mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			372 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_ARRAYREF_H
 | 
						|
#define LLVM_ADT_ARRAYREF_H
 | 
						|
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  /// ArrayRef - Represent a constant reference to an array (0 or more elements
 | 
						|
  /// consecutively in memory), i.e. a start pointer and a length.  It allows
 | 
						|
  /// various APIs to take consecutive elements easily and conveniently.
 | 
						|
  ///
 | 
						|
  /// This class does not own the underlying data, it is expected to be used in
 | 
						|
  /// situations where the data resides in some other buffer, whose lifetime
 | 
						|
  /// extends past that of the ArrayRef. For this reason, it is not in general
 | 
						|
  /// safe to store an ArrayRef.
 | 
						|
  ///
 | 
						|
  /// This is intended to be trivially copyable, so it should be passed by
 | 
						|
  /// value.
 | 
						|
  template<typename T>
 | 
						|
  class ArrayRef {
 | 
						|
  public:
 | 
						|
    typedef const T *iterator;
 | 
						|
    typedef const T *const_iterator;
 | 
						|
    typedef size_t size_type;
 | 
						|
 | 
						|
    typedef std::reverse_iterator<iterator> reverse_iterator;
 | 
						|
 | 
						|
  private:
 | 
						|
    /// The start of the array, in an external buffer.
 | 
						|
    const T *Data;
 | 
						|
 | 
						|
    /// The number of elements.
 | 
						|
    size_type Length;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// @name Constructors
 | 
						|
    /// @{
 | 
						|
 | 
						|
    /// Construct an empty ArrayRef.
 | 
						|
    /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
 | 
						|
 | 
						|
    /// Construct an empty ArrayRef from None.
 | 
						|
    /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a single element.
 | 
						|
    /*implicit*/ ArrayRef(const T &OneElt)
 | 
						|
      : Data(&OneElt), Length(1) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a pointer and length.
 | 
						|
    /*implicit*/ ArrayRef(const T *data, size_t length)
 | 
						|
      : Data(data), Length(length) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a range.
 | 
						|
    ArrayRef(const T *begin, const T *end)
 | 
						|
      : Data(begin), Length(end - begin) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a SmallVector. This is templated in order to
 | 
						|
    /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
 | 
						|
    /// copy-construct an ArrayRef.
 | 
						|
    template<typename U>
 | 
						|
    /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
 | 
						|
      : Data(Vec.data()), Length(Vec.size()) {
 | 
						|
    }
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a std::vector.
 | 
						|
    template<typename A>
 | 
						|
    /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
 | 
						|
      : Data(Vec.data()), Length(Vec.size()) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a C array.
 | 
						|
    template <size_t N>
 | 
						|
    /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
 | 
						|
      : Data(Arr), Length(N) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef from a std::initializer_list.
 | 
						|
    /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
 | 
						|
    : Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()),
 | 
						|
      Length(Vec.size()) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
 | 
						|
    /// ensure that only ArrayRefs of pointers can be converted.
 | 
						|
    template <typename U>
 | 
						|
    ArrayRef(const ArrayRef<U *> &A,
 | 
						|
             typename std::enable_if<
 | 
						|
                 std::is_convertible<U *const *, T const *>::value>::type* = 0)
 | 
						|
      : Data(A.data()), Length(A.size()) {}
 | 
						|
 | 
						|
    /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
 | 
						|
    /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
 | 
						|
    /// whenever we copy-construct an ArrayRef.
 | 
						|
    template<typename U, typename DummyT>
 | 
						|
    /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<U*, DummyT> &Vec,
 | 
						|
                          typename std::enable_if<
 | 
						|
                              std::is_convertible<U *const *,
 | 
						|
                                                  T const *>::value>::type* = 0)
 | 
						|
      : Data(Vec.data()), Length(Vec.size()) {
 | 
						|
    }
 | 
						|
 | 
						|
    /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
 | 
						|
    /// to ensure that only vectors of pointers can be converted.
 | 
						|
    template<typename U, typename A>
 | 
						|
    ArrayRef(const std::vector<U *, A> &Vec,
 | 
						|
             typename std::enable_if<
 | 
						|
                 std::is_convertible<U *const *, T const *>::value>::type* = 0)
 | 
						|
      : Data(Vec.data()), Length(Vec.size()) {}
 | 
						|
 | 
						|
    /// @}
 | 
						|
    /// @name Simple Operations
 | 
						|
    /// @{
 | 
						|
 | 
						|
    iterator begin() const { return Data; }
 | 
						|
    iterator end() const { return Data + Length; }
 | 
						|
 | 
						|
    reverse_iterator rbegin() const { return reverse_iterator(end()); }
 | 
						|
    reverse_iterator rend() const { return reverse_iterator(begin()); }
 | 
						|
 | 
						|
    /// empty - Check if the array is empty.
 | 
						|
    bool empty() const { return Length == 0; }
 | 
						|
 | 
						|
    const T *data() const { return Data; }
 | 
						|
 | 
						|
    /// size - Get the array size.
 | 
						|
    size_t size() const { return Length; }
 | 
						|
 | 
						|
    /// front - Get the first element.
 | 
						|
    const T &front() const {
 | 
						|
      assert(!empty());
 | 
						|
      return Data[0];
 | 
						|
    }
 | 
						|
 | 
						|
    /// back - Get the last element.
 | 
						|
    const T &back() const {
 | 
						|
      assert(!empty());
 | 
						|
      return Data[Length-1];
 | 
						|
    }
 | 
						|
 | 
						|
    // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
 | 
						|
    template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
 | 
						|
      T *Buff = A.template Allocate<T>(Length);
 | 
						|
      std::copy(begin(), end(), Buff);
 | 
						|
      return ArrayRef<T>(Buff, Length);
 | 
						|
    }
 | 
						|
 | 
						|
    /// equals - Check for element-wise equality.
 | 
						|
    bool equals(ArrayRef RHS) const {
 | 
						|
      if (Length != RHS.Length)
 | 
						|
        return false;
 | 
						|
      if (Length == 0)
 | 
						|
        return true;
 | 
						|
      return std::equal(begin(), end(), RHS.begin());
 | 
						|
    }
 | 
						|
 | 
						|
    /// slice(n) - Chop off the first N elements of the array.
 | 
						|
    ArrayRef<T> slice(unsigned N) const {
 | 
						|
      assert(N <= size() && "Invalid specifier");
 | 
						|
      return ArrayRef<T>(data()+N, size()-N);
 | 
						|
    }
 | 
						|
 | 
						|
    /// slice(n, m) - Chop off the first N elements of the array, and keep M
 | 
						|
    /// elements in the array.
 | 
						|
    ArrayRef<T> slice(unsigned N, unsigned M) const {
 | 
						|
      assert(N+M <= size() && "Invalid specifier");
 | 
						|
      return ArrayRef<T>(data()+N, M);
 | 
						|
    }
 | 
						|
 | 
						|
    // \brief Drop the last \p N elements of the array.
 | 
						|
    ArrayRef<T> drop_back(unsigned N = 1) const {
 | 
						|
      assert(size() >= N && "Dropping more elements than exist");
 | 
						|
      return slice(0, size() - N);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @}
 | 
						|
    /// @name Operator Overloads
 | 
						|
    /// @{
 | 
						|
    const T &operator[](size_t Index) const {
 | 
						|
      assert(Index < Length && "Invalid index!");
 | 
						|
      return Data[Index];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @}
 | 
						|
    /// @name Expensive Operations
 | 
						|
    /// @{
 | 
						|
    std::vector<T> vec() const {
 | 
						|
      return std::vector<T>(Data, Data+Length);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @}
 | 
						|
    /// @name Conversion operators
 | 
						|
    /// @{
 | 
						|
    operator std::vector<T>() const {
 | 
						|
      return std::vector<T>(Data, Data+Length);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @}
 | 
						|
  };
 | 
						|
 | 
						|
  /// MutableArrayRef - Represent a mutable reference to an array (0 or more
 | 
						|
  /// elements consecutively in memory), i.e. a start pointer and a length.  It
 | 
						|
  /// allows various APIs to take and modify consecutive elements easily and
 | 
						|
  /// conveniently.
 | 
						|
  ///
 | 
						|
  /// This class does not own the underlying data, it is expected to be used in
 | 
						|
  /// situations where the data resides in some other buffer, whose lifetime
 | 
						|
  /// extends past that of the MutableArrayRef. For this reason, it is not in
 | 
						|
  /// general safe to store a MutableArrayRef.
 | 
						|
  ///
 | 
						|
  /// This is intended to be trivially copyable, so it should be passed by
 | 
						|
  /// value.
 | 
						|
  template<typename T>
 | 
						|
  class MutableArrayRef : public ArrayRef<T> {
 | 
						|
  public:
 | 
						|
    typedef T *iterator;
 | 
						|
 | 
						|
    typedef std::reverse_iterator<iterator> reverse_iterator;
 | 
						|
 | 
						|
    /// Construct an empty MutableArrayRef.
 | 
						|
    /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
 | 
						|
 | 
						|
    /// Construct an empty MutableArrayRef from None.
 | 
						|
    /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
 | 
						|
 | 
						|
    /// Construct an MutableArrayRef from a single element.
 | 
						|
    /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
 | 
						|
 | 
						|
    /// Construct an MutableArrayRef from a pointer and length.
 | 
						|
    /*implicit*/ MutableArrayRef(T *data, size_t length)
 | 
						|
      : ArrayRef<T>(data, length) {}
 | 
						|
 | 
						|
    /// Construct an MutableArrayRef from a range.
 | 
						|
    MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
 | 
						|
 | 
						|
    /// Construct an MutableArrayRef from a SmallVector.
 | 
						|
    /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
 | 
						|
    : ArrayRef<T>(Vec) {}
 | 
						|
 | 
						|
    /// Construct a MutableArrayRef from a std::vector.
 | 
						|
    /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
 | 
						|
    : ArrayRef<T>(Vec) {}
 | 
						|
 | 
						|
    /// Construct an MutableArrayRef from a C array.
 | 
						|
    template <size_t N>
 | 
						|
    /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
 | 
						|
      : ArrayRef<T>(Arr) {}
 | 
						|
 | 
						|
    T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
 | 
						|
 | 
						|
    iterator begin() const { return data(); }
 | 
						|
    iterator end() const { return data() + this->size(); }
 | 
						|
 | 
						|
    reverse_iterator rbegin() const { return reverse_iterator(end()); }
 | 
						|
    reverse_iterator rend() const { return reverse_iterator(begin()); }
 | 
						|
 | 
						|
    /// front - Get the first element.
 | 
						|
    T &front() const {
 | 
						|
      assert(!this->empty());
 | 
						|
      return data()[0];
 | 
						|
    }
 | 
						|
 | 
						|
    /// back - Get the last element.
 | 
						|
    T &back() const {
 | 
						|
      assert(!this->empty());
 | 
						|
      return data()[this->size()-1];
 | 
						|
    }
 | 
						|
 | 
						|
    /// slice(n) - Chop off the first N elements of the array.
 | 
						|
    MutableArrayRef<T> slice(unsigned N) const {
 | 
						|
      assert(N <= this->size() && "Invalid specifier");
 | 
						|
      return MutableArrayRef<T>(data()+N, this->size()-N);
 | 
						|
    }
 | 
						|
 | 
						|
    /// slice(n, m) - Chop off the first N elements of the array, and keep M
 | 
						|
    /// elements in the array.
 | 
						|
    MutableArrayRef<T> slice(unsigned N, unsigned M) const {
 | 
						|
      assert(N+M <= this->size() && "Invalid specifier");
 | 
						|
      return MutableArrayRef<T>(data()+N, M);
 | 
						|
    }
 | 
						|
 | 
						|
    MutableArrayRef<T> drop_back(unsigned N) const {
 | 
						|
      assert(this->size() >= N && "Dropping more elements than exist");
 | 
						|
      return slice(0, this->size() - N);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @}
 | 
						|
    /// @name Operator Overloads
 | 
						|
    /// @{
 | 
						|
    T &operator[](size_t Index) const {
 | 
						|
      assert(Index < this->size() && "Invalid index!");
 | 
						|
      return data()[Index];
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// @name ArrayRef Convenience constructors
 | 
						|
  /// @{
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a single element.
 | 
						|
  template<typename T>
 | 
						|
  ArrayRef<T> makeArrayRef(const T &OneElt) {
 | 
						|
    return OneElt;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a pointer and length.
 | 
						|
  template<typename T>
 | 
						|
  ArrayRef<T> makeArrayRef(const T *data, size_t length) {
 | 
						|
    return ArrayRef<T>(data, length);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a range.
 | 
						|
  template<typename T>
 | 
						|
  ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
 | 
						|
    return ArrayRef<T>(begin, end);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a SmallVector.
 | 
						|
  template <typename T>
 | 
						|
  ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
 | 
						|
    return Vec;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a SmallVector.
 | 
						|
  template <typename T, unsigned N>
 | 
						|
  ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
 | 
						|
    return Vec;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a std::vector.
 | 
						|
  template<typename T>
 | 
						|
  ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
 | 
						|
    return Vec;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Construct an ArrayRef from a C array.
 | 
						|
  template<typename T, size_t N>
 | 
						|
  ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
 | 
						|
    return ArrayRef<T>(Arr);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name ArrayRef Comparison Operators
 | 
						|
  /// @{
 | 
						|
 | 
						|
  template<typename T>
 | 
						|
  inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
 | 
						|
    return LHS.equals(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename T>
 | 
						|
  inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
 | 
						|
    return !(LHS == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  // ArrayRefs can be treated like a POD type.
 | 
						|
  template <typename T> struct isPodLike;
 | 
						|
  template <typename T> struct isPodLike<ArrayRef<T> > {
 | 
						|
    static const bool value = true;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |