframe",
 | 
						|
    "__restore_r16_through_r19_and_deallocframe",
 | 
						|
    "__restore_r16_through_r21_and_deallocframe",
 | 
						|
    "__restore_r16_through_r23_and_deallocframe",
 | 
						|
    "__restore_r16_through_r25_and_deallocframe",
 | 
						|
    "__restore_r16_through_r27_and_deallocframe" };
 | 
						|
 | 
						|
  const char * V4SpillFromMemoryTailcallFunctions[] = {
 | 
						|
    "__restore_r16_through_r17_and_deallocframe_before_tailcall",
 | 
						|
    "__restore_r16_through_r19_and_deallocframe_before_tailcall",
 | 
						|
    "__restore_r16_through_r21_and_deallocframe_before_tailcall",
 | 
						|
    "__restore_r16_through_r23_and_deallocframe_before_tailcall",
 | 
						|
    "__restore_r16_through_r25_and_deallocframe_before_tailcall",
 | 
						|
    "__restore_r16_through_r27_and_deallocframe_before_tailcall"
 | 
						|
  };
 | 
						|
 | 
						|
  const char **SpillFunc = nullptr;
 | 
						|
 | 
						|
  switch(SpillType) {
 | 
						|
  case SK_ToMem:
 | 
						|
    SpillFunc = V4SpillToMemoryFunctions;
 | 
						|
    break;
 | 
						|
  case SK_FromMem:
 | 
						|
    SpillFunc = V4SpillFromMemoryFunctions;
 | 
						|
    break;
 | 
						|
  case SK_FromMemTailcall:
 | 
						|
    SpillFunc = V4SpillFromMemoryTailcallFunctions;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  assert(SpillFunc && "Unknown spill kind");
 | 
						|
 | 
						|
  // Spill all callee-saved registers up to the highest register used.
 | 
						|
  switch (MaxReg) {
 | 
						|
  case Hexagon::R17:
 | 
						|
    return SpillFunc[0];
 | 
						|
  case Hexagon::R19:
 | 
						|
    return SpillFunc[1];
 | 
						|
  case Hexagon::R21:
 | 
						|
    return SpillFunc[2];
 | 
						|
  case Hexagon::R23:
 | 
						|
    return SpillFunc[3];
 | 
						|
  case Hexagon::R25:
 | 
						|
    return SpillFunc[4];
 | 
						|
  case Hexagon::R27:
 | 
						|
    return SpillFunc[5];
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unhandled maximum callee save register");
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Adds all callee-saved registers up to MaxReg to the instruction.
 | 
						|
static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst,
 | 
						|
                                           unsigned MaxReg, bool IsDef) {
 | 
						|
  // Add the callee-saved registers as implicit uses.
 | 
						|
  for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) {
 | 
						|
    MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true);
 | 
						|
    Inst->addOperand(ImpUse);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int HexagonFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
 | 
						|
      int FI) const {
 | 
						|
  return MF.getFrameInfo()->getObjectOffset(FI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
 | 
						|
      const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
 | 
						|
  if (CSI.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MI = MBB.begin();
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
 | 
						|
 | 
						|
  if (useSpillFunction(MF, CSI)) {
 | 
						|
    unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
 | 
						|
    const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem);
 | 
						|
    // Call spill function.
 | 
						|
    DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
 | 
						|
    MachineInstr *SaveRegsCall =
 | 
						|
        BuildMI(MBB, MI, DL, TII.get(Hexagon::SAVE_REGISTERS_CALL_V4))
 | 
						|
          .addExternalSymbol(SpillFun);
 | 
						|
    // Add callee-saved registers as use.
 | 
						|
    addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false);
 | 
						|
    // Add live in registers.
 | 
						|
    for (unsigned I = 0; I < CSI.size(); ++I)
 | 
						|
      MBB.addLiveIn(CSI[I].getReg());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
 | 
						|
    unsigned Reg = CSI[i].getReg();
 | 
						|
    // Add live in registers. We treat eh_return callee saved register r0 - r3
 | 
						|
    // specially. They are not really callee saved registers as they are not
 | 
						|
    // supposed to be killed.
 | 
						|
    bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
 | 
						|
    int FI = CSI[i].getFrameIdx();
 | 
						|
    const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
 | 
						|
    TII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
 | 
						|
    if (IsKill)
 | 
						|
      MBB.addLiveIn(Reg);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
 | 
						|
      const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
 | 
						|
  if (CSI.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
 | 
						|
 | 
						|
  if (useRestoreFunction(MF, CSI)) {
 | 
						|
    bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
 | 
						|
    unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
 | 
						|
    SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
 | 
						|
    const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
 | 
						|
 | 
						|
    // Call spill function.
 | 
						|
    DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
 | 
						|
                                  : MBB.getLastNonDebugInstr()->getDebugLoc();
 | 
						|
    MachineInstr *DeallocCall = nullptr;
 | 
						|
 | 
						|
    if (HasTC) {
 | 
						|
      unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
 | 
						|
      DeallocCall = BuildMI(MBB, MI, DL, TII.get(ROpc))
 | 
						|
          .addExternalSymbol(RestoreFn);
 | 
						|
    } else {
 | 
						|
      // The block has a return.
 | 
						|
      MachineBasicBlock::iterator It = MBB.getFirstTerminator();
 | 
						|
      assert(It->isReturn() && std::next(It) == MBB.end());
 | 
						|
      unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
 | 
						|
      DeallocCall = BuildMI(MBB, It, DL, TII.get(ROpc))
 | 
						|
          .addExternalSymbol(RestoreFn);
 | 
						|
      // Transfer the function live-out registers.
 | 
						|
      DeallocCall->copyImplicitOps(MF, It);
 | 
						|
    }
 | 
						|
    addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i < CSI.size(); ++i) {
 | 
						|
    unsigned Reg = CSI[i].getReg();
 | 
						|
    const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
 | 
						|
    int FI = CSI[i].getFrameIdx();
 | 
						|
    TII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF,
 | 
						|
      MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
 | 
						|
  MachineInstr &MI = *I;
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  (void)Opc; // Silence compiler warning.
 | 
						|
  assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
 | 
						|
         "Cannot handle this call frame pseudo instruction");
 | 
						|
  MBB.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
 | 
						|
    MachineFunction &MF, RegScavenger *RS) const {
 | 
						|
  // If this function has uses aligned stack and also has variable sized stack
 | 
						|
  // objects, then we need to map all spill slots to fixed positions, so that
 | 
						|
  // they can be accessed through FP. Otherwise they would have to be accessed
 | 
						|
  // via AP, which may not be available at the particular place in the program.
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  bool HasAlloca = MFI->hasVarSizedObjects();
 | 
						|
  bool HasAligna = (MFI->getMaxAlignment() > getStackAlignment());
 | 
						|
 | 
						|
  if (!HasAlloca || !HasAligna)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned LFS = MFI->getLocalFrameSize();
 | 
						|
  int Offset = -LFS;
 | 
						|
  for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
 | 
						|
    if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
 | 
						|
      continue;
 | 
						|
    int S = MFI->getObjectSize(i);
 | 
						|
    LFS += S;
 | 
						|
    Offset -= S;
 | 
						|
    MFI->mapLocalFrameObject(i, Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  MFI->setLocalFrameSize(LFS);
 | 
						|
  unsigned A = MFI->getLocalFrameMaxAlign();
 | 
						|
  assert(A <= 8 && "Unexpected local frame alignment");
 | 
						|
  if (A == 0)
 | 
						|
    MFI->setLocalFrameMaxAlign(8);
 | 
						|
  MFI->setUseLocalStackAllocationBlock(true);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if there is no caller saved registers available.
 | 
						|
static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
 | 
						|
                                              const HexagonRegisterInfo &HRI) {
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF);
 | 
						|
  // Check for an unused caller-saved register.
 | 
						|
  for ( ; *CallerSavedRegs; ++CallerSavedRegs) {
 | 
						|
    MCPhysReg FreeReg = *CallerSavedRegs;
 | 
						|
    if (MRI.isPhysRegUsed(FreeReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check aliased register usage.
 | 
						|
    bool IsCurrentRegUsed = false;
 | 
						|
    for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI)
 | 
						|
      if (MRI.isPhysRegUsed(*AI)) {
 | 
						|
        IsCurrentRegUsed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (IsCurrentRegUsed)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Neither directly used nor used through an aliased register.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // All caller-saved registers are used.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Replaces the predicate spill code pseudo instructions by valid instructions.
 | 
						|
bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF)
 | 
						|
      const {
 | 
						|
  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
 | 
						|
  auto &HII = *HST.getInstrInfo();
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  bool HasReplacedPseudoInst = false;
 | 
						|
  // Replace predicate spill pseudo instructions by real code.
 | 
						|
  // Loop over all of the basic blocks.
 | 
						|
  for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
 | 
						|
       MBBb != MBBe; ++MBBb) {
 | 
						|
    MachineBasicBlock* MBB = MBBb;
 | 
						|
    // Traverse the basic block.
 | 
						|
    MachineBasicBlock::iterator NextII;
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
 | 
						|
         MII = NextII) {
 | 
						|
      MachineInstr *MI = MII;
 | 
						|
      NextII = std::next(MII);
 | 
						|
      int Opc = MI->getOpcode();
 | 
						|
      if (Opc == Hexagon::STriw_pred) {
 | 
						|
        HasReplacedPseudoInst = true;
 | 
						|
        // STriw_pred FI, 0, SrcReg;
 | 
						|
        unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
        unsigned SrcReg = MI->getOperand(2).getReg();
 | 
						|
        bool IsOrigSrcRegKilled = MI->getOperand(2).isKill();
 | 
						|
 | 
						|
        assert(MI->getOperand(0).isFI() && "Expect a frame index");
 | 
						|
        assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
 | 
						|
               "Not a predicate register");
 | 
						|
 | 
						|
        // Insert transfer to general purpose register.
 | 
						|
        //   VirtReg = C2_tfrpr SrcPredReg
 | 
						|
        BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr),
 | 
						|
                VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled));
 | 
						|
 | 
						|
        // Change instruction to S2_storeri_io.
 | 
						|
        //   S2_storeri_io FI, 0, VirtReg
 | 
						|
        MI->setDesc(HII.get(Hexagon::S2_storeri_io));
 | 
						|
        MI->getOperand(2).setReg(VirtReg);
 | 
						|
        MI->getOperand(2).setIsKill();
 | 
						|
 | 
						|
      } else if (Opc == Hexagon::LDriw_pred) {
 | 
						|
        // DstReg = LDriw_pred FI, 0
 | 
						|
        MachineOperand &M0 = MI->getOperand(0);
 | 
						|
        if (M0.isDead()) {
 | 
						|
          MBB->erase(MII);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
        unsigned DestReg = MI->getOperand(0).getReg();
 | 
						|
 | 
						|
        assert(MI->getOperand(1).isFI() && "Expect a frame index");
 | 
						|
        assert(Hexagon::PredRegsRegClass.contains(DestReg) &&
 | 
						|
               "Not a predicate register");
 | 
						|
 | 
						|
        // Change instruction to L2_loadri_io.
 | 
						|
        //   VirtReg = L2_loadri_io FI, 0
 | 
						|
        MI->setDesc(HII.get(Hexagon::L2_loadri_io));
 | 
						|
        MI->getOperand(0).setReg(VirtReg);
 | 
						|
 | 
						|
        // Insert transfer to general purpose register.
 | 
						|
        //   DestReg = C2_tfrrp VirtReg
 | 
						|
        const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp);
 | 
						|
        BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg)
 | 
						|
          .addReg(VirtReg, getKillRegState(true));
 | 
						|
        HasReplacedPseudoInst = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return HasReplacedPseudoInst;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonFrameLowering::processFunctionBeforeCalleeSavedScan(
 | 
						|
      MachineFunction &MF, RegScavenger* RS) const {
 | 
						|
  auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
 | 
						|
  auto &HRI = *HST.getRegisterInfo();
 | 
						|
 | 
						|
  bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
 | 
						|
 | 
						|
  // If we have a function containing __builtin_eh_return we want to spill and
 | 
						|
  // restore all callee saved registers. Pretend that they are used.
 | 
						|
  if (HasEHReturn) {
 | 
						|
    MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
    for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs;
 | 
						|
         ++CSRegs)
 | 
						|
      if (!MRI.isPhysRegUsed(*CSRegs))
 | 
						|
        MRI.setPhysRegUsed(*CSRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  const TargetRegisterClass &RC = Hexagon::IntRegsRegClass;
 | 
						|
 | 
						|
  // Replace predicate register pseudo spill code.
 | 
						|
  bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF);
 | 
						|
 | 
						|
  // We need to reserve a a spill slot if scavenging could potentially require
 | 
						|
  // spilling a scavenged register.
 | 
						|
  if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) {
 | 
						|
    MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
    for (int i=0; i < NumberScavengerSlots; i++)
 | 
						|
      RS->addScavengingFrameIndex(
 | 
						|
        MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
 | 
						|
  dbgs() << '{';
 | 
						|
  for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    dbgs() << ' ' << PrintReg(R, &TRI);
 | 
						|
  }
 | 
						|
  dbgs() << " }";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
 | 
						|
      const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
 | 
						|
  DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
 | 
						|
               << MF.getFunction()->getName() << '\n');
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  BitVector SRegs(Hexagon::NUM_TARGET_REGS);
 | 
						|
 | 
						|
  // Generate a set of unique, callee-saved registers (SRegs), where each
 | 
						|
  // register in the set is maximal in terms of sub-/super-register relation,
 | 
						|
  // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
 | 
						|
 | 
						|
  // (1) For each callee-saved register, add that register and all of its
 | 
						|
  // sub-registers to SRegs.
 | 
						|
  DEBUG(dbgs() << "Initial CS registers: {");
 | 
						|
  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
 | 
						|
    unsigned R = CSI[i].getReg();
 | 
						|
    DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
 | 
						|
    for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
 | 
						|
      SRegs[*SR] = true;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << " }\n");
 | 
						|
  DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
 | 
						|
 | 
						|
  // (2) For each reserved register, remove that register and all of its
 | 
						|
  // sub- and super-registers from SRegs.
 | 
						|
  BitVector Reserved = TRI->getReservedRegs(MF);
 | 
						|
  for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
 | 
						|
      SRegs[*SR] = false;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); dbgs() << "\n");
 | 
						|
  DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
 | 
						|
 | 
						|
  // (3) Collect all registers that have at least one sub-register in SRegs,
 | 
						|
  // and also have no sub-registers that are reserved. These will be the can-
 | 
						|
  // didates for saving as a whole instead of their individual sub-registers.
 | 
						|
  // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
 | 
						|
  BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
 | 
						|
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
 | 
						|
      TmpSup[*SR] = true;
 | 
						|
  }
 | 
						|
  for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
 | 
						|
      if (!Reserved[*SR])
 | 
						|
        continue;
 | 
						|
      TmpSup[R] = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
 | 
						|
 | 
						|
  // (4) Include all super-registers found in (3) into SRegs.
 | 
						|
  SRegs |= TmpSup;
 | 
						|
  DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
 | 
						|
 | 
						|
  // (5) For each register R in SRegs, if any super-register of R is in SRegs,
 | 
						|
  // remove R from SRegs.
 | 
						|
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
 | 
						|
      if (!SRegs[*SR])
 | 
						|
        continue;
 | 
						|
      SRegs[R] = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
 | 
						|
 | 
						|
  // Now, for each register that has a fixed stack slot, create the stack
 | 
						|
  // object for it.
 | 
						|
  CSI.clear();
 | 
						|
 | 
						|
  typedef TargetFrameLowering::SpillSlot SpillSlot;
 | 
						|
  unsigned NumFixed;
 | 
						|
  int MinOffset = 0;  // CS offsets are negative.
 | 
						|
  const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
 | 
						|
  for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
 | 
						|
    if (!SRegs[S->Reg])
 | 
						|
      continue;
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
 | 
						|
    int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
 | 
						|
    MinOffset = std::min(MinOffset, S->Offset);
 | 
						|
    CSI.push_back(CalleeSavedInfo(S->Reg, FI));
 | 
						|
    SRegs[S->Reg] = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // There can be some registers that don't have fixed slots. For example,
 | 
						|
  // we need to store R0-R3 in functions with exception handling. For each
 | 
						|
  // such register, create a non-fixed stack object.
 | 
						|
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
 | 
						|
    int Off = MinOffset - RC->getSize();
 | 
						|
    unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
 | 
						|
    assert(isPowerOf2_32(Align));
 | 
						|
    Off &= -Align;
 | 
						|
    int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
 | 
						|
    MinOffset = std::min(MinOffset, Off);
 | 
						|
    CSI.push_back(CalleeSavedInfo(R, FI));
 | 
						|
    SRegs[R] = false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "CS information: {";
 | 
						|
    for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
 | 
						|
      int FI = CSI[i].getFrameIdx();
 | 
						|
      int Off = MFI->getObjectOffset(FI);
 | 
						|
      dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
 | 
						|
      if (Off >= 0)
 | 
						|
        dbgs() << '+';
 | 
						|
      dbgs() << Off;
 | 
						|
    }
 | 
						|
    dbgs() << " }\n";
 | 
						|
  });
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all registers were handled.
 | 
						|
  bool MissedReg = false;
 | 
						|
  for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
 | 
						|
    unsigned R = x;
 | 
						|
    dbgs() << PrintReg(R, TRI) << ' ';
 | 
						|
    MissedReg = true;
 | 
						|
  }
 | 
						|
  if (MissedReg)
 | 
						|
    llvm_unreachable("...there are unhandled callee-saved registers!");
 | 
						|
#endif
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
 | 
						|
      const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
 | 
						|
  MachineBasicBlock &MB = *AI->getParent();
 | 
						|
  DebugLoc DL = AI->getDebugLoc();
 | 
						|
  unsigned A = AI->getOperand(2).getImm();
 | 
						|
 | 
						|
  // Have
 | 
						|
  //    Rd  = alloca Rs, #A
 | 
						|
  //
 | 
						|
  // If Rs and Rd are different registers, use this sequence:
 | 
						|
  //    Rd  = sub(r29, Rs)
 | 
						|
  //    r29 = sub(r29, Rs)
 | 
						|
  //    Rd  = and(Rd, #-A)    ; if necessary
 | 
						|
  //    r29 = and(r29, #-A)   ; if necessary
 | 
						|
  //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
 | 
						|
  // otherwise, do
 | 
						|
  //    Rd  = sub(r29, Rs)
 | 
						|
  //    Rd  = and(Rd, #-A)    ; if necessary
 | 
						|
  //    r29 = Rd
 | 
						|
  //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
 | 
						|
 | 
						|
  MachineOperand &RdOp = AI->getOperand(0);
 | 
						|
  MachineOperand &RsOp = AI->getOperand(1);
 | 
						|
  unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
 | 
						|
 | 
						|
  // Rd = sub(r29, Rs)
 | 
						|
  BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
 | 
						|
      .addReg(SP)
 | 
						|
      .addReg(Rs);
 | 
						|
  if (Rs != Rd) {
 | 
						|
    // r29 = sub(r29, Rs)
 | 
						|
    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
 | 
						|
        .addReg(SP)
 | 
						|
        .addReg(Rs);
 | 
						|
  }
 | 
						|
  if (A > 8) {
 | 
						|
    // Rd  = and(Rd, #-A)
 | 
						|
    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
 | 
						|
        .addReg(Rd)
 | 
						|
        .addImm(-int64_t(A));
 | 
						|
    if (Rs != Rd)
 | 
						|
      BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
 | 
						|
          .addReg(SP)
 | 
						|
          .addImm(-int64_t(A));
 | 
						|
  }
 | 
						|
  if (Rs == Rd) {
 | 
						|
    // r29 = Rd
 | 
						|
    BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
 | 
						|
        .addReg(Rd);
 | 
						|
  }
 | 
						|
  if (CF > 0) {
 | 
						|
    // Rd = add(Rd, #CF)
 | 
						|
    BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
 | 
						|
        .addReg(Rd)
 | 
						|
        .addImm(CF);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  if (!MFI->hasVarSizedObjects())
 | 
						|
    return false;
 | 
						|
  unsigned MaxA = MFI->getMaxAlignment();
 | 
						|
  if (MaxA <= getStackAlignment())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
MachineInstr *HexagonFrameLowering::getAlignaInstr(MachineFunction &MF) const {
 | 
						|
  for (auto &B : MF)
 | 
						|
    for (auto &I : B)
 | 
						|
      if (I.getOpcode() == Hexagon::ALIGNA)
 | 
						|
        return &I;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline static bool isOptSize(const MachineFunction &MF) {
 | 
						|
  AttributeSet AF = MF.getFunction()->getAttributes();
 | 
						|
  return AF.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                         Attribute::OptimizeForSize);
 | 
						|
}
 | 
						|
 | 
						|
inline static bool isMinSize(const MachineFunction &MF) {
 | 
						|
  AttributeSet AF = MF.getFunction()->getAttributes();
 | 
						|
  return AF.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Determine whether the callee-saved register saves and restores should
 | 
						|
/// be generated via inline code. If this function returns "true", inline
 | 
						|
/// code will be generated. If this function returns "false", additional
 | 
						|
/// checks are performed, which may still lead to the inline code.
 | 
						|
bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
 | 
						|
      const CSIVect &CSI) const {
 | 
						|
  if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
 | 
						|
    return true;
 | 
						|
  if (!isOptSize(MF) && !isMinSize(MF))
 | 
						|
    if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Check if CSI only has double registers, and if the registers form
 | 
						|
  // a contiguous block starting from D8.
 | 
						|
  BitVector Regs(Hexagon::NUM_TARGET_REGS);
 | 
						|
  for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
 | 
						|
    unsigned R = CSI[i].getReg();
 | 
						|
    if (!Hexagon::DoubleRegsRegClass.contains(R))
 | 
						|
      return true;
 | 
						|
    Regs[R] = true;
 | 
						|
  }
 | 
						|
  int F = Regs.find_first();
 | 
						|
  if (F != Hexagon::D8)
 | 
						|
    return true;
 | 
						|
  while (F >= 0) {
 | 
						|
    int N = Regs.find_next(F);
 | 
						|
    if (N >= 0 && N != F+1)
 | 
						|
      return true;
 | 
						|
    F = N;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
 | 
						|
      const CSIVect &CSI) const {
 | 
						|
  if (shouldInlineCSR(MF, CSI))
 | 
						|
    return false;
 | 
						|
  unsigned NumCSI = CSI.size();
 | 
						|
  if (NumCSI <= 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
 | 
						|
                                     : SpillFuncThreshold;
 | 
						|
  return Threshold < NumCSI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
 | 
						|
      const CSIVect &CSI) const {
 | 
						|
  if (shouldInlineCSR(MF, CSI))
 | 
						|
    return false;
 | 
						|
  unsigned NumCSI = CSI.size();
 | 
						|
  unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
 | 
						|
                                     : SpillFuncThreshold;
 | 
						|
  return Threshold < NumCSI;
 | 
						|
}
 | 
						|
 |