mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Also make some static function class functions to avoid having to mention the class namespace for enums all the time. No functionality change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179886 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3674 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3674 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
 | |
| // and generates target-independent LLVM-IR. Legalization of the IR is done
 | |
| // in the codegen. However, the vectorizer uses (will use) the codegen
 | |
| // interfaces to generate IR that is likely to result in an optimal binary.
 | |
| //
 | |
| // The loop vectorizer combines consecutive loop iterations into a single
 | |
| // 'wide' iteration. After this transformation the index is incremented
 | |
| // by the SIMD vector width, and not by one.
 | |
| //
 | |
| // This pass has three parts:
 | |
| // 1. The main loop pass that drives the different parts.
 | |
| // 2. LoopVectorizationLegality - A unit that checks for the legality
 | |
| //    of the vectorization.
 | |
| // 3. InnerLoopVectorizer - A unit that performs the actual
 | |
| //    widening of instructions.
 | |
| // 4. LoopVectorizationCostModel - A unit that checks for the profitability
 | |
| //    of vectorization. It decides on the optimal vector width, which
 | |
| //    can be one, if vectorization is not profitable.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The reduction-variable vectorization is based on the paper:
 | |
| //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
 | |
| //
 | |
| // Variable uniformity checks are inspired by:
 | |
| //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
 | |
| //
 | |
| // Other ideas/concepts are from:
 | |
| //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
 | |
| //
 | |
| //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
 | |
| //  Vectorizing Compilers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define LV_NAME "loop-vectorize"
 | |
| #define DEBUG_TYPE LV_NAME
 | |
| 
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
 | |
|                     cl::desc("Sets the SIMD width. Zero is autoselect."));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
 | |
|                     cl::desc("Sets the vectorization unroll count. "
 | |
|                              "Zero is autoselect."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
 | |
|                    cl::desc("Enable if-conversion during vectorization."));
 | |
| 
 | |
| /// We don't vectorize loops with a known constant trip count below this number.
 | |
| static cl::opt<unsigned>
 | |
| TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
 | |
|                              cl::Hidden,
 | |
|                              cl::desc("Don't vectorize loops with a constant "
 | |
|                                       "trip count that is smaller than this "
 | |
|                                       "value."));
 | |
| 
 | |
| /// We don't unroll loops with a known constant trip count below this number.
 | |
| static const unsigned TinyTripCountUnrollThreshold = 128;
 | |
| 
 | |
| /// When performing a runtime memory check, do not check more than this
 | |
| /// number of pointers. Notice that the check is quadratic!
 | |
| static const unsigned RuntimeMemoryCheckThreshold = 4;
 | |
| 
 | |
| /// We use a metadata with this name  to indicate that a scalar loop was
 | |
| /// vectorized and that we don't need to re-vectorize it if we run into it
 | |
| /// again.
 | |
| static const char*
 | |
| AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized";
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Forward declarations.
 | |
| class LoopVectorizationLegality;
 | |
| class LoopVectorizationCostModel;
 | |
| 
 | |
| /// InnerLoopVectorizer vectorizes loops which contain only one basic
 | |
| /// block to a specified vectorization factor (VF).
 | |
| /// This class performs the widening of scalars into vectors, or multiple
 | |
| /// scalars. This class also implements the following features:
 | |
| /// * It inserts an epilogue loop for handling loops that don't have iteration
 | |
| ///   counts that are known to be a multiple of the vectorization factor.
 | |
| /// * It handles the code generation for reduction variables.
 | |
| /// * Scalarization (implementation using scalars) of un-vectorizable
 | |
| ///   instructions.
 | |
| /// InnerLoopVectorizer does not perform any vectorization-legality
 | |
| /// checks, and relies on the caller to check for the different legality
 | |
| /// aspects. The InnerLoopVectorizer relies on the
 | |
| /// LoopVectorizationLegality class to provide information about the induction
 | |
| /// and reduction variables that were found to a given vectorization factor.
 | |
| class InnerLoopVectorizer {
 | |
| public:
 | |
|   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
 | |
|                       DominatorTree *DT, DataLayout *DL,
 | |
|                       const TargetLibraryInfo *TLI, unsigned VecWidth,
 | |
|                       unsigned UnrollFactor)
 | |
|       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
 | |
|         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
 | |
|         OldInduction(0), WidenMap(UnrollFactor) {}
 | |
| 
 | |
|   // Perform the actual loop widening (vectorization).
 | |
|   void vectorize(LoopVectorizationLegality *Legal) {
 | |
|     // Create a new empty loop. Unlink the old loop and connect the new one.
 | |
|     createEmptyLoop(Legal);
 | |
|     // Widen each instruction in the old loop to a new one in the new loop.
 | |
|     // Use the Legality module to find the induction and reduction variables.
 | |
|     vectorizeLoop(Legal);
 | |
|     // Register the new loop and update the analysis passes.
 | |
|     updateAnalysis();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// A small list of PHINodes.
 | |
|   typedef SmallVector<PHINode*, 4> PhiVector;
 | |
|   /// When we unroll loops we have multiple vector values for each scalar.
 | |
|   /// This data structure holds the unrolled and vectorized values that
 | |
|   /// originated from one scalar instruction.
 | |
|   typedef SmallVector<Value*, 2> VectorParts;
 | |
| 
 | |
|   /// Add code that checks at runtime if the accessed arrays overlap.
 | |
|   /// Returns the comparator value or NULL if no check is needed.
 | |
|   Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
 | |
|                                Instruction *Loc);
 | |
|   /// Create an empty loop, based on the loop ranges of the old loop.
 | |
|   void createEmptyLoop(LoopVectorizationLegality *Legal);
 | |
|   /// Copy and widen the instructions from the old loop.
 | |
|   void vectorizeLoop(LoopVectorizationLegality *Legal);
 | |
| 
 | |
|   /// A helper function that computes the predicate of the block BB, assuming
 | |
|   /// that the header block of the loop is set to True. It returns the *entry*
 | |
|   /// mask for the block BB.
 | |
|   VectorParts createBlockInMask(BasicBlock *BB);
 | |
|   /// A helper function that computes the predicate of the edge between SRC
 | |
|   /// and DST.
 | |
|   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
 | |
| 
 | |
|   /// A helper function to vectorize a single BB within the innermost loop.
 | |
|   void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
 | |
|                             PhiVector *PV);
 | |
| 
 | |
|   /// Insert the new loop to the loop hierarchy and pass manager
 | |
|   /// and update the analysis passes.
 | |
|   void updateAnalysis();
 | |
| 
 | |
|   /// This instruction is un-vectorizable. Implement it as a sequence
 | |
|   /// of scalars.
 | |
|   void scalarizeInstruction(Instruction *Instr);
 | |
| 
 | |
|   /// Vectorize Load and Store instructions,
 | |
|   void vectorizeMemoryInstruction(Instruction *Instr,
 | |
|                                   LoopVectorizationLegality *Legal);
 | |
| 
 | |
|   /// Create a broadcast instruction. This method generates a broadcast
 | |
|   /// instruction (shuffle) for loop invariant values and for the induction
 | |
|   /// value. If this is the induction variable then we extend it to N, N+1, ...
 | |
|   /// this is needed because each iteration in the loop corresponds to a SIMD
 | |
|   /// element.
 | |
|   Value *getBroadcastInstrs(Value *V);
 | |
| 
 | |
|   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
 | |
|   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
 | |
|   /// The sequence starts at StartIndex.
 | |
|   Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
 | |
| 
 | |
|   /// When we go over instructions in the basic block we rely on previous
 | |
|   /// values within the current basic block or on loop invariant values.
 | |
|   /// When we widen (vectorize) values we place them in the map. If the values
 | |
|   /// are not within the map, they have to be loop invariant, so we simply
 | |
|   /// broadcast them into a vector.
 | |
|   VectorParts &getVectorValue(Value *V);
 | |
| 
 | |
|   /// Generate a shuffle sequence that will reverse the vector Vec.
 | |
|   Value *reverseVector(Value *Vec);
 | |
| 
 | |
|   /// This is a helper class that holds the vectorizer state. It maps scalar
 | |
|   /// instructions to vector instructions. When the code is 'unrolled' then
 | |
|   /// then a single scalar value is mapped to multiple vector parts. The parts
 | |
|   /// are stored in the VectorPart type.
 | |
|   struct ValueMap {
 | |
|     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
 | |
|     /// are mapped.
 | |
|     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
 | |
| 
 | |
|     /// \return True if 'Key' is saved in the Value Map.
 | |
|     bool has(Value *Key) const { return MapStorage.count(Key); }
 | |
| 
 | |
|     /// Initializes a new entry in the map. Sets all of the vector parts to the
 | |
|     /// save value in 'Val'.
 | |
|     /// \return A reference to a vector with splat values.
 | |
|     VectorParts &splat(Value *Key, Value *Val) {
 | |
|       VectorParts &Entry = MapStorage[Key];
 | |
|       Entry.assign(UF, Val);
 | |
|       return Entry;
 | |
|     }
 | |
| 
 | |
|     ///\return A reference to the value that is stored at 'Key'.
 | |
|     VectorParts &get(Value *Key) {
 | |
|       VectorParts &Entry = MapStorage[Key];
 | |
|       if (Entry.empty())
 | |
|         Entry.resize(UF);
 | |
|       assert(Entry.size() == UF);
 | |
|       return Entry;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// The unroll factor. Each entry in the map stores this number of vector
 | |
|     /// elements.
 | |
|     unsigned UF;
 | |
| 
 | |
|     /// Map storage. We use std::map and not DenseMap because insertions to a
 | |
|     /// dense map invalidates its iterators.
 | |
|     std::map<Value *, VectorParts> MapStorage;
 | |
|   };
 | |
| 
 | |
|   /// The original loop.
 | |
|   Loop *OrigLoop;
 | |
|   /// Scev analysis to use.
 | |
|   ScalarEvolution *SE;
 | |
|   /// Loop Info.
 | |
|   LoopInfo *LI;
 | |
|   /// Dominator Tree.
 | |
|   DominatorTree *DT;
 | |
|   /// Data Layout.
 | |
|   DataLayout *DL;
 | |
|   /// Target Library Info.
 | |
|   const TargetLibraryInfo *TLI;
 | |
| 
 | |
|   /// The vectorization SIMD factor to use. Each vector will have this many
 | |
|   /// vector elements.
 | |
|   unsigned VF;
 | |
|   /// The vectorization unroll factor to use. Each scalar is vectorized to this
 | |
|   /// many different vector instructions.
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// The builder that we use
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
|   // --- Vectorization state ---
 | |
| 
 | |
|   /// The vector-loop preheader.
 | |
|   BasicBlock *LoopVectorPreHeader;
 | |
|   /// The scalar-loop preheader.
 | |
|   BasicBlock *LoopScalarPreHeader;
 | |
|   /// Middle Block between the vector and the scalar.
 | |
|   BasicBlock *LoopMiddleBlock;
 | |
|   ///The ExitBlock of the scalar loop.
 | |
|   BasicBlock *LoopExitBlock;
 | |
|   ///The vector loop body.
 | |
|   BasicBlock *LoopVectorBody;
 | |
|   ///The scalar loop body.
 | |
|   BasicBlock *LoopScalarBody;
 | |
|   /// A list of all bypass blocks. The first block is the entry of the loop.
 | |
|   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
 | |
| 
 | |
|   /// The new Induction variable which was added to the new block.
 | |
|   PHINode *Induction;
 | |
|   /// The induction variable of the old basic block.
 | |
|   PHINode *OldInduction;
 | |
|   /// Maps scalars to widened vectors.
 | |
|   ValueMap WidenMap;
 | |
| };
 | |
| 
 | |
| /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
 | |
| /// to what vectorization factor.
 | |
| /// This class does not look at the profitability of vectorization, only the
 | |
| /// legality. This class has two main kinds of checks:
 | |
| /// * Memory checks - The code in canVectorizeMemory checks if vectorization
 | |
| ///   will change the order of memory accesses in a way that will change the
 | |
| ///   correctness of the program.
 | |
| /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
 | |
| /// checks for a number of different conditions, such as the availability of a
 | |
| /// single induction variable, that all types are supported and vectorize-able,
 | |
| /// etc. This code reflects the capabilities of InnerLoopVectorizer.
 | |
| /// This class is also used by InnerLoopVectorizer for identifying
 | |
| /// induction variable and the different reduction variables.
 | |
| class LoopVectorizationLegality {
 | |
| public:
 | |
|   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
 | |
|                             DominatorTree *DT, TargetTransformInfo* TTI,
 | |
|                             AliasAnalysis *AA, TargetLibraryInfo *TLI)
 | |
|       : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
 | |
|         Induction(0) {}
 | |
| 
 | |
|   /// This enum represents the kinds of reductions that we support.
 | |
|   enum ReductionKind {
 | |
|     RK_NoReduction, ///< Not a reduction.
 | |
|     RK_IntegerAdd,  ///< Sum of integers.
 | |
|     RK_IntegerMult, ///< Product of integers.
 | |
|     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
 | |
|     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
 | |
|     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
 | |
|     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
 | |
|     RK_FloatAdd,    ///< Sum of floats.
 | |
|     RK_FloatMult    ///< Product of floats.
 | |
|   };
 | |
| 
 | |
|   /// This enum represents the kinds of inductions that we support.
 | |
|   enum InductionKind {
 | |
|     IK_NoInduction,         ///< Not an induction variable.
 | |
|     IK_IntInduction,        ///< Integer induction variable. Step = 1.
 | |
|     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
 | |
|     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
 | |
|     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
 | |
|   };
 | |
| 
 | |
|   // This enum represents the kind of minmax reduction.
 | |
|   enum MinMaxReductionKind {
 | |
|     MRK_Invalid,
 | |
|     MRK_UIntMin,
 | |
|     MRK_UIntMax,
 | |
|     MRK_SIntMin,
 | |
|     MRK_SIntMax
 | |
|   };
 | |
| 
 | |
|   /// This POD struct holds information about reduction variables.
 | |
|   struct ReductionDescriptor {
 | |
|     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
 | |
|       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
 | |
| 
 | |
|     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
 | |
|                         MinMaxReductionKind MK)
 | |
|         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
 | |
| 
 | |
|     // The starting value of the reduction.
 | |
|     // It does not have to be zero!
 | |
|     Value *StartValue;
 | |
|     // The instruction who's value is used outside the loop.
 | |
|     Instruction *LoopExitInstr;
 | |
|     // The kind of the reduction.
 | |
|     ReductionKind Kind;
 | |
|     // If this a min/max reduction the kind of reduction.
 | |
|     MinMaxReductionKind MinMaxKind;
 | |
|   };
 | |
| 
 | |
|   /// This POD struct holds information about a potential reduction operation.
 | |
|   struct ReductionInstDesc {
 | |
|     ReductionInstDesc(bool IsRedux, Instruction *I) :
 | |
|       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
 | |
| 
 | |
|     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
 | |
|       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
 | |
| 
 | |
|     // Is this instruction a reduction candidate.
 | |
|     bool IsReduction;
 | |
|     // The last instruction in a min/max pattern (select of the select(icmp())
 | |
|     // pattern), or the current reduction instruction otherwise.
 | |
|     Instruction *PatternLastInst;
 | |
|     // If this is a min/max pattern the comparison predicate.
 | |
|     MinMaxReductionKind MinMaxKind;
 | |
|   };
 | |
| 
 | |
|   // This POD struct holds information about the memory runtime legality
 | |
|   // check that a group of pointers do not overlap.
 | |
|   struct RuntimePointerCheck {
 | |
|     RuntimePointerCheck() : Need(false) {}
 | |
| 
 | |
|     /// Reset the state of the pointer runtime information.
 | |
|     void reset() {
 | |
|       Need = false;
 | |
|       Pointers.clear();
 | |
|       Starts.clear();
 | |
|       Ends.clear();
 | |
|     }
 | |
| 
 | |
|     /// Insert a pointer and calculate the start and end SCEVs.
 | |
|     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
 | |
| 
 | |
|     /// This flag indicates if we need to add the runtime check.
 | |
|     bool Need;
 | |
|     /// Holds the pointers that we need to check.
 | |
|     SmallVector<Value*, 2> Pointers;
 | |
|     /// Holds the pointer value at the beginning of the loop.
 | |
|     SmallVector<const SCEV*, 2> Starts;
 | |
|     /// Holds the pointer value at the end of the loop.
 | |
|     SmallVector<const SCEV*, 2> Ends;
 | |
|   };
 | |
| 
 | |
|   /// A POD for saving information about induction variables.
 | |
|   struct InductionInfo {
 | |
|     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
 | |
|     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
 | |
|     /// Start value.
 | |
|     Value *StartValue;
 | |
|     /// Induction kind.
 | |
|     InductionKind IK;
 | |
|   };
 | |
| 
 | |
|   /// ReductionList contains the reduction descriptors for all
 | |
|   /// of the reductions that were found in the loop.
 | |
|   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
 | |
| 
 | |
|   /// InductionList saves induction variables and maps them to the
 | |
|   /// induction descriptor.
 | |
|   typedef MapVector<PHINode*, InductionInfo> InductionList;
 | |
| 
 | |
|   /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
 | |
|   /// respective Store/Load instruction(s) to calculate aliasing.
 | |
|   typedef MapVector<Value*, Instruction* > AliasMap;
 | |
|   typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
 | |
| 
 | |
|   /// Returns true if it is legal to vectorize this loop.
 | |
|   /// This does not mean that it is profitable to vectorize this
 | |
|   /// loop, only that it is legal to do so.
 | |
|   bool canVectorize();
 | |
| 
 | |
|   /// Returns the Induction variable.
 | |
|   PHINode *getInduction() { return Induction; }
 | |
| 
 | |
|   /// Returns the reduction variables found in the loop.
 | |
|   ReductionList *getReductionVars() { return &Reductions; }
 | |
| 
 | |
|   /// Returns the induction variables found in the loop.
 | |
|   InductionList *getInductionVars() { return &Inductions; }
 | |
| 
 | |
|   /// Returns True if V is an induction variable in this loop.
 | |
|   bool isInductionVariable(const Value *V);
 | |
| 
 | |
|   /// Return true if the block BB needs to be predicated in order for the loop
 | |
|   /// to be vectorized.
 | |
|   bool blockNeedsPredication(BasicBlock *BB);
 | |
| 
 | |
|   /// Check if this  pointer is consecutive when vectorizing. This happens
 | |
|   /// when the last index of the GEP is the induction variable, or that the
 | |
|   /// pointer itself is an induction variable.
 | |
|   /// This check allows us to vectorize A[idx] into a wide load/store.
 | |
|   /// Returns:
 | |
|   /// 0 - Stride is unknown or non consecutive.
 | |
|   /// 1 - Address is consecutive.
 | |
|   /// -1 - Address is consecutive, and decreasing.
 | |
|   int isConsecutivePtr(Value *Ptr);
 | |
| 
 | |
|   /// Returns true if the value V is uniform within the loop.
 | |
|   bool isUniform(Value *V);
 | |
| 
 | |
|   /// Returns true if this instruction will remain scalar after vectorization.
 | |
|   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
 | |
| 
 | |
|   /// Returns the information that we collected about runtime memory check.
 | |
|   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
 | |
| 
 | |
|   /// This function returns the identity element (or neutral element) for
 | |
|   /// the operation K.
 | |
|   static Constant *getReductionIdentity(ReductionKind K, Type *Tp,
 | |
|                                         MinMaxReductionKind MinMaxK);
 | |
| private:
 | |
|   /// Check if a single basic block loop is vectorizable.
 | |
|   /// At this point we know that this is a loop with a constant trip count
 | |
|   /// and we only need to check individual instructions.
 | |
|   bool canVectorizeInstrs();
 | |
| 
 | |
|   /// When we vectorize loops we may change the order in which
 | |
|   /// we read and write from memory. This method checks if it is
 | |
|   /// legal to vectorize the code, considering only memory constrains.
 | |
|   /// Returns true if the loop is vectorizable
 | |
|   bool canVectorizeMemory();
 | |
| 
 | |
|   /// Return true if we can vectorize this loop using the IF-conversion
 | |
|   /// transformation.
 | |
|   bool canVectorizeWithIfConvert();
 | |
| 
 | |
|   /// Collect the variables that need to stay uniform after vectorization.
 | |
|   void collectLoopUniforms();
 | |
| 
 | |
|   /// Return true if all of the instructions in the block can be speculatively
 | |
|   /// executed.
 | |
|   bool blockCanBePredicated(BasicBlock *BB);
 | |
| 
 | |
|   /// Returns True, if 'Phi' is the kind of reduction variable for type
 | |
|   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
 | |
|   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
 | |
|   /// Returns a struct describing if the instruction 'I' can be a reduction
 | |
|   /// variable of type 'Kind'. If the reduction is a min/max pattern of
 | |
|   /// select(icmp()) this function advances the instruction pointer 'I' from the
 | |
|   /// compare instruction to the select instruction and stores this pointer in
 | |
|   /// 'PatternLastInst' member of the returned struct.
 | |
|   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
 | |
|                                      ReductionInstDesc &Desc);
 | |
|   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | |
|   /// pattern corresponding to a min(X, Y) or max(X, Y).
 | |
|   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
 | |
|                                                     ReductionInstDesc &Prev);
 | |
|   /// Returns the induction kind of Phi. This function may return NoInduction
 | |
|   /// if the PHI is not an induction variable.
 | |
|   InductionKind isInductionVariable(PHINode *Phi);
 | |
|   /// Return true if can compute the address bounds of Ptr within the loop.
 | |
|   bool hasComputableBounds(Value *Ptr);
 | |
|   /// Return true if there is the chance of write reorder.
 | |
|   bool hasPossibleGlobalWriteReorder(Value *Object,
 | |
|                                      Instruction *Inst,
 | |
|                                      AliasMultiMap &WriteObjects,
 | |
|                                      unsigned MaxByteWidth);
 | |
|   /// Return the AA location for a load or a store.
 | |
|   AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
 | |
| 
 | |
| 
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   /// DataLayout analysis.
 | |
|   DataLayout *DL;
 | |
|   /// Dominators.
 | |
|   DominatorTree *DT;
 | |
|   /// Target Info.
 | |
|   TargetTransformInfo *TTI;
 | |
|   /// Alias Analysis.
 | |
|   AliasAnalysis *AA;
 | |
|   /// Target Library Info.
 | |
|   TargetLibraryInfo *TLI;
 | |
| 
 | |
|   //  ---  vectorization state --- //
 | |
| 
 | |
|   /// Holds the integer induction variable. This is the counter of the
 | |
|   /// loop.
 | |
|   PHINode *Induction;
 | |
|   /// Holds the reduction variables.
 | |
|   ReductionList Reductions;
 | |
|   /// Holds all of the induction variables that we found in the loop.
 | |
|   /// Notice that inductions don't need to start at zero and that induction
 | |
|   /// variables can be pointers.
 | |
|   InductionList Inductions;
 | |
| 
 | |
|   /// Allowed outside users. This holds the reduction
 | |
|   /// vars which can be accessed from outside the loop.
 | |
|   SmallPtrSet<Value*, 4> AllowedExit;
 | |
|   /// This set holds the variables which are known to be uniform after
 | |
|   /// vectorization.
 | |
|   SmallPtrSet<Instruction*, 4> Uniforms;
 | |
|   /// We need to check that all of the pointers in this list are disjoint
 | |
|   /// at runtime.
 | |
|   RuntimePointerCheck PtrRtCheck;
 | |
| };
 | |
| 
 | |
| /// LoopVectorizationCostModel - estimates the expected speedups due to
 | |
| /// vectorization.
 | |
| /// In many cases vectorization is not profitable. This can happen because of
 | |
| /// a number of reasons. In this class we mainly attempt to predict the
 | |
| /// expected speedup/slowdowns due to the supported instruction set. We use the
 | |
| /// TargetTransformInfo to query the different backends for the cost of
 | |
| /// different operations.
 | |
| class LoopVectorizationCostModel {
 | |
| public:
 | |
|   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
 | |
|                              LoopVectorizationLegality *Legal,
 | |
|                              const TargetTransformInfo &TTI,
 | |
|                              DataLayout *DL, const TargetLibraryInfo *TLI)
 | |
|       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
 | |
| 
 | |
|   /// Information about vectorization costs
 | |
|   struct VectorizationFactor {
 | |
|     unsigned Width; // Vector width with best cost
 | |
|     unsigned Cost; // Cost of the loop with that width
 | |
|   };
 | |
|   /// \return The most profitable vectorization factor and the cost of that VF.
 | |
|   /// This method checks every power of two up to VF. If UserVF is not ZERO
 | |
|   /// then this vectorization factor will be selected if vectorization is
 | |
|   /// possible.
 | |
|   VectorizationFactor selectVectorizationFactor(bool OptForSize,
 | |
|                                                 unsigned UserVF);
 | |
| 
 | |
|   /// \return The size (in bits) of the widest type in the code that
 | |
|   /// needs to be vectorized. We ignore values that remain scalar such as
 | |
|   /// 64 bit loop indices.
 | |
|   unsigned getWidestType();
 | |
| 
 | |
|   /// \return The most profitable unroll factor.
 | |
|   /// If UserUF is non-zero then this method finds the best unroll-factor
 | |
|   /// based on register pressure and other parameters.
 | |
|   /// VF and LoopCost are the selected vectorization factor and the cost of the
 | |
|   /// selected VF.
 | |
|   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
 | |
|                               unsigned LoopCost);
 | |
| 
 | |
|   /// \brief A struct that represents some properties of the register usage
 | |
|   /// of a loop.
 | |
|   struct RegisterUsage {
 | |
|     /// Holds the number of loop invariant values that are used in the loop.
 | |
|     unsigned LoopInvariantRegs;
 | |
|     /// Holds the maximum number of concurrent live intervals in the loop.
 | |
|     unsigned MaxLocalUsers;
 | |
|     /// Holds the number of instructions in the loop.
 | |
|     unsigned NumInstructions;
 | |
|   };
 | |
| 
 | |
|   /// \return  information about the register usage of the loop.
 | |
|   RegisterUsage calculateRegisterUsage();
 | |
| 
 | |
| private:
 | |
|   /// Returns the expected execution cost. The unit of the cost does
 | |
|   /// not matter because we use the 'cost' units to compare different
 | |
|   /// vector widths. The cost that is returned is *not* normalized by
 | |
|   /// the factor width.
 | |
|   unsigned expectedCost(unsigned VF);
 | |
| 
 | |
|   /// Returns the execution time cost of an instruction for a given vector
 | |
|   /// width. Vector width of one means scalar.
 | |
|   unsigned getInstructionCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// A helper function for converting Scalar types to vector types.
 | |
|   /// If the incoming type is void, we return void. If the VF is 1, we return
 | |
|   /// the scalar type.
 | |
|   static Type* ToVectorTy(Type *Scalar, unsigned VF);
 | |
| 
 | |
|   /// Returns whether the instruction is a load or store and will be a emitted
 | |
|   /// as a vector operation.
 | |
|   bool isConsecutiveLoadOrStore(Instruction *I);
 | |
| 
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   /// Loop Info analysis.
 | |
|   LoopInfo *LI;
 | |
|   /// Vectorization legality.
 | |
|   LoopVectorizationLegality *Legal;
 | |
|   /// Vector target information.
 | |
|   const TargetTransformInfo &TTI;
 | |
|   /// Target data layout information.
 | |
|   DataLayout *DL;
 | |
|   /// Target Library Info.
 | |
|   const TargetLibraryInfo *TLI;
 | |
| };
 | |
| 
 | |
| /// The LoopVectorize Pass.
 | |
| struct LoopVectorize : public LoopPass {
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   explicit LoopVectorize() : LoopPass(ID) {
 | |
|     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   DataLayout *DL;
 | |
|   LoopInfo *LI;
 | |
|   TargetTransformInfo *TTI;
 | |
|   DominatorTree *DT;
 | |
|   AliasAnalysis *AA;
 | |
|   TargetLibraryInfo *TLI;
 | |
| 
 | |
|   virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|     // We only vectorize innermost loops.
 | |
|     if (!L->empty())
 | |
|       return false;
 | |
| 
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     DL = getAnalysisIfAvailable<DataLayout>();
 | |
|     LI = &getAnalysis<LoopInfo>();
 | |
|     TTI = &getAnalysis<TargetTransformInfo>();
 | |
|     DT = &getAnalysis<DominatorTree>();
 | |
|     AA = getAnalysisIfAvailable<AliasAnalysis>();
 | |
|     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
 | |
|           L->getHeader()->getParent()->getName() << "\"\n");
 | |
| 
 | |
|     // Check if it is legal to vectorize the loop.
 | |
|     LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
 | |
|     if (!LVL.canVectorize()) {
 | |
|       DEBUG(dbgs() << "LV: Not vectorizing.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Use the cost model.
 | |
|     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
 | |
| 
 | |
|     // Check the function attributes to find out if this function should be
 | |
|     // optimized for size.
 | |
|     Function *F = L->getHeader()->getParent();
 | |
|     Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
 | |
|     Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
 | |
|     unsigned FnIndex = AttributeSet::FunctionIndex;
 | |
|     bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
 | |
|     bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
 | |
| 
 | |
|     if (NoFloat) {
 | |
|       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
 | |
|             "attribute is used.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Select the optimal vectorization factor.
 | |
|     LoopVectorizationCostModel::VectorizationFactor VF;
 | |
|     VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
 | |
|     // Select the unroll factor.
 | |
|     unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
 | |
|                                         VF.Width, VF.Cost);
 | |
| 
 | |
|     if (VF.Width == 1) {
 | |
|       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
 | |
|           F->getParent()->getModuleIdentifier()<<"\n");
 | |
|     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
 | |
| 
 | |
|     // If we decided that it is *legal* to vectorize the loop then do it.
 | |
|     InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
 | |
|     LB.vectorize(&LVL);
 | |
| 
 | |
|     DEBUG(verifyFunction(*L->getHeader()->getParent()));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     LoopPass::getAnalysisUsage(AU);
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequiredID(LCSSAID);
 | |
|     AU.addRequired<DominatorTree>();
 | |
|     AU.addRequired<LoopInfo>();
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<TargetTransformInfo>();
 | |
|     AU.addPreserved<LoopInfo>();
 | |
|     AU.addPreserved<DominatorTree>();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
 | |
| // LoopVectorizationCostModel.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void
 | |
| LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
 | |
|                                                        Loop *Lp, Value *Ptr) {
 | |
|   const SCEV *Sc = SE->getSCEV(Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
 | |
|   assert(AR && "Invalid addrec expression");
 | |
|   const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
 | |
|   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
 | |
|   Pointers.push_back(Ptr);
 | |
|   Starts.push_back(AR->getStart());
 | |
|   Ends.push_back(ScEnd);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
 | |
|   // Save the current insertion location.
 | |
|   Instruction *Loc = Builder.GetInsertPoint();
 | |
| 
 | |
|   // We need to place the broadcast of invariant variables outside the loop.
 | |
|   Instruction *Instr = dyn_cast<Instruction>(V);
 | |
|   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
 | |
|   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
 | |
| 
 | |
|   // Place the code for broadcasting invariant variables in the new preheader.
 | |
|   if (Invariant)
 | |
|     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 | |
| 
 | |
|   // Broadcast the scalar into all locations in the vector.
 | |
|   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
 | |
| 
 | |
|   // Restore the builder insertion point.
 | |
|   if (Invariant)
 | |
|     Builder.SetInsertPoint(Loc);
 | |
| 
 | |
|   return Shuf;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
 | |
|                                                  bool Negate) {
 | |
|   assert(Val->getType()->isVectorTy() && "Must be a vector");
 | |
|   assert(Val->getType()->getScalarType()->isIntegerTy() &&
 | |
|          "Elem must be an integer");
 | |
|   // Create the types.
 | |
|   Type *ITy = Val->getType()->getScalarType();
 | |
|   VectorType *Ty = cast<VectorType>(Val->getType());
 | |
|   int VLen = Ty->getNumElements();
 | |
|   SmallVector<Constant*, 8> Indices;
 | |
| 
 | |
|   // Create a vector of consecutive numbers from zero to VF.
 | |
|   for (int i = 0; i < VLen; ++i) {
 | |
|     int Idx = Negate ? (-i): i;
 | |
|     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
 | |
|   }
 | |
| 
 | |
|   // Add the consecutive indices to the vector value.
 | |
|   Constant *Cv = ConstantVector::get(Indices);
 | |
|   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
 | |
|   return Builder.CreateAdd(Val, Cv, "induction");
 | |
| }
 | |
| 
 | |
| int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
 | |
|   assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
 | |
|   // Make sure that the pointer does not point to structs.
 | |
|   if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
 | |
|     return 0;
 | |
| 
 | |
|   // If this value is a pointer induction variable we know it is consecutive.
 | |
|   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
 | |
|   if (Phi && Inductions.count(Phi)) {
 | |
|     InductionInfo II = Inductions[Phi];
 | |
|     if (IK_PtrInduction == II.IK)
 | |
|       return 1;
 | |
|     else if (IK_ReversePtrInduction == II.IK)
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
 | |
|   if (!Gep)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned NumOperands = Gep->getNumOperands();
 | |
|   Value *LastIndex = Gep->getOperand(NumOperands - 1);
 | |
| 
 | |
|   Value *GpPtr = Gep->getPointerOperand();
 | |
|   // If this GEP value is a consecutive pointer induction variable and all of
 | |
|   // the indices are constant then we know it is consecutive. We can
 | |
|   Phi = dyn_cast<PHINode>(GpPtr);
 | |
|   if (Phi && Inductions.count(Phi)) {
 | |
| 
 | |
|     // Make sure that the pointer does not point to structs.
 | |
|     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
 | |
|     if (GepPtrType->getElementType()->isAggregateType())
 | |
|       return 0;
 | |
| 
 | |
|     // Make sure that all of the index operands are loop invariant.
 | |
|     for (unsigned i = 1; i < NumOperands; ++i)
 | |
|       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
 | |
|         return 0;
 | |
| 
 | |
|     InductionInfo II = Inductions[Phi];
 | |
|     if (IK_PtrInduction == II.IK)
 | |
|       return 1;
 | |
|     else if (IK_ReversePtrInduction == II.IK)
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   // Check that all of the gep indices are uniform except for the last.
 | |
|   for (unsigned i = 0; i < NumOperands - 1; ++i)
 | |
|     if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
 | |
|       return 0;
 | |
| 
 | |
|   // We can emit wide load/stores only if the last index is the induction
 | |
|   // variable.
 | |
|   const SCEV *Last = SE->getSCEV(LastIndex);
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
 | |
|     const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|     // The memory is consecutive because the last index is consecutive
 | |
|     // and all other indices are loop invariant.
 | |
|     if (Step->isOne())
 | |
|       return 1;
 | |
|     if (Step->isAllOnesValue())
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isUniform(Value *V) {
 | |
|   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 | |
| }
 | |
| 
 | |
| InnerLoopVectorizer::VectorParts&
 | |
| InnerLoopVectorizer::getVectorValue(Value *V) {
 | |
|   assert(V != Induction && "The new induction variable should not be used.");
 | |
|   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
 | |
| 
 | |
|   // If we have this scalar in the map, return it.
 | |
|   if (WidenMap.has(V))
 | |
|     return WidenMap.get(V);
 | |
| 
 | |
|   // If this scalar is unknown, assume that it is a constant or that it is
 | |
|   // loop invariant. Broadcast V and save the value for future uses.
 | |
|   Value *B = getBroadcastInstrs(V);
 | |
|   return WidenMap.splat(V, B);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
 | |
|   assert(Vec->getType()->isVectorTy() && "Invalid type");
 | |
|   SmallVector<Constant*, 8> ShuffleMask;
 | |
|   for (unsigned i = 0; i < VF; ++i)
 | |
|     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
 | |
| 
 | |
|   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
 | |
|                                      ConstantVector::get(ShuffleMask),
 | |
|                                      "reverse");
 | |
| }
 | |
| 
 | |
| 
 | |
| void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
 | |
|                                              LoopVectorizationLegality *Legal) {
 | |
|   // Attempt to issue a wide load.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(Instr);
 | |
|   StoreInst *SI = dyn_cast<StoreInst>(Instr);
 | |
| 
 | |
|   assert((LI || SI) && "Invalid Load/Store instruction");
 | |
| 
 | |
|   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
 | |
|   Type *DataTy = VectorType::get(ScalarDataTy, VF);
 | |
|   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
 | |
|   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
 | |
| 
 | |
|   // If the pointer is loop invariant or if it is non consecutive,
 | |
|   // scalarize the load.
 | |
|   int Stride = Legal->isConsecutivePtr(Ptr);
 | |
|   bool Reverse = Stride < 0;
 | |
|   bool UniformLoad = LI && Legal->isUniform(Ptr);
 | |
|   if (Stride == 0 || UniformLoad)
 | |
|     return scalarizeInstruction(Instr);
 | |
| 
 | |
|   Constant *Zero = Builder.getInt32(0);
 | |
|   VectorParts &Entry = WidenMap.get(Instr);
 | |
| 
 | |
|   // Handle consecutive loads/stores.
 | |
|   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
 | |
|     Value *PtrOperand = Gep->getPointerOperand();
 | |
|     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
 | |
|     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
 | |
| 
 | |
|     // Create the new GEP with the new induction variable.
 | |
|     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 | |
|     Gep2->setOperand(0, FirstBasePtr);
 | |
|     Gep2->setName("gep.indvar.base");
 | |
|     Ptr = Builder.Insert(Gep2);
 | |
|   } else if (Gep) {
 | |
|     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
 | |
|                                OrigLoop) && "Base ptr must be invariant");
 | |
| 
 | |
|     // The last index does not have to be the induction. It can be
 | |
|     // consecutive and be a function of the index. For example A[I+1];
 | |
|     unsigned NumOperands = Gep->getNumOperands();
 | |
| 
 | |
|     Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
 | |
|     VectorParts &GEPParts = getVectorValue(LastGepOperand);
 | |
|     Value *LastIndex = GEPParts[0];
 | |
|     LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
 | |
| 
 | |
|     // Create the new GEP with the new induction variable.
 | |
|     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 | |
|     Gep2->setOperand(NumOperands - 1, LastIndex);
 | |
|     Gep2->setName("gep.indvar.idx");
 | |
|     Ptr = Builder.Insert(Gep2);
 | |
|   } else {
 | |
|     // Use the induction element ptr.
 | |
|     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
 | |
|     VectorParts &PtrVal = getVectorValue(Ptr);
 | |
|     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
 | |
|   }
 | |
| 
 | |
|   // Handle Stores:
 | |
|   if (SI) {
 | |
|     assert(!Legal->isUniform(SI->getPointerOperand()) &&
 | |
|            "We do not allow storing to uniform addresses");
 | |
| 
 | |
|     VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       // Calculate the pointer for the specific unroll-part.
 | |
|       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
 | |
| 
 | |
|       if (Reverse) {
 | |
|         // If we store to reverse consecutive memory locations then we need
 | |
|         // to reverse the order of elements in the stored value.
 | |
|         StoredVal[Part] = reverseVector(StoredVal[Part]);
 | |
|         // If the address is consecutive but reversed, then the
 | |
|         // wide store needs to start at the last vector element.
 | |
|         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
 | |
|         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
 | |
|       }
 | |
| 
 | |
|       Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
 | |
|       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     // Calculate the pointer for the specific unroll-part.
 | |
|     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
 | |
| 
 | |
|     if (Reverse) {
 | |
|       // If the address is consecutive but reversed, then the
 | |
|       // wide store needs to start at the last vector element.
 | |
|       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
 | |
|       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
 | |
|     }
 | |
| 
 | |
|     Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
 | |
|     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
 | |
|     cast<LoadInst>(LI)->setAlignment(Alignment);
 | |
|     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
 | |
|   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
 | |
|   // Holds vector parameters or scalars, in case of uniform vals.
 | |
|   SmallVector<VectorParts, 4> Params;
 | |
| 
 | |
|   // Find all of the vectorized parameters.
 | |
|   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|     Value *SrcOp = Instr->getOperand(op);
 | |
| 
 | |
|     // If we are accessing the old induction variable, use the new one.
 | |
|     if (SrcOp == OldInduction) {
 | |
|       Params.push_back(getVectorValue(SrcOp));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try using previously calculated values.
 | |
|     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
 | |
| 
 | |
|     // If the src is an instruction that appeared earlier in the basic block
 | |
|     // then it should already be vectorized.
 | |
|     if (SrcInst && OrigLoop->contains(SrcInst)) {
 | |
|       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
 | |
|       // The parameter is a vector value from earlier.
 | |
|       Params.push_back(WidenMap.get(SrcInst));
 | |
|     } else {
 | |
|       // The parameter is a scalar from outside the loop. Maybe even a constant.
 | |
|       VectorParts Scalars;
 | |
|       Scalars.append(UF, SrcOp);
 | |
|       Params.push_back(Scalars);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Params.size() == Instr->getNumOperands() &&
 | |
|          "Invalid number of operands");
 | |
| 
 | |
|   // Does this instruction return a value ?
 | |
|   bool IsVoidRetTy = Instr->getType()->isVoidTy();
 | |
| 
 | |
|   Value *UndefVec = IsVoidRetTy ? 0 :
 | |
|     UndefValue::get(VectorType::get(Instr->getType(), VF));
 | |
|   // Create a new entry in the WidenMap and initialize it to Undef or Null.
 | |
|   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
 | |
| 
 | |
|   // For each scalar that we create:
 | |
|   for (unsigned Width = 0; Width < VF; ++Width) {
 | |
|     // For each vector unroll 'part':
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Instruction *Cloned = Instr->clone();
 | |
|       if (!IsVoidRetTy)
 | |
|         Cloned->setName(Instr->getName() + ".cloned");
 | |
|       // Replace the operands of the cloned instrucions with extracted scalars.
 | |
|       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|         Value *Op = Params[op][Part];
 | |
|         // Param is a vector. Need to extract the right lane.
 | |
|         if (Op->getType()->isVectorTy())
 | |
|           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
 | |
|         Cloned->setOperand(op, Op);
 | |
|       }
 | |
| 
 | |
|       // Place the cloned scalar in the new loop.
 | |
|       Builder.Insert(Cloned);
 | |
| 
 | |
|       // If the original scalar returns a value we need to place it in a vector
 | |
|       // so that future users will be able to use it.
 | |
|       if (!IsVoidRetTy)
 | |
|         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
 | |
|                                                        Builder.getInt32(Width));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *
 | |
| InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
 | |
|                                      Instruction *Loc) {
 | |
|   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
 | |
|   Legal->getRuntimePointerCheck();
 | |
| 
 | |
|   if (!PtrRtCheck->Need)
 | |
|     return NULL;
 | |
| 
 | |
|   Instruction *MemoryRuntimeCheck = 0;
 | |
|   unsigned NumPointers = PtrRtCheck->Pointers.size();
 | |
|   SmallVector<Value* , 2> Starts;
 | |
|   SmallVector<Value* , 2> Ends;
 | |
| 
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
| 
 | |
|   // Use this type for pointer arithmetic.
 | |
|   Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
 | |
| 
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     Value *Ptr = PtrRtCheck->Pointers[i];
 | |
|     const SCEV *Sc = SE->getSCEV(Ptr);
 | |
| 
 | |
|     if (SE->isLoopInvariant(Sc, OrigLoop)) {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
 | |
|             *Ptr <<"\n");
 | |
|       Starts.push_back(Ptr);
 | |
|       Ends.push_back(Ptr);
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
 | |
| 
 | |
|       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
 | |
|       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
 | |
|       Starts.push_back(Start);
 | |
|       Ends.push_back(End);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> ChkBuilder(Loc);
 | |
| 
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     for (unsigned j = i+1; j < NumPointers; ++j) {
 | |
|       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
 | |
|       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
 | |
|       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
 | |
|       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
 | |
| 
 | |
|       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
 | |
|       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
 | |
|       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
 | |
|       if (MemoryRuntimeCheck)
 | |
|         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
 | |
|                                          "conflict.rdx");
 | |
| 
 | |
|       MemoryRuntimeCheck = cast<Instruction>(IsConflict);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MemoryRuntimeCheck;
 | |
| }
 | |
| 
 | |
| void
 | |
| InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
 | |
|   /*
 | |
|    In this function we generate a new loop. The new loop will contain
 | |
|    the vectorized instructions while the old loop will continue to run the
 | |
|    scalar remainder.
 | |
| 
 | |
|        [ ] <-- vector loop bypass (may consist of multiple blocks).
 | |
|      /  |
 | |
|     /   v
 | |
|    |   [ ]     <-- vector pre header.
 | |
|    |    |
 | |
|    |    v
 | |
|    |   [  ] \
 | |
|    |   [  ]_|   <-- vector loop.
 | |
|    |    |
 | |
|     \   v
 | |
|       >[ ]   <--- middle-block.
 | |
|      /  |
 | |
|     /   v
 | |
|    |   [ ]     <--- new preheader.
 | |
|    |    |
 | |
|    |    v
 | |
|    |   [ ] \
 | |
|    |   [ ]_|   <-- old scalar loop to handle remainder.
 | |
|     \   |
 | |
|      \  v
 | |
|       >[ ]     <-- exit block.
 | |
|    ...
 | |
|    */
 | |
| 
 | |
|   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
 | |
|   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
 | |
|   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
 | |
|   assert(ExitBlock && "Must have an exit block");
 | |
| 
 | |
|   // Mark the old scalar loop with metadata that tells us not to vectorize this
 | |
|   // loop again if we run into it.
 | |
|   MDNode *MD = MDNode::get(OldBasicBlock->getContext(), ArrayRef<Value*>());
 | |
|   OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD);
 | |
| 
 | |
|   // Some loops have a single integer induction variable, while other loops
 | |
|   // don't. One example is c++ iterators that often have multiple pointer
 | |
|   // induction variables. In the code below we also support a case where we
 | |
|   // don't have a single induction variable.
 | |
|   OldInduction = Legal->getInduction();
 | |
|   Type *IdxTy = OldInduction ? OldInduction->getType() :
 | |
|   DL->getIntPtrType(SE->getContext());
 | |
| 
 | |
|   // Find the loop boundaries.
 | |
|   const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
 | |
|   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
 | |
| 
 | |
|   // Get the total trip count from the count by adding 1.
 | |
|   ExitCount = SE->getAddExpr(ExitCount,
 | |
|                              SE->getConstant(ExitCount->getType(), 1));
 | |
| 
 | |
|   // Expand the trip count and place the new instructions in the preheader.
 | |
|   // Notice that the pre-header does not change, only the loop body.
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
| 
 | |
|   // Count holds the overall loop count (N).
 | |
|   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
 | |
|                                    BypassBlock->getTerminator());
 | |
| 
 | |
|   // The loop index does not have to start at Zero. Find the original start
 | |
|   // value from the induction PHI node. If we don't have an induction variable
 | |
|   // then we know that it starts at zero.
 | |
|   Value *StartIdx = OldInduction ?
 | |
|   OldInduction->getIncomingValueForBlock(BypassBlock):
 | |
|   ConstantInt::get(IdxTy, 0);
 | |
| 
 | |
|   assert(BypassBlock && "Invalid loop structure");
 | |
|   LoopBypassBlocks.push_back(BypassBlock);
 | |
| 
 | |
|   // Split the single block loop into the two loop structure described above.
 | |
|   BasicBlock *VectorPH =
 | |
|   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
 | |
|   BasicBlock *VecBody =
 | |
|   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
 | |
|   BasicBlock *MiddleBlock =
 | |
|   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
 | |
|   BasicBlock *ScalarPH =
 | |
|   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
 | |
| 
 | |
|   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
 | |
|   // inside the loop.
 | |
|   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
 | |
| 
 | |
|   // Generate the induction variable.
 | |
|   Induction = Builder.CreatePHI(IdxTy, 2, "index");
 | |
|   // The loop step is equal to the vectorization factor (num of SIMD elements)
 | |
|   // times the unroll factor (num of SIMD instructions).
 | |
|   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
 | |
| 
 | |
|   // This is the IR builder that we use to add all of the logic for bypassing
 | |
|   // the new vector loop.
 | |
|   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
 | |
| 
 | |
|   // We may need to extend the index in case there is a type mismatch.
 | |
|   // We know that the count starts at zero and does not overflow.
 | |
|   if (Count->getType() != IdxTy) {
 | |
|     // The exit count can be of pointer type. Convert it to the correct
 | |
|     // integer type.
 | |
|     if (ExitCount->getType()->isPointerTy())
 | |
|       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
 | |
|     else
 | |
|       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
 | |
|   }
 | |
| 
 | |
|   // Add the start index to the loop count to get the new end index.
 | |
|   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
 | |
| 
 | |
|   // Now we need to generate the expression for N - (N % VF), which is
 | |
|   // the part that the vectorized body will execute.
 | |
|   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
 | |
|   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
 | |
|   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
 | |
|                                                      "end.idx.rnd.down");
 | |
| 
 | |
|   // Now, compare the new count to zero. If it is zero skip the vector loop and
 | |
|   // jump to the scalar loop.
 | |
|   Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
 | |
|                                           "cmp.zero");
 | |
| 
 | |
|   BasicBlock *LastBypassBlock = BypassBlock;
 | |
| 
 | |
|   // Generate the code that checks in runtime if arrays overlap. We put the
 | |
|   // checks into a separate block to make the more common case of few elements
 | |
|   // faster.
 | |
|   Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
 | |
|                                                  BypassBlock->getTerminator());
 | |
|   if (MemRuntimeCheck) {
 | |
|     // Create a new block containing the memory check.
 | |
|     BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
 | |
|                                                           "vector.memcheck");
 | |
|     LoopBypassBlocks.push_back(CheckBlock);
 | |
| 
 | |
|     // Replace the branch into the memory check block with a conditional branch
 | |
|     // for the "few elements case".
 | |
|     Instruction *OldTerm = BypassBlock->getTerminator();
 | |
|     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
 | |
|     OldTerm->eraseFromParent();
 | |
| 
 | |
|     Cmp = MemRuntimeCheck;
 | |
|     LastBypassBlock = CheckBlock;
 | |
|   }
 | |
| 
 | |
|   LastBypassBlock->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
 | |
|                      LastBypassBlock);
 | |
| 
 | |
|   // We are going to resume the execution of the scalar loop.
 | |
|   // Go over all of the induction variables that we found and fix the
 | |
|   // PHIs that are left in the scalar version of the loop.
 | |
|   // The starting values of PHI nodes depend on the counter of the last
 | |
|   // iteration in the vectorized loop.
 | |
|   // If we come from a bypass edge then we need to start from the original
 | |
|   // start value.
 | |
| 
 | |
|   // This variable saves the new starting index for the scalar loop.
 | |
|   PHINode *ResumeIndex = 0;
 | |
|   LoopVectorizationLegality::InductionList::iterator I, E;
 | |
|   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
 | |
|   for (I = List->begin(), E = List->end(); I != E; ++I) {
 | |
|     PHINode *OrigPhi = I->first;
 | |
|     LoopVectorizationLegality::InductionInfo II = I->second;
 | |
|     PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
 | |
|                                          MiddleBlock->getTerminator());
 | |
|     Value *EndValue = 0;
 | |
|     switch (II.IK) {
 | |
|     case LoopVectorizationLegality::IK_NoInduction:
 | |
|       llvm_unreachable("Unknown induction");
 | |
|     case LoopVectorizationLegality::IK_IntInduction: {
 | |
|       // Handle the integer induction counter:
 | |
|       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
 | |
|       assert(OrigPhi == OldInduction && "Unknown integer PHI");
 | |
|       // We know what the end value is.
 | |
|       EndValue = IdxEndRoundDown;
 | |
|       // We also know which PHI node holds it.
 | |
|       ResumeIndex = ResumeVal;
 | |
|       break;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_ReverseIntInduction: {
 | |
|       // Convert the CountRoundDown variable to the PHI size.
 | |
|       unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
 | |
|       unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
 | |
|       Value *CRD = CountRoundDown;
 | |
|       if (CRDSize > IISize)
 | |
|         CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
 | |
|                                II.StartValue->getType(), "tr.crd",
 | |
|                                LoopBypassBlocks.back()->getTerminator());
 | |
|       else if (CRDSize < IISize)
 | |
|         CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
 | |
|                                II.StartValue->getType(),
 | |
|                                "sext.crd",
 | |
|                                LoopBypassBlocks.back()->getTerminator());
 | |
|       // Handle reverse integer induction counter:
 | |
|       EndValue =
 | |
|         BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
 | |
|                                   LoopBypassBlocks.back()->getTerminator());
 | |
|       break;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_PtrInduction: {
 | |
|       // For pointer induction variables, calculate the offset using
 | |
|       // the end index.
 | |
|       EndValue =
 | |
|         GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
 | |
|                                   LoopBypassBlocks.back()->getTerminator());
 | |
|       break;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_ReversePtrInduction: {
 | |
|       // The value at the end of the loop for the reverse pointer is calculated
 | |
|       // by creating a GEP with a negative index starting from the start value.
 | |
|       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
 | |
|       Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
 | |
|                                   "rev.ind.end",
 | |
|                                   LoopBypassBlocks.back()->getTerminator());
 | |
|       EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
 | |
|                                   "rev.ptr.ind.end",
 | |
|                                   LoopBypassBlocks.back()->getTerminator());
 | |
|       break;
 | |
|     }
 | |
|     }// end of case
 | |
| 
 | |
|     // The new PHI merges the original incoming value, in case of a bypass,
 | |
|     // or the value at the end of the vectorized loop.
 | |
|     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|       ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
 | |
|     ResumeVal->addIncoming(EndValue, VecBody);
 | |
| 
 | |
|     // Fix the scalar body counter (PHI node).
 | |
|     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
 | |
|     OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
 | |
|   }
 | |
| 
 | |
|   // If we are generating a new induction variable then we also need to
 | |
|   // generate the code that calculates the exit value. This value is not
 | |
|   // simply the end of the counter because we may skip the vectorized body
 | |
|   // in case of a runtime check.
 | |
|   if (!OldInduction){
 | |
|     assert(!ResumeIndex && "Unexpected resume value found");
 | |
|     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
 | |
|                                   MiddleBlock->getTerminator());
 | |
|     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
 | |
|     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
 | |
|   }
 | |
| 
 | |
|   // Make sure that we found the index where scalar loop needs to continue.
 | |
|   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
 | |
|          "Invalid resume Index");
 | |
| 
 | |
|   // Add a check in the middle block to see if we have completed
 | |
|   // all of the iterations in the first vector loop.
 | |
|   // If (N - N%VF) == N, then we *don't* need to run the remainder.
 | |
|   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
 | |
|                                 ResumeIndex, "cmp.n",
 | |
|                                 MiddleBlock->getTerminator());
 | |
| 
 | |
|   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
 | |
|   // Remove the old terminator.
 | |
|   MiddleBlock->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Create i+1 and fill the PHINode.
 | |
|   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
 | |
|   Induction->addIncoming(StartIdx, VectorPH);
 | |
|   Induction->addIncoming(NextIdx, VecBody);
 | |
|   // Create the compare.
 | |
|   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
 | |
|   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
 | |
| 
 | |
|   // Now we have two terminators. Remove the old one from the block.
 | |
|   VecBody->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Get ready to start creating new instructions into the vectorized body.
 | |
|   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
 | |
| 
 | |
|   // Create and register the new vector loop.
 | |
|   Loop* Lp = new Loop();
 | |
|   Loop *ParentLoop = OrigLoop->getParentLoop();
 | |
| 
 | |
|   // Insert the new loop into the loop nest and register the new basic blocks.
 | |
|   if (ParentLoop) {
 | |
|     ParentLoop->addChildLoop(Lp);
 | |
|     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|       ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
 | |
|   } else {
 | |
|     LI->addTopLevelLoop(Lp);
 | |
|   }
 | |
| 
 | |
|   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
 | |
| 
 | |
|   // Save the state.
 | |
|   LoopVectorPreHeader = VectorPH;
 | |
|   LoopScalarPreHeader = ScalarPH;
 | |
|   LoopMiddleBlock = MiddleBlock;
 | |
|   LoopExitBlock = ExitBlock;
 | |
|   LoopVectorBody = VecBody;
 | |
|   LoopScalarBody = OldBasicBlock;
 | |
| }
 | |
| 
 | |
| /// This function returns the identity element (or neutral element) for
 | |
| /// the operation K.
 | |
| Constant*
 | |
| LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp,
 | |
|                                                 MinMaxReductionKind MinMaxK) {
 | |
|   switch (K) {
 | |
|   case RK_IntegerXor:
 | |
|   case RK_IntegerAdd:
 | |
|   case RK_IntegerOr:
 | |
|     // Adding, Xoring, Oring zero to a number does not change it.
 | |
|     return ConstantInt::get(Tp, 0);
 | |
|   case RK_IntegerMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantInt::get(Tp, 1);
 | |
|   case RK_IntegerAnd:
 | |
|     // AND-ing a number with an all-1 value does not change it.
 | |
|     return ConstantInt::get(Tp, -1, true);
 | |
|   case  RK_FloatMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantFP::get(Tp, 1.0L);
 | |
|   case  RK_FloatAdd:
 | |
|     // Adding zero to a number does not change it.
 | |
|     return ConstantFP::get(Tp, 0.0L);
 | |
|   case  RK_IntegerMinMax:
 | |
|     switch(MinMaxK) {
 | |
|     default: llvm_unreachable("Unknown min/max predicate");
 | |
|     case MRK_UIntMin:
 | |
|       return ConstantInt::getAllOnesValue(Tp);
 | |
|     case MRK_UIntMax:
 | |
|       return ConstantInt::get(Tp, 0);
 | |
|     case MRK_SIntMin: {
 | |
|       unsigned BitWidth = Tp->getPrimitiveSizeInBits();
 | |
|       return ConstantInt::get(Tp->getContext(),
 | |
|                               APInt::getSignedMaxValue(BitWidth));
 | |
|     }
 | |
|     case LoopVectorizationLegality::MRK_SIntMax: {
 | |
|       unsigned BitWidth = Tp->getPrimitiveSizeInBits();
 | |
|       return ConstantInt::get(Tp->getContext(),
 | |
|                               APInt::getSignedMinValue(BitWidth));
 | |
|     }
 | |
|     }
 | |
|   default:
 | |
|     llvm_unreachable("Unknown reduction kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Intrinsic::ID
 | |
| getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
 | |
|   // If we have an intrinsic call, check if it is trivially vectorizable.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::sqrt:
 | |
|     case Intrinsic::sin:
 | |
|     case Intrinsic::cos:
 | |
|     case Intrinsic::exp:
 | |
|     case Intrinsic::exp2:
 | |
|     case Intrinsic::log:
 | |
|     case Intrinsic::log10:
 | |
|     case Intrinsic::log2:
 | |
|     case Intrinsic::fabs:
 | |
|     case Intrinsic::floor:
 | |
|     case Intrinsic::ceil:
 | |
|     case Intrinsic::trunc:
 | |
|     case Intrinsic::rint:
 | |
|     case Intrinsic::nearbyint:
 | |
|     case Intrinsic::pow:
 | |
|     case Intrinsic::fma:
 | |
|     case Intrinsic::fmuladd:
 | |
|       return II->getIntrinsicID();
 | |
|     default:
 | |
|       return Intrinsic::not_intrinsic;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!TLI)
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   LibFunc::Func Func;
 | |
|   Function *F = CI->getCalledFunction();
 | |
|   // We're going to make assumptions on the semantics of the functions, check
 | |
|   // that the target knows that it's available in this environment.
 | |
|   if (!F || !TLI->getLibFunc(F->getName(), Func))
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   // Otherwise check if we have a call to a function that can be turned into a
 | |
|   // vector intrinsic.
 | |
|   switch (Func) {
 | |
|   default:
 | |
|     break;
 | |
|   case LibFunc::sin:
 | |
|   case LibFunc::sinf:
 | |
|   case LibFunc::sinl:
 | |
|     return Intrinsic::sin;
 | |
|   case LibFunc::cos:
 | |
|   case LibFunc::cosf:
 | |
|   case LibFunc::cosl:
 | |
|     return Intrinsic::cos;
 | |
|   case LibFunc::exp:
 | |
|   case LibFunc::expf:
 | |
|   case LibFunc::expl:
 | |
|     return Intrinsic::exp;
 | |
|   case LibFunc::exp2:
 | |
|   case LibFunc::exp2f:
 | |
|   case LibFunc::exp2l:
 | |
|     return Intrinsic::exp2;
 | |
|   case LibFunc::log:
 | |
|   case LibFunc::logf:
 | |
|   case LibFunc::logl:
 | |
|     return Intrinsic::log;
 | |
|   case LibFunc::log10:
 | |
|   case LibFunc::log10f:
 | |
|   case LibFunc::log10l:
 | |
|     return Intrinsic::log10;
 | |
|   case LibFunc::log2:
 | |
|   case LibFunc::log2f:
 | |
|   case LibFunc::log2l:
 | |
|     return Intrinsic::log2;
 | |
|   case LibFunc::fabs:
 | |
|   case LibFunc::fabsf:
 | |
|   case LibFunc::fabsl:
 | |
|     return Intrinsic::fabs;
 | |
|   case LibFunc::floor:
 | |
|   case LibFunc::floorf:
 | |
|   case LibFunc::floorl:
 | |
|     return Intrinsic::floor;
 | |
|   case LibFunc::ceil:
 | |
|   case LibFunc::ceilf:
 | |
|   case LibFunc::ceill:
 | |
|     return Intrinsic::ceil;
 | |
|   case LibFunc::trunc:
 | |
|   case LibFunc::truncf:
 | |
|   case LibFunc::truncl:
 | |
|     return Intrinsic::trunc;
 | |
|   case LibFunc::rint:
 | |
|   case LibFunc::rintf:
 | |
|   case LibFunc::rintl:
 | |
|     return Intrinsic::rint;
 | |
|   case LibFunc::nearbyint:
 | |
|   case LibFunc::nearbyintf:
 | |
|   case LibFunc::nearbyintl:
 | |
|     return Intrinsic::nearbyint;
 | |
|   case LibFunc::pow:
 | |
|   case LibFunc::powf:
 | |
|   case LibFunc::powl:
 | |
|     return Intrinsic::pow;
 | |
|   }
 | |
| 
 | |
|   return Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| /// This function translates the reduction kind to an LLVM binary operator.
 | |
| static unsigned
 | |
| getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
 | |
|   switch (Kind) {
 | |
|     case LoopVectorizationLegality::RK_IntegerAdd:
 | |
|       return Instruction::Add;
 | |
|     case LoopVectorizationLegality::RK_IntegerMult:
 | |
|       return Instruction::Mul;
 | |
|     case LoopVectorizationLegality::RK_IntegerOr:
 | |
|       return Instruction::Or;
 | |
|     case LoopVectorizationLegality::RK_IntegerAnd:
 | |
|       return Instruction::And;
 | |
|     case LoopVectorizationLegality::RK_IntegerXor:
 | |
|       return Instruction::Xor;
 | |
|     case LoopVectorizationLegality::RK_FloatMult:
 | |
|       return Instruction::FMul;
 | |
|     case LoopVectorizationLegality::RK_FloatAdd:
 | |
|       return Instruction::FAdd;
 | |
|     case LoopVectorizationLegality::RK_IntegerMinMax:
 | |
|       return Instruction::ICmp;
 | |
|     default:
 | |
|       llvm_unreachable("Unknown reduction operation");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *createMinMaxOp(IRBuilder<> &Builder,
 | |
|                       LoopVectorizationLegality::MinMaxReductionKind RK,
 | |
|                       Value *Left,
 | |
|                       Value *Right) {
 | |
|   CmpInst::Predicate P = CmpInst::ICMP_NE;
 | |
|   switch (RK) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown min/max reduction kind");
 | |
|   case LoopVectorizationLegality::MRK_UIntMin:
 | |
|     P = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_UIntMax:
 | |
|     P = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_SIntMin:
 | |
|     P = CmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_SIntMax:
 | |
|     P = CmpInst::ICMP_SGT;
 | |
|   }
 | |
|   Value *Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | |
|   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | |
|   return Select;
 | |
| }
 | |
| 
 | |
| void
 | |
| InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
 | |
|   //===------------------------------------------------===//
 | |
|   //
 | |
|   // Notice: any optimization or new instruction that go
 | |
|   // into the code below should be also be implemented in
 | |
|   // the cost-model.
 | |
|   //
 | |
|   //===------------------------------------------------===//
 | |
|   Constant *Zero = Builder.getInt32(0);
 | |
| 
 | |
|   // In order to support reduction variables we need to be able to vectorize
 | |
|   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
 | |
|   // stages. First, we create a new vector PHI node with no incoming edges.
 | |
|   // We use this value when we vectorize all of the instructions that use the
 | |
|   // PHI. Next, after all of the instructions in the block are complete we
 | |
|   // add the new incoming edges to the PHI. At this point all of the
 | |
|   // instructions in the basic block are vectorized, so we can use them to
 | |
|   // construct the PHI.
 | |
|   PhiVector RdxPHIsToFix;
 | |
| 
 | |
|   // Scan the loop in a topological order to ensure that defs are vectorized
 | |
|   // before users.
 | |
|   LoopBlocksDFS DFS(OrigLoop);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   // Vectorize all of the blocks in the original loop.
 | |
|   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
 | |
|        be = DFS.endRPO(); bb != be; ++bb)
 | |
|     vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
 | |
| 
 | |
|   // At this point every instruction in the original loop is widened to
 | |
|   // a vector form. We are almost done. Now, we need to fix the PHI nodes
 | |
|   // that we vectorized. The PHI nodes are currently empty because we did
 | |
|   // not want to introduce cycles. Notice that the remaining PHI nodes
 | |
|   // that we need to fix are reduction variables.
 | |
| 
 | |
|   // Create the 'reduced' values for each of the induction vars.
 | |
|   // The reduced values are the vector values that we scalarize and combine
 | |
|   // after the loop is finished.
 | |
|   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
 | |
|        it != e; ++it) {
 | |
|     PHINode *RdxPhi = *it;
 | |
|     assert(RdxPhi && "Unable to recover vectorized PHI");
 | |
| 
 | |
|     // Find the reduction variable descriptor.
 | |
|     assert(Legal->getReductionVars()->count(RdxPhi) &&
 | |
|            "Unable to find the reduction variable");
 | |
|     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
 | |
|     (*Legal->getReductionVars())[RdxPhi];
 | |
| 
 | |
|     // We need to generate a reduction vector from the incoming scalar.
 | |
|     // To do so, we need to generate the 'identity' vector and overide
 | |
|     // one of the elements with the incoming scalar reduction. We need
 | |
|     // to do it in the vector-loop preheader.
 | |
|     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
 | |
| 
 | |
|     // This is the vector-clone of the value that leaves the loop.
 | |
|     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
 | |
|     Type *VecTy = VectorExit[0]->getType();
 | |
| 
 | |
|     // Find the reduction identity variable. Zero for addition, or, xor,
 | |
|     // one for multiplication, -1 for And.
 | |
|     Constant *Iden =
 | |
|       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
 | |
|                                                       VecTy->getScalarType(),
 | |
|                                                       RdxDesc.MinMaxKind);
 | |
|     Constant *Identity = ConstantVector::getSplat(VF, Iden);
 | |
| 
 | |
|     // This vector is the Identity vector where the first element is the
 | |
|     // incoming scalar reduction.
 | |
|     Value *VectorStart = Builder.CreateInsertElement(Identity,
 | |
|                                                      RdxDesc.StartValue, Zero);
 | |
| 
 | |
|     // Fix the vector-loop phi.
 | |
|     // We created the induction variable so we know that the
 | |
|     // preheader is the first entry.
 | |
|     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
 | |
| 
 | |
|     // Reductions do not have to start at zero. They can start with
 | |
|     // any loop invariant values.
 | |
|     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
 | |
|     BasicBlock *Latch = OrigLoop->getLoopLatch();
 | |
|     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
 | |
|     VectorParts &Val = getVectorValue(LoopVal);
 | |
|     for (unsigned part = 0; part < UF; ++part) {
 | |
|       // Make sure to add the reduction stat value only to the 
 | |
|       // first unroll part.
 | |
|       Value *StartVal = (part == 0) ? VectorStart : Identity;
 | |
|       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
 | |
|       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
 | |
|     }
 | |
| 
 | |
|     // Before each round, move the insertion point right between
 | |
|     // the PHIs and the values we are going to write.
 | |
|     // This allows us to write both PHINodes and the extractelement
 | |
|     // instructions.
 | |
|     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
 | |
| 
 | |
|     VectorParts RdxParts;
 | |
|     for (unsigned part = 0; part < UF; ++part) {
 | |
|       // This PHINode contains the vectorized reduction variable, or
 | |
|       // the initial value vector, if we bypass the vector loop.
 | |
|       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
 | |
|       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
 | |
|       Value *StartVal = (part == 0) ? VectorStart : Identity;
 | |
|       for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
 | |
|       NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
 | |
|       RdxParts.push_back(NewPhi);
 | |
|     }
 | |
| 
 | |
|     // Reduce all of the unrolled parts into a single vector.
 | |
|     Value *ReducedPartRdx = RdxParts[0];
 | |
|     unsigned Op = getReductionBinOp(RdxDesc.Kind);
 | |
|     for (unsigned part = 1; part < UF; ++part) {
 | |
|       if (Op != Instruction::ICmp)
 | |
|         ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
 | |
|                                              RdxParts[part], ReducedPartRdx,
 | |
|                                              "bin.rdx");
 | |
|       else
 | |
|         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
 | |
|                                         ReducedPartRdx, RdxParts[part]);
 | |
|     }
 | |
| 
 | |
|     // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
 | |
|     // and vector ops, reducing the set of values being computed by half each
 | |
|     // round.
 | |
|     assert(isPowerOf2_32(VF) &&
 | |
|            "Reduction emission only supported for pow2 vectors!");
 | |
|     Value *TmpVec = ReducedPartRdx;
 | |
|     SmallVector<Constant*, 32> ShuffleMask(VF, 0);
 | |
|     for (unsigned i = VF; i != 1; i >>= 1) {
 | |
|       // Move the upper half of the vector to the lower half.
 | |
|       for (unsigned j = 0; j != i/2; ++j)
 | |
|         ShuffleMask[j] = Builder.getInt32(i/2 + j);
 | |
| 
 | |
|       // Fill the rest of the mask with undef.
 | |
|       std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
 | |
|                 UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|       Value *Shuf =
 | |
|         Builder.CreateShuffleVector(TmpVec,
 | |
|                                     UndefValue::get(TmpVec->getType()),
 | |
|                                     ConstantVector::get(ShuffleMask),
 | |
|                                     "rdx.shuf");
 | |
| 
 | |
|       if (Op != Instruction::ICmp)
 | |
|         TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
 | |
|                                      "bin.rdx");
 | |
|       else
 | |
|         TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
 | |
|     }
 | |
| 
 | |
|     // The result is in the first element of the vector.
 | |
|     Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | |
| 
 | |
|     // Now, we need to fix the users of the reduction variable
 | |
|     // inside and outside of the scalar remainder loop.
 | |
|     // We know that the loop is in LCSSA form. We need to update the
 | |
|     // PHI nodes in the exit blocks.
 | |
|     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
 | |
|          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
 | |
|       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
 | |
|       if (!LCSSAPhi) continue;
 | |
| 
 | |
|       // All PHINodes need to have a single entry edge, or two if
 | |
|       // we already fixed them.
 | |
|       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
 | |
| 
 | |
|       // We found our reduction value exit-PHI. Update it with the
 | |
|       // incoming bypass edge.
 | |
|       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
 | |
|         // Add an edge coming from the bypass.
 | |
|         LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
 | |
|         break;
 | |
|       }
 | |
|     }// end of the LCSSA phi scan.
 | |
| 
 | |
|     // Fix the scalar loop reduction variable with the incoming reduction sum
 | |
|     // from the vector body and from the backedge value.
 | |
|     int IncomingEdgeBlockIdx =
 | |
|     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
 | |
|     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
 | |
|     // Pick the other block.
 | |
|     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
 | |
|     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
 | |
|     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
 | |
|   }// end of for each redux variable.
 | |
| 
 | |
|   // The Loop exit block may have single value PHI nodes where the incoming
 | |
|   // value is 'undef'. While vectorizing we only handled real values that
 | |
|   // were defined inside the loop. Here we handle the 'undef case'.
 | |
|   // See PR14725.
 | |
|   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
 | |
|        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
 | |
|     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
 | |
|     if (!LCSSAPhi) continue;
 | |
|     if (LCSSAPhi->getNumIncomingValues() == 1)
 | |
|       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
 | |
|                             LoopMiddleBlock);
 | |
|   }
 | |
| }
 | |
| 
 | |
| InnerLoopVectorizer::VectorParts
 | |
| InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
 | |
|   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
 | |
|          "Invalid edge");
 | |
| 
 | |
|   VectorParts SrcMask = createBlockInMask(Src);
 | |
| 
 | |
|   // The terminator has to be a branch inst!
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
 | |
|   assert(BI && "Unexpected terminator found");
 | |
| 
 | |
|   if (BI->isConditional()) {
 | |
|     VectorParts EdgeMask = getVectorValue(BI->getCondition());
 | |
| 
 | |
|     if (BI->getSuccessor(0) != Dst)
 | |
|       for (unsigned part = 0; part < UF; ++part)
 | |
|         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
 | |
| 
 | |
|     for (unsigned part = 0; part < UF; ++part)
 | |
|       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
 | |
|     return EdgeMask;
 | |
|   }
 | |
| 
 | |
|   return SrcMask;
 | |
| }
 | |
| 
 | |
| InnerLoopVectorizer::VectorParts
 | |
| InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
 | |
|   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
 | |
| 
 | |
|   // Loop incoming mask is all-one.
 | |
|   if (OrigLoop->getHeader() == BB) {
 | |
|     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
 | |
|     return getVectorValue(C);
 | |
|   }
 | |
| 
 | |
|   // This is the block mask. We OR all incoming edges, and with zero.
 | |
|   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
 | |
|   VectorParts BlockMask = getVectorValue(Zero);
 | |
| 
 | |
|   // For each pred:
 | |
|   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
 | |
|     VectorParts EM = createEdgeMask(*it, BB);
 | |
|     for (unsigned part = 0; part < UF; ++part)
 | |
|       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
 | |
|   }
 | |
| 
 | |
|   return BlockMask;
 | |
| }
 | |
| 
 | |
| void
 | |
| InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
 | |
|                                           BasicBlock *BB, PhiVector *PV) {
 | |
|   // For each instruction in the old loop.
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     VectorParts &Entry = WidenMap.get(it);
 | |
|     switch (it->getOpcode()) {
 | |
|     case Instruction::Br:
 | |
|       // Nothing to do for PHIs and BR, since we already took care of the
 | |
|       // loop control flow instructions.
 | |
|       continue;
 | |
|     case Instruction::PHI:{
 | |
|       PHINode* P = cast<PHINode>(it);
 | |
|       // Handle reduction variables:
 | |
|       if (Legal->getReductionVars()->count(P)) {
 | |
|         for (unsigned part = 0; part < UF; ++part) {
 | |
|           // This is phase one of vectorizing PHIs.
 | |
|           Type *VecTy = VectorType::get(it->getType(), VF);
 | |
|           Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
 | |
|                                         LoopVectorBody-> getFirstInsertionPt());
 | |
|         }
 | |
|         PV->push_back(P);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check for PHI nodes that are lowered to vector selects.
 | |
|       if (P->getParent() != OrigLoop->getHeader()) {
 | |
|         // We know that all PHIs in non header blocks are converted into
 | |
|         // selects, so we don't have to worry about the insertion order and we
 | |
|         // can just use the builder.
 | |
| 
 | |
|         // At this point we generate the predication tree. There may be
 | |
|         // duplications since this is a simple recursive scan, but future
 | |
|         // optimizations will clean it up.
 | |
|         VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
 | |
|                                                P->getParent());
 | |
| 
 | |
|         for (unsigned part = 0; part < UF; ++part) {
 | |
|         VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
 | |
|         VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
 | |
|           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
 | |
|                                              "predphi");
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // This PHINode must be an induction variable.
 | |
|       // Make sure that we know about it.
 | |
|       assert(Legal->getInductionVars()->count(P) &&
 | |
|              "Not an induction variable");
 | |
| 
 | |
|       LoopVectorizationLegality::InductionInfo II =
 | |
|         Legal->getInductionVars()->lookup(P);
 | |
| 
 | |
|       switch (II.IK) {
 | |
|       case LoopVectorizationLegality::IK_NoInduction:
 | |
|         llvm_unreachable("Unknown induction");
 | |
|       case LoopVectorizationLegality::IK_IntInduction: {
 | |
|         assert(P == OldInduction && "Unexpected PHI");
 | |
|         Value *Broadcasted = getBroadcastInstrs(Induction);
 | |
|         // After broadcasting the induction variable we need to make the
 | |
|         // vector consecutive by adding 0, 1, 2 ...
 | |
|         for (unsigned part = 0; part < UF; ++part)
 | |
|           Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
 | |
|         continue;
 | |
|       }
 | |
|       case LoopVectorizationLegality::IK_ReverseIntInduction:
 | |
|       case LoopVectorizationLegality::IK_PtrInduction:
 | |
|       case LoopVectorizationLegality::IK_ReversePtrInduction:
 | |
|         // Handle reverse integer and pointer inductions.
 | |
|         Value *StartIdx = 0;
 | |
|         // If we have a single integer induction variable then use it.
 | |
|         // Otherwise, start counting at zero.
 | |
|         if (OldInduction) {
 | |
|           LoopVectorizationLegality::InductionInfo OldII =
 | |
|             Legal->getInductionVars()->lookup(OldInduction);
 | |
|           StartIdx = OldII.StartValue;
 | |
|         } else {
 | |
|           StartIdx = ConstantInt::get(Induction->getType(), 0);
 | |
|         }
 | |
|         // This is the normalized GEP that starts counting at zero.
 | |
|         Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
 | |
|                                                  "normalized.idx");
 | |
| 
 | |
|         // Handle the reverse integer induction variable case.
 | |
|         if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
 | |
|           IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
 | |
|           Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
 | |
|                                                  "resize.norm.idx");
 | |
|           Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
 | |
|                                                  "reverse.idx");
 | |
| 
 | |
|           // This is a new value so do not hoist it out.
 | |
|           Value *Broadcasted = getBroadcastInstrs(ReverseInd);
 | |
|           // After broadcasting the induction variable we need to make the
 | |
|           // vector consecutive by adding  ... -3, -2, -1, 0.
 | |
|           for (unsigned part = 0; part < UF; ++part)
 | |
|             Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Handle the pointer induction variable case.
 | |
|         assert(P->getType()->isPointerTy() && "Unexpected type.");
 | |
| 
 | |
|         // Is this a reverse induction ptr or a consecutive induction ptr.
 | |
|         bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
 | |
|                         II.IK);
 | |
| 
 | |
|         // This is the vector of results. Notice that we don't generate
 | |
|         // vector geps because scalar geps result in better code.
 | |
|         for (unsigned part = 0; part < UF; ++part) {
 | |
|           Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
 | |
|           for (unsigned int i = 0; i < VF; ++i) {
 | |
|             int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
 | |
|             Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
 | |
|             Value *GlobalIdx;
 | |
|             if (!Reverse)
 | |
|               GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
 | |
|             else
 | |
|               GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
 | |
| 
 | |
|             Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
 | |
|                                                "next.gep");
 | |
|             VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
 | |
|                                                  Builder.getInt32(i),
 | |
|                                                  "insert.gep");
 | |
|           }
 | |
|           Entry[part] = VecVal;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     }// End of PHI.
 | |
| 
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       // Just widen binops.
 | |
|       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
 | |
|       VectorParts &A = getVectorValue(it->getOperand(0));
 | |
|       VectorParts &B = getVectorValue(it->getOperand(1));
 | |
| 
 | |
|       // Use this vector value for all users of the original instruction.
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
 | |
| 
 | |
|         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
 | |
|         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
 | |
|         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
 | |
|           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
 | |
|           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
 | |
|         }
 | |
|         if (VecOp && isa<PossiblyExactOperator>(VecOp))
 | |
|           VecOp->setIsExact(BinOp->isExact());
 | |
| 
 | |
|         Entry[Part] = V;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Select: {
 | |
|       // Widen selects.
 | |
|       // If the selector is loop invariant we can create a select
 | |
|       // instruction with a scalar condition. Otherwise, use vector-select.
 | |
|       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
 | |
|                                                OrigLoop);
 | |
| 
 | |
|       // The condition can be loop invariant  but still defined inside the
 | |
|       // loop. This means that we can't just use the original 'cond' value.
 | |
|       // We have to take the 'vectorized' value and pick the first lane.
 | |
|       // Instcombine will make this a no-op.
 | |
|       VectorParts &Cond = getVectorValue(it->getOperand(0));
 | |
|       VectorParts &Op0  = getVectorValue(it->getOperand(1));
 | |
|       VectorParts &Op1  = getVectorValue(it->getOperand(2));
 | |
|       Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
 | |
|                                                        Builder.getInt32(0));
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Entry[Part] = Builder.CreateSelect(
 | |
|           InvariantCond ? ScalarCond : Cond[Part],
 | |
|           Op0[Part],
 | |
|           Op1[Part]);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp: {
 | |
|       // Widen compares. Generate vector compares.
 | |
|       bool FCmp = (it->getOpcode() == Instruction::FCmp);
 | |
|       CmpInst *Cmp = dyn_cast<CmpInst>(it);
 | |
|       VectorParts &A = getVectorValue(it->getOperand(0));
 | |
|       VectorParts &B = getVectorValue(it->getOperand(1));
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Value *C = 0;
 | |
|         if (FCmp)
 | |
|           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
 | |
|         else
 | |
|           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
 | |
|         Entry[Part] = C;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Store:
 | |
|     case Instruction::Load:
 | |
|         vectorizeMemoryInstruction(it, Legal);
 | |
|         break;
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       CastInst *CI = dyn_cast<CastInst>(it);
 | |
|       /// Optimize the special case where the source is the induction
 | |
|       /// variable. Notice that we can only optimize the 'trunc' case
 | |
|       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
 | |
|       /// c. other casts depend on pointer size.
 | |
|       if (CI->getOperand(0) == OldInduction &&
 | |
|           it->getOpcode() == Instruction::Trunc) {
 | |
|         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
 | |
|                                                CI->getType());
 | |
|         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
 | |
|         for (unsigned Part = 0; Part < UF; ++Part)
 | |
|           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
 | |
|         break;
 | |
|       }
 | |
|       /// Vectorize casts.
 | |
|       Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
 | |
| 
 | |
|       VectorParts &A = getVectorValue(it->getOperand(0));
 | |
|       for (unsigned Part = 0; Part < UF; ++Part)
 | |
|         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Call: {
 | |
|       // Ignore dbg intrinsics.
 | |
|       if (isa<DbgInfoIntrinsic>(it))
 | |
|         break;
 | |
| 
 | |
|       Module *M = BB->getParent()->getParent();
 | |
|       CallInst *CI = cast<CallInst>(it);
 | |
|       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|       assert(ID && "Not an intrinsic call!");
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         SmallVector<Value*, 4> Args;
 | |
|         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
 | |
|           VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
 | |
|           Args.push_back(Arg[Part]);
 | |
|         }
 | |
|         Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
 | |
|         Function *F = Intrinsic::getDeclaration(M, ID, Tys);
 | |
|         Entry[Part] = Builder.CreateCall(F, Args);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       // All other instructions are unsupported. Scalarize them.
 | |
|       scalarizeInstruction(it);
 | |
|       break;
 | |
|     }// end of switch.
 | |
|   }// end of for_each instr.
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::updateAnalysis() {
 | |
|   // Forget the original basic block.
 | |
|   SE->forgetLoop(OrigLoop);
 | |
| 
 | |
|   // Update the dominator tree information.
 | |
|   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
 | |
|          "Entry does not dominate exit.");
 | |
| 
 | |
|   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
 | |
|   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
 | |
|   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
 | |
|   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
 | |
|   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
 | |
|   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
 | |
|   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
 | |
| 
 | |
|   DEBUG(DT->verifyAnalysis());
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
 | |
|   if (!EnableIfConversion)
 | |
|     return false;
 | |
| 
 | |
|   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
 | |
|   std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
 | |
| 
 | |
|   // Collect the blocks that need predication.
 | |
|   for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
 | |
|     BasicBlock *BB = LoopBlocks[i];
 | |
| 
 | |
|     // We don't support switch statements inside loops.
 | |
|     if (!isa<BranchInst>(BB->getTerminator()))
 | |
|       return false;
 | |
| 
 | |
|     // We must have at most two predecessors because we need to convert
 | |
|     // all PHIs to selects.
 | |
|     unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
 | |
|     if (Preds > 2)
 | |
|       return false;
 | |
| 
 | |
|     // We must be able to predicate all blocks that need to be predicated.
 | |
|     if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We can if-convert this loop.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorize() {
 | |
|   assert(TheLoop->getLoopPreheader() && "No preheader!!");
 | |
| 
 | |
|   // We can only vectorize innermost loops.
 | |
|   if (TheLoop->getSubLoopsVector().size())
 | |
|     return false;
 | |
| 
 | |
|   // We must have a single backedge.
 | |
|   if (TheLoop->getNumBackEdges() != 1)
 | |
|     return false;
 | |
| 
 | |
|   // We must have a single exiting block.
 | |
|   if (!TheLoop->getExitingBlock())
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumBlocks = TheLoop->getNumBlocks();
 | |
| 
 | |
|   // Check if we can if-convert non single-bb loops.
 | |
|   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
 | |
|     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We need to have a loop header.
 | |
|   BasicBlock *Latch = TheLoop->getLoopLatch();
 | |
|   DEBUG(dbgs() << "LV: Found a loop: " <<
 | |
|         TheLoop->getHeader()->getName() << "\n");
 | |
| 
 | |
|   // ScalarEvolution needs to be able to find the exit count.
 | |
|   const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
 | |
|   if (ExitCount == SE->getCouldNotCompute()) {
 | |
|     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do not loop-vectorize loops with a tiny trip count.
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
 | |
|   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
 | |
|     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
 | |
|           "This loop is not worth vectorizing.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check if we can vectorize the instructions and CFG in this loop.
 | |
|   if (!canVectorizeInstrs()) {
 | |
|     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Go over each instruction and look at memory deps.
 | |
|   if (!canVectorizeMemory()) {
 | |
|     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Collect all of the variables that remain uniform after vectorization.
 | |
|   collectLoopUniforms();
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
 | |
|         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
 | |
|         <<"!\n");
 | |
| 
 | |
|   // Okay! We can vectorize. At this point we don't have any other mem analysis
 | |
|   // which may limit our maximum vectorization factor, so just return true with
 | |
|   // no restrictions.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeInstrs() {
 | |
|   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
| 
 | |
|   // If we marked the scalar loop as "already vectorized" then no need
 | |
|   // to vectorize it again.
 | |
|   if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) {
 | |
|     DEBUG(dbgs() << "LV: This loop was vectorized before\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For each block in the loop.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
| 
 | |
|     // Scan the instructions in the block and look for hazards.
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
| 
 | |
|       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
 | |
|         // This should not happen because the loop should be normalized.
 | |
|         if (Phi->getNumIncomingValues() != 2) {
 | |
|           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // Check that this PHI type is allowed.
 | |
|         if (!Phi->getType()->isIntegerTy() &&
 | |
|             !Phi->getType()->isFloatingPointTy() &&
 | |
|             !Phi->getType()->isPointerTy()) {
 | |
|           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // If this PHINode is not in the header block, then we know that we
 | |
|         // can convert it to select during if-conversion. No need to check if
 | |
|         // the PHIs in this block are induction or reduction variables.
 | |
|         if (*bb != Header)
 | |
|           continue;
 | |
| 
 | |
|         // This is the value coming from the preheader.
 | |
|         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
 | |
|         // Check if this is an induction variable.
 | |
|         InductionKind IK = isInductionVariable(Phi);
 | |
| 
 | |
|         if (IK_NoInduction != IK) {
 | |
|           // Int inductions are special because we only allow one IV.
 | |
|           if (IK == IK_IntInduction) {
 | |
|             if (Induction) {
 | |
|               DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
 | |
|               return false;
 | |
|             }
 | |
|             Induction = Phi;
 | |
|           }
 | |
| 
 | |
|           DEBUG(dbgs() << "LV: Found an induction variable.\n");
 | |
|           Inductions[Phi] = InductionInfo(StartValue, IK);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (AddReductionVar(Phi, RK_IntegerAdd)) {
 | |
|           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerMult)) {
 | |
|           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerOr)) {
 | |
|           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerAnd)) {
 | |
|           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerXor)) {
 | |
|           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
 | |
|           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_FloatMult)) {
 | |
|           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_FloatAdd)) {
 | |
|           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
 | |
|         return false;
 | |
|       }// end of PHI handling
 | |
| 
 | |
|       // We still don't handle functions. However, we can ignore dbg intrinsic
 | |
|       // calls and we do handle certain intrinsic and libm functions.
 | |
|       CallInst *CI = dyn_cast<CallInst>(it);
 | |
|       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
 | |
|         DEBUG(dbgs() << "LV: Found a call site.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Check that the instruction return type is vectorizable.
 | |
|       if (!VectorType::isValidElementType(it->getType()) &&
 | |
|           !it->getType()->isVoidTy()) {
 | |
|         DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Check that the stored type is vectorizable.
 | |
|       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
 | |
|         Type *T = ST->getValueOperand()->getType();
 | |
|         if (!VectorType::isValidElementType(T))
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       // Reduction instructions are allowed to have exit users.
 | |
|       // All other instructions must not have external users.
 | |
|       if (!AllowedExit.count(it))
 | |
|         //Check that all of the users of the loop are inside the BB.
 | |
|         for (Value::use_iterator I = it->use_begin(), E = it->use_end();
 | |
|              I != E; ++I) {
 | |
|           Instruction *U = cast<Instruction>(*I);
 | |
|           // This user may be a reduction exit value.
 | |
|           if (!TheLoop->contains(U)) {
 | |
|             DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
|     } // next instr.
 | |
| 
 | |
|   }
 | |
| 
 | |
|   if (!Induction) {
 | |
|     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
 | |
|     assert(getInductionVars()->size() && "No induction variables");
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LoopVectorizationLegality::collectLoopUniforms() {
 | |
|   // We now know that the loop is vectorizable!
 | |
|   // Collect variables that will remain uniform after vectorization.
 | |
|   std::vector<Value*> Worklist;
 | |
|   BasicBlock *Latch = TheLoop->getLoopLatch();
 | |
| 
 | |
|   // Start with the conditional branch and walk up the block.
 | |
|   Worklist.push_back(Latch->getTerminator()->getOperand(0));
 | |
| 
 | |
|   while (Worklist.size()) {
 | |
|     Instruction *I = dyn_cast<Instruction>(Worklist.back());
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // Look at instructions inside this loop.
 | |
|     // Stop when reaching PHI nodes.
 | |
|     // TODO: we need to follow values all over the loop, not only in this block.
 | |
|     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // This is a known uniform.
 | |
|     Uniforms.insert(I);
 | |
| 
 | |
|     // Insert all operands.
 | |
|     for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
 | |
|       Worklist.push_back(I->getOperand(i));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location
 | |
| LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
 | |
|   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
 | |
|     return AA->getLocation(Store);
 | |
|   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
 | |
|     return AA->getLocation(Load);
 | |
| 
 | |
|   llvm_unreachable("Should be either load or store instruction");
 | |
| }
 | |
| 
 | |
| bool
 | |
| LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
 | |
|                                                 Value *Object,
 | |
|                                                 Instruction *Inst,
 | |
|                                                 AliasMultiMap& WriteObjects,
 | |
|                                                 unsigned MaxByteWidth) {
 | |
| 
 | |
|   AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
 | |
| 
 | |
|   std::vector<Instruction*>::iterator
 | |
|               it = WriteObjects[Object].begin(),
 | |
|               end = WriteObjects[Object].end();
 | |
| 
 | |
|   for (; it != end; ++it) {
 | |
|     Instruction* I = *it;
 | |
|     if (I == Inst)
 | |
|       continue;
 | |
| 
 | |
|     AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
 | |
|     if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
 | |
|                   ThatLoc.getWithNewSize(MaxByteWidth)))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeMemory() {
 | |
| 
 | |
|   if (TheLoop->isAnnotatedParallel()) {
 | |
|     DEBUG(dbgs()
 | |
|           << "LV: A loop annotated parallel, ignore memory dependency "
 | |
|           << "checks.\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   typedef SmallVector<Value*, 16> ValueVector;
 | |
|   typedef SmallPtrSet<Value*, 16> ValueSet;
 | |
|   // Holds the Load and Store *instructions*.
 | |
|   ValueVector Loads;
 | |
|   ValueVector Stores;
 | |
|   PtrRtCheck.Pointers.clear();
 | |
|   PtrRtCheck.Need = false;
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
| 
 | |
|     // Scan the BB and collect legal loads and stores.
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
| 
 | |
|       // If this is a load, save it. If this instruction can read from memory
 | |
|       // but is not a load, then we quit. Notice that we don't handle function
 | |
|       // calls that read or write.
 | |
|       if (it->mayReadFromMemory()) {
 | |
|         LoadInst *Ld = dyn_cast<LoadInst>(it);
 | |
|         if (!Ld) return false;
 | |
|         if (!Ld->isSimple()) {
 | |
|           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
 | |
|           return false;
 | |
|         }
 | |
|         Loads.push_back(Ld);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Save 'store' instructions. Abort if other instructions write to memory.
 | |
|       if (it->mayWriteToMemory()) {
 | |
|         StoreInst *St = dyn_cast<StoreInst>(it);
 | |
|         if (!St) return false;
 | |
|         if (!St->isSimple()) {
 | |
|           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
 | |
|           return false;
 | |
|         }
 | |
|         Stores.push_back(St);
 | |
|       }
 | |
|     } // next instr.
 | |
|   } // next block.
 | |
| 
 | |
|   // Now we have two lists that hold the loads and the stores.
 | |
|   // Next, we find the pointers that they use.
 | |
| 
 | |
|   // Check if we see any stores. If there are no stores, then we don't
 | |
|   // care if the pointers are *restrict*.
 | |
|   if (!Stores.size()) {
 | |
|     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Holds the read and read-write *pointers* that we find. These maps hold
 | |
|   // unique values for pointers (so no need for multi-map).
 | |
|   AliasMap Reads;
 | |
|   AliasMap ReadWrites;
 | |
| 
 | |
|   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
 | |
|   // multiple times on the same object. If the ptr is accessed twice, once
 | |
|   // for read and once for write, it will only appear once (on the write
 | |
|   // list). This is okay, since we are going to check for conflicts between
 | |
|   // writes and between reads and writes, but not between reads and reads.
 | |
|   ValueSet Seen;
 | |
| 
 | |
|   ValueVector::iterator I, IE;
 | |
|   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
 | |
|     StoreInst *ST = cast<StoreInst>(*I);
 | |
|     Value* Ptr = ST->getPointerOperand();
 | |
| 
 | |
|     if (isUniform(Ptr)) {
 | |
|       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we did *not* see this pointer before, insert it to
 | |
|     // the read-write list. At this phase it is only a 'write' list.
 | |
|     if (Seen.insert(Ptr))
 | |
|       ReadWrites.insert(std::make_pair(Ptr, ST));
 | |
|   }
 | |
| 
 | |
|   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
 | |
|     LoadInst *LD = cast<LoadInst>(*I);
 | |
|     Value* Ptr = LD->getPointerOperand();
 | |
|     // If we did *not* see this pointer before, insert it to the
 | |
|     // read list. If we *did* see it before, then it is already in
 | |
|     // the read-write list. This allows us to vectorize expressions
 | |
|     // such as A[i] += x;  Because the address of A[i] is a read-write
 | |
|     // pointer. This only works if the index of A[i] is consecutive.
 | |
|     // If the address of i is unknown (for example A[B[i]]) then we may
 | |
|     // read a few words, modify, and write a few words, and some of the
 | |
|     // words may be written to the same address.
 | |
|     if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
 | |
|       Reads.insert(std::make_pair(Ptr, LD));
 | |
|   }
 | |
| 
 | |
|   // If we write (or read-write) to a single destination and there are no
 | |
|   // other reads in this loop then is it safe to vectorize.
 | |
|   if (ReadWrites.size() == 1 && Reads.size() == 0) {
 | |
|     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Find pointers with computable bounds. We are going to use this information
 | |
|   // to place a runtime bound check.
 | |
|   bool CanDoRT = true;
 | |
|   AliasMap::iterator MI, ME;
 | |
|   for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
 | |
|     Value *V = (*MI).first;
 | |
|     if (hasComputableBounds(V)) {
 | |
|       PtrRtCheck.insert(SE, TheLoop, V);
 | |
|       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
 | |
|     } else {
 | |
|       CanDoRT = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
 | |
|     Value *V = (*MI).first;
 | |
|     if (hasComputableBounds(V)) {
 | |
|       PtrRtCheck.insert(SE, TheLoop, V);
 | |
|       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
 | |
|     } else {
 | |
|       CanDoRT = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that we did not collect too many pointers or found a
 | |
|   // unsizeable pointer.
 | |
|   if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
 | |
|     PtrRtCheck.reset();
 | |
|     CanDoRT = false;
 | |
|   }
 | |
| 
 | |
|   if (CanDoRT) {
 | |
|     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
 | |
|   }
 | |
| 
 | |
|   bool NeedRTCheck = false;
 | |
| 
 | |
|   // Biggest vectorized access possible, vector width * unroll factor.
 | |
|   // TODO: We're being very pessimistic here, find a way to know the
 | |
|   // real access width before getting here.
 | |
|   unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
 | |
|                            TTI->getMaximumUnrollFactor();
 | |
|   // Now that the pointers are in two lists (Reads and ReadWrites), we
 | |
|   // can check that there are no conflicts between each of the writes and
 | |
|   // between the writes to the reads.
 | |
|   // Note that WriteObjects duplicates the stores (indexed now by underlying
 | |
|   // objects) to avoid pointing to elements inside ReadWrites.
 | |
|   // TODO: Maybe create a new type where they can interact without duplication.
 | |
|   AliasMultiMap WriteObjects;
 | |
|   ValueVector TempObjects;
 | |
| 
 | |
|   // Check that the read-writes do not conflict with other read-write
 | |
|   // pointers.
 | |
|   bool AllWritesIdentified = true;
 | |
|   for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
 | |
|     Value *Val = (*MI).first;
 | |
|     Instruction *Inst = (*MI).second;
 | |
| 
 | |
|     GetUnderlyingObjects(Val, TempObjects, DL);
 | |
|     for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
 | |
|          UI != UE; ++UI) {
 | |
|       if (!isIdentifiedObject(*UI)) {
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
 | |
|         NeedRTCheck = true;
 | |
|         AllWritesIdentified = false;
 | |
|       }
 | |
| 
 | |
|       // Never seen it before, can't alias.
 | |
|       if (WriteObjects[*UI].empty()) {
 | |
|         DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
 | |
|         WriteObjects[*UI].push_back(Inst);
 | |
|         continue;
 | |
|       }
 | |
|       // Direct alias found.
 | |
|       if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
 | |
|         DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
 | |
|               << **UI <<"\n");
 | |
|         return false;
 | |
|       }
 | |
|       DEBUG(dbgs() << "LV: Found a conflicting global value:"
 | |
|             << **UI <<"\n");
 | |
|       DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
 | |
|       DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
 | |
| 
 | |
|       // If global alias, make sure they do alias.
 | |
|       if (hasPossibleGlobalWriteReorder(*UI,
 | |
|                                         Inst,
 | |
|                                         WriteObjects,
 | |
|                                         MaxByteWidth)) {
 | |
|         DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
 | |
|               << *UI <<"\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Didn't alias, insert into map for further reference.
 | |
|       WriteObjects[*UI].push_back(Inst);
 | |
|     }
 | |
|     TempObjects.clear();
 | |
|   }
 | |
| 
 | |
|   /// Check that the reads don't conflict with the read-writes.
 | |
|   for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
 | |
|     Value *Val = (*MI).first;
 | |
|     GetUnderlyingObjects(Val, TempObjects, DL);
 | |
|     for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
 | |
|          UI != UE; ++UI) {
 | |
|       // If all of the writes are identified then we don't care if the read
 | |
|       // pointer is identified or not.
 | |
|       if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
 | |
|         NeedRTCheck = true;
 | |
|       }
 | |
| 
 | |
|       // Never seen it before, can't alias.
 | |
|       if (WriteObjects[*UI].empty())
 | |
|         continue;
 | |
|       // Direct alias found.
 | |
|       if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
 | |
|         DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
 | |
|               << **UI <<"\n");
 | |
|         return false;
 | |
|       }
 | |
|       DEBUG(dbgs() << "LV: Found a global value:  "
 | |
|             << **UI <<"\n");
 | |
|       Instruction *Inst = (*MI).second;
 | |
|       DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
 | |
|       DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
 | |
| 
 | |
|       // If global alias, make sure they do alias.
 | |
|       if (hasPossibleGlobalWriteReorder(*UI,
 | |
|                                         Inst,
 | |
|                                         WriteObjects,
 | |
|                                         MaxByteWidth)) {
 | |
|         DEBUG(dbgs() << "LV: Found a possible read-write reorder:"
 | |
|               << *UI <<"\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     TempObjects.clear();
 | |
|   }
 | |
| 
 | |
|   PtrRtCheck.Need = NeedRTCheck;
 | |
|   if (NeedRTCheck && !CanDoRT) {
 | |
|     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
 | |
|           "the array bounds.\n");
 | |
|     PtrRtCheck.reset();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
 | |
|         " need a runtime memory check.\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
 | |
|                                                 ReductionKind Kind) {
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Reduction variables are only found in the loop header block.
 | |
|   if (Phi->getParent() != TheLoop->getHeader())
 | |
|     return false;
 | |
| 
 | |
|   // Obtain the reduction start value from the value that comes from the loop
 | |
|   // preheader.
 | |
|   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | |
| 
 | |
|   // ExitInstruction is the single value which is used outside the loop.
 | |
|   // We only allow for a single reduction value to be used outside the loop.
 | |
|   // This includes users of the reduction, variables (which form a cycle
 | |
|   // which ends in the phi node).
 | |
|   Instruction *ExitInstruction = 0;
 | |
|   // Indicates that we found a binary operation in our scan.
 | |
|   bool FoundBinOp = false;
 | |
| 
 | |
|   // Iter is our iterator. We start with the PHI node and scan for all of the
 | |
|   // users of this instruction. All users must be instructions that can be
 | |
|   // used as reduction variables (such as ADD). We may have a single
 | |
|   // out-of-block user. The cycle must end with the original PHI.
 | |
|   Instruction *Iter = Phi;
 | |
| 
 | |
|   // To recognize min/max patterns formed by a icmp select sequence, we store
 | |
|   // the number of instruction we saw from the recognized min/max pattern,
 | |
|   // such that we don't stop when we see the phi has two uses (one by the select
 | |
|   // and one by the icmp) and to make sure we only see exactly the two
 | |
|   // instructions.
 | |
|   unsigned NumICmpSelectPatternInst = 0;
 | |
|   ReductionInstDesc ReduxDesc(false, 0);
 | |
| 
 | |
|   // Avoid cycles in the chain.
 | |
|   SmallPtrSet<Instruction *, 8> VisitedInsts;
 | |
|   while (VisitedInsts.insert(Iter)) {
 | |
|     // If the instruction has no users then this is a broken
 | |
|     // chain and can't be a reduction variable.
 | |
|     if (Iter->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     // Did we find a user inside this loop already ?
 | |
|     bool FoundInBlockUser = false;
 | |
|     // Did we reach the initial PHI node already ?
 | |
|     bool FoundStartPHI = false;
 | |
| 
 | |
|     // Is this a bin op ?
 | |
|     FoundBinOp |= !isa<PHINode>(Iter);
 | |
| 
 | |
|     // For each of the *users* of iter.
 | |
|     for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
 | |
|          it != e; ++it) {
 | |
|       Instruction *U = cast<Instruction>(*it);
 | |
|       // We already know that the PHI is a user.
 | |
|       if (U == Phi) {
 | |
|         FoundStartPHI = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check if we found the exit user.
 | |
|       BasicBlock *Parent = U->getParent();
 | |
|       if (!TheLoop->contains(Parent)) {
 | |
|         // Exit if you find multiple outside users.
 | |
|         if (ExitInstruction != 0)
 | |
|           return false;
 | |
|         ExitInstruction = Iter;
 | |
|       }
 | |
| 
 | |
|       // We allow in-loop PHINodes which are not the original reduction PHI
 | |
|       // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
 | |
|       // structure) then don't skip this PHI.
 | |
|       if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
 | |
|           U->getParent() != TheLoop->getHeader() &&
 | |
|           TheLoop->contains(U) &&
 | |
|           Iter->hasNUsesOrMore(2))
 | |
|         continue;
 | |
| 
 | |
|       // We can't have multiple inside users except for a combination of
 | |
|       // icmp/select both using the phi.
 | |
|       if (FoundInBlockUser && !NumICmpSelectPatternInst)
 | |
|         return false;
 | |
|       FoundInBlockUser = true;
 | |
| 
 | |
|       // Any reduction instr must be of one of the allowed kinds.
 | |
|       ReduxDesc = isReductionInstr(U, Kind, ReduxDesc);
 | |
|       if (!ReduxDesc.IsReduction)
 | |
|         return false;
 | |
| 
 | |
|       if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(U) ||
 | |
|                                        isa<SelectInst>(U)))
 | |
|           ++NumICmpSelectPatternInst;
 | |
| 
 | |
|       // Reductions of instructions such as Div, and Sub is only
 | |
|       // possible if the LHS is the reduction variable.
 | |
|       if (!U->isCommutative() && !isa<PHINode>(U) && !isa<SelectInst>(U) &&
 | |
|           !isa<ICmpInst>(U) && U->getOperand(0) != Iter)
 | |
|         return false;
 | |
| 
 | |
|       Iter = ReduxDesc.PatternLastInst;
 | |
|     }
 | |
| 
 | |
|     // This means we have seen one but not the other instruction of the
 | |
|     // pattern or more than just a select and cmp.
 | |
|     if (Kind == RK_IntegerMinMax && NumICmpSelectPatternInst != 2)
 | |
|       return false;
 | |
| 
 | |
|     // We found a reduction var if we have reached the original
 | |
|     // phi node and we only have a single instruction with out-of-loop
 | |
|     // users.
 | |
|     if (FoundStartPHI) {
 | |
|       // This instruction is allowed to have out-of-loop users.
 | |
|       AllowedExit.insert(ExitInstruction);
 | |
| 
 | |
|       // Save the description of this reduction variable.
 | |
|       ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
 | |
|                              ReduxDesc.MinMaxKind);
 | |
|       Reductions[Phi] = RD;
 | |
|       // We've ended the cycle. This is a reduction variable if we have an
 | |
|       // outside user and it has a binary op.
 | |
|       return FoundBinOp && ExitInstruction;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | |
| /// pattern corresponding to a min(X, Y) or max(X, Y).
 | |
| LoopVectorizationLegality::ReductionInstDesc
 | |
| LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev) {
 | |
| 
 | |
|   assert((isa<ICmpInst>(I) || isa<SelectInst>(I)) &&
 | |
|          "Expect a select instruction");
 | |
|   ICmpInst *Cmp = 0;
 | |
|   SelectInst *Select = 0;
 | |
| 
 | |
|   // We must handle the select(cmp()) as a single instruction. Advance to the
 | |
|   // select.
 | |
|   if ((Cmp = dyn_cast<ICmpInst>(I))) {
 | |
|     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
 | |
|       return ReductionInstDesc(false, I);
 | |
|     return ReductionInstDesc(Select, Prev.MinMaxKind);
 | |
|   }
 | |
| 
 | |
|   // Only handle single use cases for now.
 | |
|   if (!(Select = dyn_cast<SelectInst>(I)))
 | |
|     return ReductionInstDesc(false, I);
 | |
|   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))))
 | |
|     return ReductionInstDesc(false, I);
 | |
|   if (!Cmp->hasOneUse())
 | |
|     return ReductionInstDesc(false, I);
 | |
| 
 | |
|   Value *CmpLeft = Cmp->getOperand(0);
 | |
|   Value *CmpRight = Cmp->getOperand(1);
 | |
| 
 | |
|   // Look for a min/max pattern.
 | |
|   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_UIntMin);
 | |
|   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_UIntMax);
 | |
|   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_SIntMax);
 | |
|   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_SIntMin);
 | |
| 
 | |
|   return ReductionInstDesc(false, I);
 | |
| }
 | |
| 
 | |
| LoopVectorizationLegality::ReductionInstDesc
 | |
| LoopVectorizationLegality::isReductionInstr(Instruction *I,
 | |
|                                             ReductionKind Kind,
 | |
|                                             ReductionInstDesc &Prev) {
 | |
|   bool FP = I->getType()->isFloatingPointTy();
 | |
|   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     return ReductionInstDesc(false, I);
 | |
|   case Instruction::PHI:
 | |
|       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
 | |
|         return ReductionInstDesc(false, I);
 | |
|     return ReductionInstDesc(I, Prev.MinMaxKind);
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Add:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
 | |
|   case Instruction::Mul:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerMult, I);
 | |
|   case Instruction::And:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
 | |
|   case Instruction::Or:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerOr, I);
 | |
|   case Instruction::Xor:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerXor, I);
 | |
|   case Instruction::FMul:
 | |
|     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
 | |
|   case Instruction::FAdd:
 | |
|     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::Select:
 | |
|     if (Kind != RK_IntegerMinMax)
 | |
|       return ReductionInstDesc(false, I);
 | |
|     return isMinMaxSelectCmpPattern(I, Prev);
 | |
|   }
 | |
| }
 | |
| 
 | |
| LoopVectorizationLegality::InductionKind
 | |
| LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
|   // We only handle integer and pointer inductions variables.
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | |
|     return IK_NoInduction;
 | |
| 
 | |
|   // Check that the PHI is consecutive.
 | |
|   const SCEV *PhiScev = SE->getSCEV(Phi);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return IK_NoInduction;
 | |
|   }
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Integer inductions need to have a stride of one.
 | |
|   if (PhiTy->isIntegerTy()) {
 | |
|     if (Step->isOne())
 | |
|       return IK_IntInduction;
 | |
|     if (Step->isAllOnesValue())
 | |
|       return IK_ReverseIntInduction;
 | |
|     return IK_NoInduction;
 | |
|   }
 | |
| 
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!C)
 | |
|     return IK_NoInduction;
 | |
| 
 | |
|   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | |
|   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
 | |
|   if (C->getValue()->equalsInt(Size))
 | |
|     return IK_PtrInduction;
 | |
|   else if (C->getValue()->equalsInt(0 - Size))
 | |
|     return IK_ReversePtrInduction;
 | |
| 
 | |
|   return IK_NoInduction;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
 | |
|   Value *In0 = const_cast<Value*>(V);
 | |
|   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
 | |
|   if (!PN)
 | |
|     return false;
 | |
| 
 | |
|   return Inductions.count(PN);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
 | |
|   assert(TheLoop->contains(BB) && "Unknown block used");
 | |
| 
 | |
|   // Blocks that do not dominate the latch need predication.
 | |
|   BasicBlock* Latch = TheLoop->getLoopLatch();
 | |
|   return !DT->dominates(BB, Latch);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     // We don't predicate loads/stores at the moment.
 | |
|     if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
 | |
|       return false;
 | |
| 
 | |
|     // The instructions below can trap.
 | |
|     switch (it->getOpcode()) {
 | |
|     default: continue;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|              return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
 | |
|   const SCEV *PhiScev = SE->getSCEV(Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
|   if (!AR)
 | |
|     return false;
 | |
| 
 | |
|   return AR->isAffine();
 | |
| }
 | |
| 
 | |
| LoopVectorizationCostModel::VectorizationFactor
 | |
| LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
 | |
|                                                       unsigned UserVF) {
 | |
|   // Width 1 means no vectorize
 | |
|   VectorizationFactor Factor = { 1U, 0U };
 | |
|   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
 | |
|     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
 | |
|     return Factor;
 | |
|   }
 | |
| 
 | |
|   // Find the trip count.
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
 | |
|   DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
 | |
| 
 | |
|   unsigned WidestType = getWidestType();
 | |
|   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
 | |
|   unsigned MaxVectorSize = WidestRegister / WidestType;
 | |
|   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
 | |
|   DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
 | |
| 
 | |
|   if (MaxVectorSize == 0) {
 | |
|     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
 | |
|     MaxVectorSize = 1;
 | |
|   }
 | |
| 
 | |
|   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
 | |
|          " into one vector!");
 | |
| 
 | |
|   unsigned VF = MaxVectorSize;
 | |
| 
 | |
|   // If we optimize the program for size, avoid creating the tail loop.
 | |
|   if (OptForSize) {
 | |
|     // If we are unable to calculate the trip count then don't try to vectorize.
 | |
|     if (TC < 2) {
 | |
|       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
 | |
|       return Factor;
 | |
|     }
 | |
| 
 | |
|     // Find the maximum SIMD width that can fit within the trip count.
 | |
|     VF = TC % MaxVectorSize;
 | |
| 
 | |
|     if (VF == 0)
 | |
|       VF = MaxVectorSize;
 | |
| 
 | |
|     // If the trip count that we found modulo the vectorization factor is not
 | |
|     // zero then we require a tail.
 | |
|     if (VF < 2) {
 | |
|       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
 | |
|       return Factor;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (UserVF != 0) {
 | |
|     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
 | |
|     DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
 | |
| 
 | |
|     Factor.Width = UserVF;
 | |
|     return Factor;
 | |
|   }
 | |
| 
 | |
|   float Cost = expectedCost(1);
 | |
|   unsigned Width = 1;
 | |
|   DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
 | |
|   for (unsigned i=2; i <= VF; i*=2) {
 | |
|     // Notice that the vector loop needs to be executed less times, so
 | |
|     // we need to divide the cost of the vector loops by the width of
 | |
|     // the vector elements.
 | |
|     float VectorCost = expectedCost(i) / (float)i;
 | |
|     DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
 | |
|           (int)VectorCost << ".\n");
 | |
|     if (VectorCost < Cost) {
 | |
|       Cost = VectorCost;
 | |
|       Width = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
 | |
|   Factor.Width = Width;
 | |
|   Factor.Cost = Width * Cost;
 | |
|   return Factor;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getWidestType() {
 | |
|   unsigned MaxWidth = 8;
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
|     BasicBlock *BB = *bb;
 | |
| 
 | |
|     // For each instruction in the loop.
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       Type *T = it->getType();
 | |
| 
 | |
|       // Only examine Loads, Stores and PHINodes.
 | |
|       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
 | |
|         continue;
 | |
| 
 | |
|       // Examine PHI nodes that are reduction variables.
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(it))
 | |
|         if (!Legal->getReductionVars()->count(PN))
 | |
|           continue;
 | |
| 
 | |
|       // Examine the stored values.
 | |
|       if (StoreInst *ST = dyn_cast<StoreInst>(it))
 | |
|         T = ST->getValueOperand()->getType();
 | |
| 
 | |
|       // Ignore loaded pointer types and stored pointer types that are not
 | |
|       // consecutive. However, we do want to take consecutive stores/loads of
 | |
|       // pointer vectors into account.
 | |
|       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
 | |
|         continue;
 | |
| 
 | |
|       MaxWidth = std::max(MaxWidth,
 | |
|                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MaxWidth;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
 | |
|                                                unsigned UserUF,
 | |
|                                                unsigned VF,
 | |
|                                                unsigned LoopCost) {
 | |
| 
 | |
|   // -- The unroll heuristics --
 | |
|   // We unroll the loop in order to expose ILP and reduce the loop overhead.
 | |
|   // There are many micro-architectural considerations that we can't predict
 | |
|   // at this level. For example frontend pressure (on decode or fetch) due to
 | |
|   // code size, or the number and capabilities of the execution ports.
 | |
|   //
 | |
|   // We use the following heuristics to select the unroll factor:
 | |
|   // 1. If the code has reductions the we unroll in order to break the cross
 | |
|   // iteration dependency.
 | |
|   // 2. If the loop is really small then we unroll in order to reduce the loop
 | |
|   // overhead.
 | |
|   // 3. We don't unroll if we think that we will spill registers to memory due
 | |
|   // to the increased register pressure.
 | |
| 
 | |
|   // Use the user preference, unless 'auto' is selected.
 | |
|   if (UserUF != 0)
 | |
|     return UserUF;
 | |
| 
 | |
|   // When we optimize for size we don't unroll.
 | |
|   if (OptForSize)
 | |
|     return 1;
 | |
| 
 | |
|   // Do not unroll loops with a relatively small trip count.
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
 | |
|                                               TheLoop->getLoopLatch());
 | |
|   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
 | |
|     return 1;
 | |
| 
 | |
|   unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
 | |
|   DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
 | |
|         " vector registers\n");
 | |
| 
 | |
|   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
 | |
|   // We divide by these constants so assume that we have at least one
 | |
|   // instruction that uses at least one register.
 | |
|   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
 | |
|   R.NumInstructions = std::max(R.NumInstructions, 1U);
 | |
| 
 | |
|   // We calculate the unroll factor using the following formula.
 | |
|   // Subtract the number of loop invariants from the number of available
 | |
|   // registers. These registers are used by all of the unrolled instances.
 | |
|   // Next, divide the remaining registers by the number of registers that is
 | |
|   // required by the loop, in order to estimate how many parallel instances
 | |
|   // fit without causing spills.
 | |
|   unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
 | |
| 
 | |
|   // Clamp the unroll factor ranges to reasonable factors.
 | |
|   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
 | |
| 
 | |
|   // If we did not calculate the cost for VF (because the user selected the VF)
 | |
|   // then we calculate the cost of VF here.
 | |
|   if (LoopCost == 0)
 | |
|     LoopCost = expectedCost(VF);
 | |
| 
 | |
|   // Clamp the calculated UF to be between the 1 and the max unroll factor
 | |
|   // that the target allows.
 | |
|   if (UF > MaxUnrollSize)
 | |
|     UF = MaxUnrollSize;
 | |
|   else if (UF < 1)
 | |
|     UF = 1;
 | |
| 
 | |
|   if (Legal->getReductionVars()->size()) {
 | |
|     DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
 | |
|     return UF;
 | |
|   }
 | |
| 
 | |
|   // We want to unroll tiny loops in order to reduce the loop overhead.
 | |
|   // We assume that the cost overhead is 1 and we use the cost model
 | |
|   // to estimate the cost of the loop and unroll until the cost of the
 | |
|   // loop overhead is about 5% of the cost of the loop.
 | |
|   DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
 | |
|   if (LoopCost < 20) {
 | |
|     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
 | |
|     unsigned NewUF = 20/LoopCost + 1;
 | |
|     return std::min(NewUF, UF);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Not Unrolling. \n");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| LoopVectorizationCostModel::RegisterUsage
 | |
| LoopVectorizationCostModel::calculateRegisterUsage() {
 | |
|   // This function calculates the register usage by measuring the highest number
 | |
|   // of values that are alive at a single location. Obviously, this is a very
 | |
|   // rough estimation. We scan the loop in a topological order in order and
 | |
|   // assign a number to each instruction. We use RPO to ensure that defs are
 | |
|   // met before their users. We assume that each instruction that has in-loop
 | |
|   // users starts an interval. We record every time that an in-loop value is
 | |
|   // used, so we have a list of the first and last occurrences of each
 | |
|   // instruction. Next, we transpose this data structure into a multi map that
 | |
|   // holds the list of intervals that *end* at a specific location. This multi
 | |
|   // map allows us to perform a linear search. We scan the instructions linearly
 | |
|   // and record each time that a new interval starts, by placing it in a set.
 | |
|   // If we find this value in the multi-map then we remove it from the set.
 | |
|   // The max register usage is the maximum size of the set.
 | |
|   // We also search for instructions that are defined outside the loop, but are
 | |
|   // used inside the loop. We need this number separately from the max-interval
 | |
|   // usage number because when we unroll, loop-invariant values do not take
 | |
|   // more register.
 | |
|   LoopBlocksDFS DFS(TheLoop);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   RegisterUsage R;
 | |
|   R.NumInstructions = 0;
 | |
| 
 | |
|   // Each 'key' in the map opens a new interval. The values
 | |
|   // of the map are the index of the 'last seen' usage of the
 | |
|   // instruction that is the key.
 | |
|   typedef DenseMap<Instruction*, unsigned> IntervalMap;
 | |
|   // Maps instruction to its index.
 | |
|   DenseMap<unsigned, Instruction*> IdxToInstr;
 | |
|   // Marks the end of each interval.
 | |
|   IntervalMap EndPoint;
 | |
|   // Saves the list of instruction indices that are used in the loop.
 | |
|   SmallSet<Instruction*, 8> Ends;
 | |
|   // Saves the list of values that are used in the loop but are
 | |
|   // defined outside the loop, such as arguments and constants.
 | |
|   SmallPtrSet<Value*, 8> LoopInvariants;
 | |
| 
 | |
|   unsigned Index = 0;
 | |
|   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
 | |
|        be = DFS.endRPO(); bb != be; ++bb) {
 | |
|     R.NumInstructions += (*bb)->size();
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
|       Instruction *I = it;
 | |
|       IdxToInstr[Index++] = I;
 | |
| 
 | |
|       // Save the end location of each USE.
 | |
|       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
|         Value *U = I->getOperand(i);
 | |
|         Instruction *Instr = dyn_cast<Instruction>(U);
 | |
| 
 | |
|         // Ignore non-instruction values such as arguments, constants, etc.
 | |
|         if (!Instr) continue;
 | |
| 
 | |
|         // If this instruction is outside the loop then record it and continue.
 | |
|         if (!TheLoop->contains(Instr)) {
 | |
|           LoopInvariants.insert(Instr);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Overwrite previous end points.
 | |
|         EndPoint[Instr] = Index;
 | |
|         Ends.insert(Instr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Saves the list of intervals that end with the index in 'key'.
 | |
|   typedef SmallVector<Instruction*, 2> InstrList;
 | |
|   DenseMap<unsigned, InstrList> TransposeEnds;
 | |
| 
 | |
|   // Transpose the EndPoints to a list of values that end at each index.
 | |
|   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
 | |
|        it != e; ++it)
 | |
|     TransposeEnds[it->second].push_back(it->first);
 | |
| 
 | |
|   SmallSet<Instruction*, 8> OpenIntervals;
 | |
|   unsigned MaxUsage = 0;
 | |
| 
 | |
| 
 | |
|   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
 | |
|   for (unsigned int i = 0; i < Index; ++i) {
 | |
|     Instruction *I = IdxToInstr[i];
 | |
|     // Ignore instructions that are never used within the loop.
 | |
|     if (!Ends.count(I)) continue;
 | |
| 
 | |
|     // Remove all of the instructions that end at this location.
 | |
|     InstrList &List = TransposeEnds[i];
 | |
|     for (unsigned int j=0, e = List.size(); j < e; ++j)
 | |
|       OpenIntervals.erase(List[j]);
 | |
| 
 | |
|     // Count the number of live interals.
 | |
|     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
 | |
| 
 | |
|     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
 | |
|           OpenIntervals.size() <<"\n");
 | |
| 
 | |
|     // Add the current instruction to the list of open intervals.
 | |
|     OpenIntervals.insert(I);
 | |
|   }
 | |
| 
 | |
|   unsigned Invariant = LoopInvariants.size();
 | |
|   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
 | |
|   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
 | |
|   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
 | |
| 
 | |
|   R.LoopInvariantRegs = Invariant;
 | |
|   R.MaxLocalUsers = MaxUsage;
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
|     unsigned BlockCost = 0;
 | |
|     BasicBlock *BB = *bb;
 | |
| 
 | |
|     // For each instruction in the old loop.
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       // Skip dbg intrinsics.
 | |
|       if (isa<DbgInfoIntrinsic>(it))
 | |
|         continue;
 | |
| 
 | |
|       unsigned C = getInstructionCost(it, VF);
 | |
|       Cost += C;
 | |
|       DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
 | |
|             VF << " For instruction: "<< *it << "\n");
 | |
|     }
 | |
| 
 | |
|     // We assume that if-converted blocks have a 50% chance of being executed.
 | |
|     // When the code is scalar then some of the blocks are avoided due to CF.
 | |
|     // When the code is vectorized we execute all code paths.
 | |
|     if (Legal->blockNeedsPredication(*bb) && VF == 1)
 | |
|       BlockCost /= 2;
 | |
| 
 | |
|     Cost += BlockCost;
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
 | |
|   // If we know that this instruction will remain uniform, check the cost of
 | |
|   // the scalar version.
 | |
|   if (Legal->isUniformAfterVectorization(I))
 | |
|     VF = 1;
 | |
| 
 | |
|   Type *RetTy = I->getType();
 | |
|   Type *VectorTy = ToVectorTy(RetTy, VF);
 | |
| 
 | |
|   // TODO: We need to estimate the cost of intrinsic calls.
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::GetElementPtr:
 | |
|     // We mark this instruction as zero-cost because the cost of GEPs in
 | |
|     // vectorized code depends on whether the corresponding memory instruction
 | |
|     // is scalarized or not. Therefore, we handle GEPs with the memory
 | |
|     // instruction cost.
 | |
|     return 0;
 | |
|   case Instruction::Br: {
 | |
|     return TTI.getCFInstrCost(I->getOpcode());
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     //TODO: IF-converted IFs become selects.
 | |
|     return 0;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     // Certain instructions can be cheaper to vectorize if they have a constant
 | |
|     // second vector operand. One example of this are shifts on x86.
 | |
|     TargetTransformInfo::OperandValueKind Op1VK =
 | |
|       TargetTransformInfo::OK_AnyValue;
 | |
|     TargetTransformInfo::OperandValueKind Op2VK =
 | |
|       TargetTransformInfo::OK_AnyValue;
 | |
| 
 | |
|     if (isa<ConstantInt>(I->getOperand(1)))
 | |
|       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
 | |
| 
 | |
|     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
 | |
|     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
 | |
|     Type *CondTy = SI->getCondition()->getType();
 | |
|     if (!ScalarCond)
 | |
|       CondTy = VectorType::get(CondTy, VF);
 | |
| 
 | |
|     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
 | |
|   }
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: {
 | |
|     Type *ValTy = I->getOperand(0)->getType();
 | |
|     VectorTy = ToVectorTy(ValTy, VF);
 | |
|     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
 | |
|   }
 | |
|   case Instruction::Store:
 | |
|   case Instruction::Load: {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(I);
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(I);
 | |
|     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
 | |
|                    LI->getType());
 | |
|     VectorTy = ToVectorTy(ValTy, VF);
 | |
| 
 | |
|     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
 | |
|     unsigned AS = SI ? SI->getPointerAddressSpace() :
 | |
|       LI->getPointerAddressSpace();
 | |
|     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
 | |
|     // We add the cost of address computation here instead of with the gep
 | |
|     // instruction because only here we know whether the operation is
 | |
|     // scalarized.
 | |
|     if (VF == 1)
 | |
|       return TTI.getAddressComputationCost(VectorTy) +
 | |
|         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
 | |
| 
 | |
|     // Scalarized loads/stores.
 | |
|     int Stride = Legal->isConsecutivePtr(Ptr);
 | |
|     bool Reverse = Stride < 0;
 | |
|     if (0 == Stride) {
 | |
|       unsigned Cost = 0;
 | |
|       // The cost of extracting from the value vector and pointer vector.
 | |
|       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
 | |
|       for (unsigned i = 0; i < VF; ++i) {
 | |
|         //  The cost of extracting the pointer operand.
 | |
|         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
 | |
|         // In case of STORE, the cost of ExtractElement from the vector.
 | |
|         // In case of LOAD, the cost of InsertElement into the returned
 | |
|         // vector.
 | |
|         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
 | |
|                                             Instruction::InsertElement,
 | |
|                                             VectorTy, i);
 | |
|       }
 | |
| 
 | |
|       // The cost of the scalar loads/stores.
 | |
|       Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
 | |
|       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
 | |
|                                        Alignment, AS);
 | |
|       return Cost;
 | |
|     }
 | |
| 
 | |
|     // Wide load/stores.
 | |
|     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
 | |
|     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
 | |
| 
 | |
|     if (Reverse)
 | |
|       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
 | |
|                                   VectorTy, 0);
 | |
|     return Cost;
 | |
|   }
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast: {
 | |
|     // We optimize the truncation of induction variable.
 | |
|     // The cost of these is the same as the scalar operation.
 | |
|     if (I->getOpcode() == Instruction::Trunc &&
 | |
|         Legal->isInductionVariable(I->getOperand(0)))
 | |
|       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
 | |
|                                   I->getOperand(0)->getType());
 | |
| 
 | |
|     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
 | |
|     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
 | |
|   }
 | |
|   case Instruction::Call: {
 | |
|     CallInst *CI = cast<CallInst>(I);
 | |
|     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|     assert(ID && "Not an intrinsic call!");
 | |
|     Type *RetTy = ToVectorTy(CI->getType(), VF);
 | |
|     SmallVector<Type*, 4> Tys;
 | |
|     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
 | |
|       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
 | |
|     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
 | |
|   }
 | |
|   default: {
 | |
|     // We are scalarizing the instruction. Return the cost of the scalar
 | |
|     // instruction, plus the cost of insert and extract into vector
 | |
|     // elements, times the vector width.
 | |
|     unsigned Cost = 0;
 | |
| 
 | |
|     if (!RetTy->isVoidTy() && VF != 1) {
 | |
|       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
 | |
|                                                 VectorTy);
 | |
|       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
 | |
|                                                 VectorTy);
 | |
| 
 | |
|       // The cost of inserting the results plus extracting each one of the
 | |
|       // operands.
 | |
|       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
 | |
|     }
 | |
| 
 | |
|     // The cost of executing VF copies of the scalar instruction. This opcode
 | |
|     // is unknown. Assume that it is the same as 'mul'.
 | |
|     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
 | |
|     return Cost;
 | |
|   }
 | |
|   }// end of switch.
 | |
| }
 | |
| 
 | |
| Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
 | |
|   if (Scalar->isVoidTy() || VF == 1)
 | |
|     return Scalar;
 | |
|   return VectorType::get(Scalar, VF);
 | |
| }
 | |
| 
 | |
| char LoopVectorize::ID = 0;
 | |
| static const char lv_name[] = "Loop Vectorization";
 | |
| INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
|   Pass *createLoopVectorizePass() {
 | |
|     return new LoopVectorize();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
 | |
|   // Check for a store.
 | |
|   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
 | |
|     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
 | |
| 
 | |
|   // Check for a load.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
 | |
| 
 | |
|   return false;
 | |
| }
 |