mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-29 08:16:51 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32246 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2650 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2650 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements the bison parser for LLVM assembly languages files.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| %{
 | |
| #include "ParserInternals.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include <algorithm>
 | |
| #include <list>
 | |
| #include <utility>
 | |
| 
 | |
| // The following is a gross hack. In order to rid the libAsmParser library of
 | |
| // exceptions, we have to have a way of getting the yyparse function to go into
 | |
| // an error situation. So, whenever we want an error to occur, the GenerateError
 | |
| // function (see bottom of file) sets TriggerError. Then, at the end of each 
 | |
| // production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR 
 | |
| // (a goto) to put YACC in error state. Furthermore, several calls to 
 | |
| // GenerateError are made from inside productions and they must simulate the
 | |
| // previous exception behavior by exiting the production immediately. We have
 | |
| // replaced these with the GEN_ERROR macro which calls GeneratError and then
 | |
| // immediately invokes YYERROR. This would be so much cleaner if it was a 
 | |
| // recursive descent parser.
 | |
| static bool TriggerError = false;
 | |
| #define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
 | |
| #define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
 | |
| 
 | |
| int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
 | |
| int yylex();                       // declaration" of xxx warnings.
 | |
| int yyparse();
 | |
| 
 | |
| namespace llvm {
 | |
|   std::string CurFilename;
 | |
| }
 | |
| using namespace llvm;
 | |
| 
 | |
| static Module *ParserResult;
 | |
| 
 | |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
 | |
| // relating to upreferences in the input stream.
 | |
| //
 | |
| //#define DEBUG_UPREFS 1
 | |
| #ifdef DEBUG_UPREFS
 | |
| #define UR_OUT(X) llvm_cerr << X
 | |
| #else
 | |
| #define UR_OUT(X)
 | |
| #endif
 | |
| 
 | |
| #define YYERROR_VERBOSE 1
 | |
| 
 | |
| static GlobalVariable *CurGV;
 | |
| 
 | |
| 
 | |
| // This contains info used when building the body of a function.  It is
 | |
| // destroyed when the function is completed.
 | |
| //
 | |
| typedef std::vector<Value *> ValueList;           // Numbered defs
 | |
| static void 
 | |
| ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
 | |
|                    std::map<const Type *,ValueList> *FutureLateResolvers = 0);
 | |
| 
 | |
| static struct PerModuleInfo {
 | |
|   Module *CurrentModule;
 | |
|   std::map<const Type *, ValueList> Values; // Module level numbered definitions
 | |
|   std::map<const Type *,ValueList> LateResolveValues;
 | |
|   std::vector<PATypeHolder>    Types;
 | |
|   std::map<ValID, PATypeHolder> LateResolveTypes;
 | |
| 
 | |
|   /// PlaceHolderInfo - When temporary placeholder objects are created, remember
 | |
|   /// how they were referenced and on which line of the input they came from so
 | |
|   /// that we can resolve them later and print error messages as appropriate.
 | |
|   std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
 | |
| 
 | |
|   // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
 | |
|   // references to global values.  Global values may be referenced before they
 | |
|   // are defined, and if so, the temporary object that they represent is held
 | |
|   // here.  This is used for forward references of GlobalValues.
 | |
|   //
 | |
|   typedef std::map<std::pair<const PointerType *,
 | |
|                              ValID>, GlobalValue*> GlobalRefsType;
 | |
|   GlobalRefsType GlobalRefs;
 | |
| 
 | |
|   void ModuleDone() {
 | |
|     // If we could not resolve some functions at function compilation time
 | |
|     // (calls to functions before they are defined), resolve them now...  Types
 | |
|     // are resolved when the constant pool has been completely parsed.
 | |
|     //
 | |
|     ResolveDefinitions(LateResolveValues);
 | |
|     if (TriggerError)
 | |
|       return;
 | |
| 
 | |
|     // Check to make sure that all global value forward references have been
 | |
|     // resolved!
 | |
|     //
 | |
|     if (!GlobalRefs.empty()) {
 | |
|       std::string UndefinedReferences = "Unresolved global references exist:\n";
 | |
| 
 | |
|       for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
 | |
|            I != E; ++I) {
 | |
|         UndefinedReferences += "  " + I->first.first->getDescription() + " " +
 | |
|                                I->first.second.getName() + "\n";
 | |
|       }
 | |
|       GenerateError(UndefinedReferences);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     Types.clear();
 | |
|     CurrentModule = 0;
 | |
|   }
 | |
| 
 | |
|   // GetForwardRefForGlobal - Check to see if there is a forward reference
 | |
|   // for this global.  If so, remove it from the GlobalRefs map and return it.
 | |
|   // If not, just return null.
 | |
|   GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
 | |
|     // Check to see if there is a forward reference to this global variable...
 | |
|     // if there is, eliminate it and patch the reference to use the new def'n.
 | |
|     GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
 | |
|     GlobalValue *Ret = 0;
 | |
|     if (I != GlobalRefs.end()) {
 | |
|       Ret = I->second;
 | |
|       GlobalRefs.erase(I);
 | |
|     }
 | |
|     return Ret;
 | |
|   }
 | |
| } CurModule;
 | |
| 
 | |
| static struct PerFunctionInfo {
 | |
|   Function *CurrentFunction;     // Pointer to current function being created
 | |
| 
 | |
|   std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
 | |
|   std::map<const Type*, ValueList> LateResolveValues;
 | |
|   bool isDeclare;                    // Is this function a forward declararation?
 | |
|   GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
 | |
| 
 | |
|   /// BBForwardRefs - When we see forward references to basic blocks, keep
 | |
|   /// track of them here.
 | |
|   std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
 | |
|   std::vector<BasicBlock*> NumberedBlocks;
 | |
|   unsigned NextBBNum;
 | |
| 
 | |
|   inline PerFunctionInfo() {
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|     Linkage = GlobalValue::ExternalLinkage;    
 | |
|   }
 | |
| 
 | |
|   inline void FunctionStart(Function *M) {
 | |
|     CurrentFunction = M;
 | |
|     NextBBNum = 0;
 | |
|   }
 | |
| 
 | |
|   void FunctionDone() {
 | |
|     NumberedBlocks.clear();
 | |
| 
 | |
|     // Any forward referenced blocks left?
 | |
|     if (!BBForwardRefs.empty()) {
 | |
|       GenerateError("Undefined reference to label " +
 | |
|                      BBForwardRefs.begin()->first->getName());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Resolve all forward references now.
 | |
|     ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|     Linkage = GlobalValue::ExternalLinkage;
 | |
|   }
 | |
| } CurFun;  // Info for the current function...
 | |
| 
 | |
| static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Code to handle definitions of all the types
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static int InsertValue(Value *V,
 | |
|                   std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
 | |
|   if (V->hasName()) return -1;           // Is this a numbered definition?
 | |
| 
 | |
|   // Yes, insert the value into the value table...
 | |
|   ValueList &List = ValueTab[V->getType()];
 | |
|   List.push_back(V);
 | |
|   return List.size()-1;
 | |
| }
 | |
| 
 | |
| static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal:               // Is it a numbered definition?
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     if ((unsigned)D.Num < CurModule.Types.size())
 | |
|       return CurModule.Types[(unsigned)D.Num];
 | |
|     break;
 | |
|   case ValID::NameVal:                 // Is it a named definition?
 | |
|     if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
 | |
|       D.destroy();  // Free old strdup'd memory...
 | |
|       return N;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     GenerateError("Internal parser error: Invalid symbol type reference!");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
 | |
| 
 | |
| 
 | |
|   if (inFunctionScope()) {
 | |
|     if (D.Type == ValID::NameVal) {
 | |
|       GenerateError("Reference to an undefined type: '" + D.getName() + "'");
 | |
|       return 0;
 | |
|     } else {
 | |
|       GenerateError("Reference to an undefined type: #" + itostr(D.Num));
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
 | |
|   if (I != CurModule.LateResolveTypes.end())
 | |
|     return I->second;
 | |
| 
 | |
|   Type *Typ = OpaqueType::get();
 | |
|   CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
 | |
|   return Typ;
 | |
|  }
 | |
| 
 | |
| static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
 | |
|   SymbolTable &SymTab =
 | |
|     inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
 | |
|                         CurModule.CurrentModule->getSymbolTable();
 | |
|   return SymTab.lookup(Ty, Name);
 | |
| }
 | |
| 
 | |
| // getValNonImprovising - Look up the value specified by the provided type and
 | |
| // the provided ValID.  If the value exists and has already been defined, return
 | |
| // it.  Otherwise return null.
 | |
| //
 | |
| static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
 | |
|   if (isa<FunctionType>(Ty)) {
 | |
|     GenerateError("Functions are not values and "
 | |
|                    "must be referenced as pointers");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal: {                 // Is it a numbered definition?
 | |
|     unsigned Num = (unsigned)D.Num;
 | |
| 
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
 | |
|     if (VI != CurModule.Values.end()) {
 | |
|       if (Num < VI->second.size())
 | |
|         return VI->second[Num];
 | |
|       Num -= VI->second.size();
 | |
|     }
 | |
| 
 | |
|     // Make sure that our type is within bounds
 | |
|     VI = CurFun.Values.find(Ty);
 | |
|     if (VI == CurFun.Values.end()) return 0;
 | |
| 
 | |
|     // Check that the number is within bounds...
 | |
|     if (VI->second.size() <= Num) return 0;
 | |
| 
 | |
|     return VI->second[Num];
 | |
|   }
 | |
| 
 | |
|   case ValID::NameVal: {                // Is it a named definition?
 | |
|     Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
 | |
|     if (N == 0) return 0;
 | |
| 
 | |
|     D.destroy();  // Free old strdup'd memory...
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that "Ty" is an integral type, and that our
 | |
|   // value will fit into the specified type...
 | |
|   case ValID::ConstSIntVal:    // Is it a constant pool reference??
 | |
|     if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
 | |
|       GenerateError("Signed integral constant '" +
 | |
|                      itostr(D.ConstPool64) + "' is invalid for type '" +
 | |
|                      Ty->getDescription() + "'!");
 | |
|       return 0;
 | |
|     }
 | |
|     return ConstantInt::get(Ty, D.ConstPool64);
 | |
| 
 | |
|   case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
 | |
|     if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
 | |
|       if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
 | |
|         GenerateError("Integral constant '" + utostr(D.UConstPool64) +
 | |
|                        "' is invalid or out of range!");
 | |
|         return 0;
 | |
|       } else {     // This is really a signed reference.  Transmogrify.
 | |
|         return ConstantInt::get(Ty, D.ConstPool64);
 | |
|       }
 | |
|     } else {
 | |
|       return ConstantInt::get(Ty, D.UConstPool64);
 | |
|     }
 | |
| 
 | |
|   case ValID::ConstFPVal:        // Is it a floating point const pool reference?
 | |
|     if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
 | |
|       GenerateError("FP constant invalid for type!!");
 | |
|       return 0;
 | |
|     }
 | |
|     return ConstantFP::get(Ty, D.ConstPoolFP);
 | |
| 
 | |
|   case ValID::ConstNullVal:      // Is it a null value?
 | |
|     if (!isa<PointerType>(Ty)) {
 | |
|       GenerateError("Cannot create a a non pointer null!");
 | |
|       return 0;
 | |
|     }
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
| 
 | |
|   case ValID::ConstUndefVal:      // Is it an undef value?
 | |
|     return UndefValue::get(Ty);
 | |
| 
 | |
|   case ValID::ConstZeroVal:      // Is it a zero value?
 | |
|     return Constant::getNullValue(Ty);
 | |
|     
 | |
|   case ValID::ConstantVal:       // Fully resolved constant?
 | |
|     if (D.ConstantValue->getType() != Ty) {
 | |
|       GenerateError("Constant expression type different from required type!");
 | |
|       return 0;
 | |
|     }
 | |
|     return D.ConstantValue;
 | |
| 
 | |
|   case ValID::InlineAsmVal: {    // Inline asm expression
 | |
|     const PointerType *PTy = dyn_cast<PointerType>(Ty);
 | |
|     const FunctionType *FTy =
 | |
|       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
 | |
|     if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
 | |
|       GenerateError("Invalid type for asm constraint string!");
 | |
|       return 0;
 | |
|     }
 | |
|     InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
 | |
|                                    D.IAD->HasSideEffects);
 | |
|     D.destroy();   // Free InlineAsmDescriptor.
 | |
|     return IA;
 | |
|   }
 | |
|   default:
 | |
|     assert(0 && "Unhandled case!");
 | |
|     return 0;
 | |
|   }   // End of switch
 | |
| 
 | |
|   assert(0 && "Unhandled case!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // getVal - This function is identical to getValNonImprovising, except that if a
 | |
| // value is not already defined, it "improvises" by creating a placeholder var
 | |
| // that looks and acts just like the requested variable.  When the value is
 | |
| // defined later, all uses of the placeholder variable are replaced with the
 | |
| // real thing.
 | |
| //
 | |
| static Value *getVal(const Type *Ty, const ValID &ID) {
 | |
|   if (Ty == Type::LabelTy) {
 | |
|     GenerateError("Cannot use a basic block here");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // See if the value has already been defined.
 | |
|   Value *V = getValNonImprovising(Ty, ID);
 | |
|   if (V) return V;
 | |
|   if (TriggerError) return 0;
 | |
| 
 | |
|   if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
 | |
|     GenerateError("Invalid use of a composite type!");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   V = new Argument(Ty);
 | |
| 
 | |
|   // Remember where this forward reference came from.  FIXME, shouldn't we try
 | |
|   // to recycle these things??
 | |
|   CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
 | |
|                                                                llvmAsmlineno)));
 | |
| 
 | |
|   if (inFunctionScope())
 | |
|     InsertValue(V, CurFun.LateResolveValues);
 | |
|   else
 | |
|     InsertValue(V, CurModule.LateResolveValues);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getBBVal - This is used for two purposes:
 | |
| ///  * If isDefinition is true, a new basic block with the specified ID is being
 | |
| ///    defined.
 | |
| ///  * If isDefinition is true, this is a reference to a basic block, which may
 | |
| ///    or may not be a forward reference.
 | |
| ///
 | |
| static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
 | |
|   assert(inFunctionScope() && "Can't get basic block at global scope!");
 | |
| 
 | |
|   std::string Name;
 | |
|   BasicBlock *BB = 0;
 | |
|   switch (ID.Type) {
 | |
|   default: 
 | |
|     GenerateError("Illegal label reference " + ID.getName());
 | |
|     return 0;
 | |
|   case ValID::NumberVal:                // Is it a numbered definition?
 | |
|     if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
 | |
|       CurFun.NumberedBlocks.resize(ID.Num+1);
 | |
|     BB = CurFun.NumberedBlocks[ID.Num];
 | |
|     break;
 | |
|   case ValID::NameVal:                  // Is it a named definition?
 | |
|     Name = ID.Name;
 | |
|     if (Value *N = CurFun.CurrentFunction->
 | |
|                    getSymbolTable().lookup(Type::LabelTy, Name))
 | |
|       BB = cast<BasicBlock>(N);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // See if the block has already been defined.
 | |
|   if (BB) {
 | |
|     // If this is the definition of the block, make sure the existing value was
 | |
|     // just a forward reference.  If it was a forward reference, there will be
 | |
|     // an entry for it in the PlaceHolderInfo map.
 | |
|     if (isDefinition && !CurFun.BBForwardRefs.erase(BB)) {
 | |
|       // The existing value was a definition, not a forward reference.
 | |
|       GenerateError("Redefinition of label " + ID.getName());
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     ID.destroy();                       // Free strdup'd memory.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   // Otherwise this block has not been seen before.
 | |
|   BB = new BasicBlock("", CurFun.CurrentFunction);
 | |
|   if (ID.Type == ValID::NameVal) {
 | |
|     BB->setName(ID.Name);
 | |
|   } else {
 | |
|     CurFun.NumberedBlocks[ID.Num] = BB;
 | |
|   }
 | |
| 
 | |
|   // If this is not a definition, keep track of it so we can use it as a forward
 | |
|   // reference.
 | |
|   if (!isDefinition) {
 | |
|     // Remember where this forward reference came from.
 | |
|     CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
 | |
|   } else {
 | |
|     // The forward declaration could have been inserted anywhere in the
 | |
|     // function: insert it into the correct place now.
 | |
|     CurFun.CurrentFunction->getBasicBlockList().remove(BB);
 | |
|     CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
 | |
|   }
 | |
|   ID.destroy();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //              Code to handle forward references in instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This code handles the late binding needed with statements that reference
 | |
| // values not defined yet... for example, a forward branch, or the PHI node for
 | |
| // a loop body.
 | |
| //
 | |
| // This keeps a table (CurFun.LateResolveValues) of all such forward references
 | |
| // and back patchs after we are done.
 | |
| //
 | |
| 
 | |
| // ResolveDefinitions - If we could not resolve some defs at parsing
 | |
| // time (forward branches, phi functions for loops, etc...) resolve the
 | |
| // defs now...
 | |
| //
 | |
| static void 
 | |
| ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
 | |
|                    std::map<const Type*,ValueList> *FutureLateResolvers) {
 | |
|   // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
 | |
|   for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
 | |
|          E = LateResolvers.end(); LRI != E; ++LRI) {
 | |
|     ValueList &List = LRI->second;
 | |
|     while (!List.empty()) {
 | |
|       Value *V = List.back();
 | |
|       List.pop_back();
 | |
| 
 | |
|       std::map<Value*, std::pair<ValID, int> >::iterator PHI =
 | |
|         CurModule.PlaceHolderInfo.find(V);
 | |
|       assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
 | |
| 
 | |
|       ValID &DID = PHI->second.first;
 | |
| 
 | |
|       Value *TheRealValue = getValNonImprovising(LRI->first, DID);
 | |
|       if (TriggerError)
 | |
|         return;
 | |
|       if (TheRealValue) {
 | |
|         V->replaceAllUsesWith(TheRealValue);
 | |
|         delete V;
 | |
|         CurModule.PlaceHolderInfo.erase(PHI);
 | |
|       } else if (FutureLateResolvers) {
 | |
|         // Functions have their unresolved items forwarded to the module late
 | |
|         // resolver table
 | |
|         InsertValue(V, *FutureLateResolvers);
 | |
|       } else {
 | |
|         if (DID.Type == ValID::NameVal) {
 | |
|           GenerateError("Reference to an invalid definition: '" +DID.getName()+
 | |
|                          "' of type '" + V->getType()->getDescription() + "'",
 | |
|                          PHI->second.second);
 | |
|           return;
 | |
|         } else {
 | |
|           GenerateError("Reference to an invalid definition: #" +
 | |
|                          itostr(DID.Num) + " of type '" +
 | |
|                          V->getType()->getDescription() + "'",
 | |
|                          PHI->second.second);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LateResolvers.clear();
 | |
| }
 | |
| 
 | |
| // ResolveTypeTo - A brand new type was just declared.  This means that (if
 | |
| // name is not null) things referencing Name can be resolved.  Otherwise, things
 | |
| // refering to the number can be resolved.  Do this now.
 | |
| //
 | |
| static void ResolveTypeTo(char *Name, const Type *ToTy) {
 | |
|   ValID D;
 | |
|   if (Name) D = ValID::create(Name);
 | |
|   else      D = ValID::create((int)CurModule.Types.size());
 | |
| 
 | |
|   std::map<ValID, PATypeHolder>::iterator I =
 | |
|     CurModule.LateResolveTypes.find(D);
 | |
|   if (I != CurModule.LateResolveTypes.end()) {
 | |
|     ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
 | |
|     CurModule.LateResolveTypes.erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // setValueName - Set the specified value to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is free'd by this function.
 | |
| //
 | |
| static void setValueName(Value *V, char *NameStr) {
 | |
|   if (NameStr) {
 | |
|     std::string Name(NameStr);      // Copy string
 | |
|     free(NameStr);                  // Free old string
 | |
| 
 | |
|     if (V->getType() == Type::VoidTy) {
 | |
|       GenerateError("Can't assign name '" + Name+"' to value with void type!");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(inFunctionScope() && "Must be in function scope!");
 | |
|     SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
 | |
|     if (ST.lookup(V->getType(), Name)) {
 | |
|       GenerateError("Redefinition of value named '" + Name + "' in the '" +
 | |
|                      V->getType()->getDescription() + "' type plane!");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Set the name.
 | |
|     V->setName(Name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null,
 | |
| /// this is a declaration, otherwise it is a definition.
 | |
| static GlobalVariable *
 | |
| ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
 | |
|                     bool isConstantGlobal, const Type *Ty,
 | |
|                     Constant *Initializer) {
 | |
|   if (isa<FunctionType>(Ty)) {
 | |
|     GenerateError("Cannot declare global vars of function type!");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   const PointerType *PTy = PointerType::get(Ty);
 | |
| 
 | |
|   std::string Name;
 | |
|   if (NameStr) {
 | |
|     Name = NameStr;      // Copy string
 | |
|     free(NameStr);       // Free old string
 | |
|   }
 | |
| 
 | |
|   // See if this global value was forward referenced.  If so, recycle the
 | |
|   // object.
 | |
|   ValID ID;
 | |
|   if (!Name.empty()) {
 | |
|     ID = ValID::create((char*)Name.c_str());
 | |
|   } else {
 | |
|     ID = ValID::create((int)CurModule.Values[PTy].size());
 | |
|   }
 | |
| 
 | |
|   if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
 | |
|     // Move the global to the end of the list, from whereever it was
 | |
|     // previously inserted.
 | |
|     GlobalVariable *GV = cast<GlobalVariable>(FWGV);
 | |
|     CurModule.CurrentModule->getGlobalList().remove(GV);
 | |
|     CurModule.CurrentModule->getGlobalList().push_back(GV);
 | |
|     GV->setInitializer(Initializer);
 | |
|     GV->setLinkage(Linkage);
 | |
|     GV->setConstant(isConstantGlobal);
 | |
|     InsertValue(GV, CurModule.Values);
 | |
|     return GV;
 | |
|   }
 | |
| 
 | |
|   // If this global has a name, check to see if there is already a definition
 | |
|   // of this global in the module.  If so, merge as appropriate.  Note that
 | |
|   // this is really just a hack around problems in the CFE.  :(
 | |
|   if (!Name.empty()) {
 | |
|     // We are a simple redefinition of a value, check to see if it is defined
 | |
|     // the same as the old one.
 | |
|     if (GlobalVariable *EGV =
 | |
|                 CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
 | |
|       // We are allowed to redefine a global variable in two circumstances:
 | |
|       // 1. If at least one of the globals is uninitialized or
 | |
|       // 2. If both initializers have the same value.
 | |
|       //
 | |
|       if (!EGV->hasInitializer() || !Initializer ||
 | |
|           EGV->getInitializer() == Initializer) {
 | |
| 
 | |
|         // Make sure the existing global version gets the initializer!  Make
 | |
|         // sure that it also gets marked const if the new version is.
 | |
|         if (Initializer && !EGV->hasInitializer())
 | |
|           EGV->setInitializer(Initializer);
 | |
|         if (isConstantGlobal)
 | |
|           EGV->setConstant(true);
 | |
|         EGV->setLinkage(Linkage);
 | |
|         return EGV;
 | |
|       }
 | |
| 
 | |
|       GenerateError("Redefinition of global variable named '" + Name +
 | |
|                      "' in the '" + Ty->getDescription() + "' type plane!");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise there is no existing GV to use, create one now.
 | |
|   GlobalVariable *GV =
 | |
|     new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
 | |
|                        CurModule.CurrentModule);
 | |
|   InsertValue(GV, CurModule.Values);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // setTypeName - Set the specified type to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is freed by this function.
 | |
| //
 | |
| // This function returns true if the type has already been defined, but is
 | |
| // allowed to be redefined in the specified context.  If the name is a new name
 | |
| // for the type plane, it is inserted and false is returned.
 | |
| static bool setTypeName(const Type *T, char *NameStr) {
 | |
|   assert(!inFunctionScope() && "Can't give types function-local names!");
 | |
|   if (NameStr == 0) return false;
 | |
|  
 | |
|   std::string Name(NameStr);      // Copy string
 | |
|   free(NameStr);                  // Free old string
 | |
| 
 | |
|   // We don't allow assigning names to void type
 | |
|   if (T == Type::VoidTy) {
 | |
|     GenerateError("Can't assign name '" + Name + "' to the void type!");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Set the type name, checking for conflicts as we do so.
 | |
|   bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
 | |
| 
 | |
|   if (AlreadyExists) {   // Inserting a name that is already defined???
 | |
|     const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
 | |
|     assert(Existing && "Conflict but no matching type?");
 | |
| 
 | |
|     // There is only one case where this is allowed: when we are refining an
 | |
|     // opaque type.  In this case, Existing will be an opaque type.
 | |
|     if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
 | |
|       // We ARE replacing an opaque type!
 | |
|       const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is an attempt to redefine a type. That's okay if
 | |
|     // the redefinition is identical to the original. This will be so if
 | |
|     // Existing and T point to the same Type object. In this one case we
 | |
|     // allow the equivalent redefinition.
 | |
|     if (Existing == T) return true;  // Yes, it's equal.
 | |
| 
 | |
|     // Any other kind of (non-equivalent) redefinition is an error.
 | |
|     GenerateError("Redefinition of type named '" + Name + "' in the '" +
 | |
|                    T->getDescription() + "' type plane!");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code for handling upreferences in type names...
 | |
| //
 | |
| 
 | |
| // TypeContains - Returns true if Ty directly contains E in it.
 | |
| //
 | |
| static bool TypeContains(const Type *Ty, const Type *E) {
 | |
|   return std::find(Ty->subtype_begin(), Ty->subtype_end(),
 | |
|                    E) != Ty->subtype_end();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct UpRefRecord {
 | |
|     // NestingLevel - The number of nesting levels that need to be popped before
 | |
|     // this type is resolved.
 | |
|     unsigned NestingLevel;
 | |
| 
 | |
|     // LastContainedTy - This is the type at the current binding level for the
 | |
|     // type.  Every time we reduce the nesting level, this gets updated.
 | |
|     const Type *LastContainedTy;
 | |
| 
 | |
|     // UpRefTy - This is the actual opaque type that the upreference is
 | |
|     // represented with.
 | |
|     OpaqueType *UpRefTy;
 | |
| 
 | |
|     UpRefRecord(unsigned NL, OpaqueType *URTy)
 | |
|       : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
 | |
|   };
 | |
| }
 | |
| 
 | |
| // UpRefs - A list of the outstanding upreferences that need to be resolved.
 | |
| static std::vector<UpRefRecord> UpRefs;
 | |
| 
 | |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is
 | |
| /// called.  It loops through the UpRefs vector, which is a list of the
 | |
| /// currently active types.  For each type, if the up reference is contained in
 | |
| /// the newly completed type, we decrement the level count.  When the level
 | |
| /// count reaches zero, the upreferenced type is the type that is passed in:
 | |
| /// thus we can complete the cycle.
 | |
| ///
 | |
| static PATypeHolder HandleUpRefs(const Type *ty) {
 | |
|   // If Ty isn't abstract, or if there are no up-references in it, then there is
 | |
|   // nothing to resolve here.
 | |
|   if (!ty->isAbstract() || UpRefs.empty()) return ty;
 | |
|   
 | |
|   PATypeHolder Ty(ty);
 | |
|   UR_OUT("Type '" << Ty->getDescription() <<
 | |
|          "' newly formed.  Resolving upreferences.\n" <<
 | |
|          UpRefs.size() << " upreferences active!\n");
 | |
| 
 | |
|   // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
 | |
|   // to zero), we resolve them all together before we resolve them to Ty.  At
 | |
|   // the end of the loop, if there is anything to resolve to Ty, it will be in
 | |
|   // this variable.
 | |
|   OpaqueType *TypeToResolve = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i != UpRefs.size(); ++i) {
 | |
|     UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
 | |
|            << UpRefs[i].second->getDescription() << ") = "
 | |
|            << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
 | |
|     if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
 | |
|       // Decrement level of upreference
 | |
|       unsigned Level = --UpRefs[i].NestingLevel;
 | |
|       UpRefs[i].LastContainedTy = Ty;
 | |
|       UR_OUT("  Uplevel Ref Level = " << Level << "\n");
 | |
|       if (Level == 0) {                     // Upreference should be resolved!
 | |
|         if (!TypeToResolve) {
 | |
|           TypeToResolve = UpRefs[i].UpRefTy;
 | |
|         } else {
 | |
|           UR_OUT("  * Resolving upreference for "
 | |
|                  << UpRefs[i].second->getDescription() << "\n";
 | |
|                  std::string OldName = UpRefs[i].UpRefTy->getDescription());
 | |
|           UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
 | |
|           UR_OUT("  * Type '" << OldName << "' refined upreference to: "
 | |
|                  << (const void*)Ty << ", " << Ty->getDescription() << "\n");
 | |
|         }
 | |
|         UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
 | |
|         --i;                                // Do not skip the next element...
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TypeToResolve) {
 | |
|     UR_OUT("  * Resolving upreference for "
 | |
|            << UpRefs[i].second->getDescription() << "\n";
 | |
|            std::string OldName = TypeToResolve->getDescription());
 | |
|     TypeToResolve->refineAbstractTypeTo(Ty);
 | |
|   }
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| // common code from the two 'RunVMAsmParser' functions
 | |
| static Module* RunParser(Module * M) {
 | |
| 
 | |
|   llvmAsmlineno = 1;      // Reset the current line number...
 | |
|   CurModule.CurrentModule = M;
 | |
| 
 | |
|   // Check to make sure the parser succeeded
 | |
|   if (yyparse()) {
 | |
|     if (ParserResult)
 | |
|       delete ParserResult;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that parsing produced a result
 | |
|   if (!ParserResult)
 | |
|     return 0;
 | |
| 
 | |
|   // Reset ParserResult variable while saving its value for the result.
 | |
|   Module *Result = ParserResult;
 | |
|   ParserResult = 0;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            RunVMAsmParser - Define an interface to this parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
 | |
|   set_scan_file(F);
 | |
| 
 | |
|   CurFilename = Filename;
 | |
|   return RunParser(new Module(CurFilename));
 | |
| }
 | |
| 
 | |
| Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
 | |
|   set_scan_string(AsmString);
 | |
| 
 | |
|   CurFilename = "from_memory";
 | |
|   if (M == NULL) {
 | |
|     return RunParser(new Module (CurFilename));
 | |
|   } else {
 | |
|     return RunParser(M);
 | |
|   }
 | |
| }
 | |
| 
 | |
| %}
 | |
| 
 | |
| %union {
 | |
|   llvm::Module                           *ModuleVal;
 | |
|   llvm::Function                         *FunctionVal;
 | |
|   std::pair<llvm::PATypeHolder*, char*>  *ArgVal;
 | |
|   llvm::BasicBlock                       *BasicBlockVal;
 | |
|   llvm::TerminatorInst                   *TermInstVal;
 | |
|   llvm::Instruction                      *InstVal;
 | |
|   llvm::Constant                         *ConstVal;
 | |
| 
 | |
|   const llvm::Type                       *PrimType;
 | |
|   llvm::PATypeHolder                     *TypeVal;
 | |
|   llvm::Value                            *ValueVal;
 | |
| 
 | |
|   std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
 | |
|   std::vector<llvm::Value*>              *ValueList;
 | |
|   std::list<llvm::PATypeHolder>          *TypeList;
 | |
|   // Represent the RHS of PHI node
 | |
|   std::list<std::pair<llvm::Value*,
 | |
|                       llvm::BasicBlock*> > *PHIList;
 | |
|   std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
 | |
|   std::vector<llvm::Constant*>           *ConstVector;
 | |
| 
 | |
|   llvm::GlobalValue::LinkageTypes         Linkage;
 | |
|   int64_t                           SInt64Val;
 | |
|   uint64_t                          UInt64Val;
 | |
|   int                               SIntVal;
 | |
|   unsigned                          UIntVal;
 | |
|   double                            FPVal;
 | |
|   bool                              BoolVal;
 | |
| 
 | |
|   char                             *StrVal;   // This memory is strdup'd!
 | |
|   llvm::ValID                       ValIDVal; // strdup'd memory maybe!
 | |
| 
 | |
|   llvm::Instruction::BinaryOps      BinaryOpVal;
 | |
|   llvm::Instruction::TermOps        TermOpVal;
 | |
|   llvm::Instruction::MemoryOps      MemOpVal;
 | |
|   llvm::Instruction::CastOps        CastOpVal;
 | |
|   llvm::Instruction::OtherOps       OtherOpVal;
 | |
|   llvm::Module::Endianness          Endianness;
 | |
|   llvm::ICmpInst::Predicate         IPredicate;
 | |
|   llvm::FCmpInst::Predicate         FPredicate;
 | |
| }
 | |
| 
 | |
| %type <ModuleVal>     Module FunctionList
 | |
| %type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
 | |
| %type <BasicBlockVal> BasicBlock InstructionList
 | |
| %type <TermInstVal>   BBTerminatorInst
 | |
| %type <InstVal>       Inst InstVal MemoryInst
 | |
| %type <ConstVal>      ConstVal ConstExpr
 | |
| %type <ConstVector>   ConstVector
 | |
| %type <ArgList>       ArgList ArgListH
 | |
| %type <ArgVal>        ArgVal
 | |
| %type <PHIList>       PHIList
 | |
| %type <ValueList>     ValueRefList ValueRefListE  // For call param lists
 | |
| %type <ValueList>     IndexList                   // For GEP derived indices
 | |
| %type <TypeList>      TypeListI ArgTypeListI
 | |
| %type <JumpTable>     JumpTable
 | |
| %type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
 | |
| %type <BoolVal>       OptVolatile                 // 'volatile' or not
 | |
| %type <BoolVal>       OptTailCall                 // TAIL CALL or plain CALL.
 | |
| %type <BoolVal>       OptSideEffect               // 'sideeffect' or not.
 | |
| %type <Linkage>       OptLinkage
 | |
| %type <Endianness>    BigOrLittle
 | |
| 
 | |
| // ValueRef - Unresolved reference to a definition or BB
 | |
| %type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
 | |
| %type <ValueVal>      ResolvedVal            // <type> <valref> pair
 | |
| // Tokens and types for handling constant integer values
 | |
| //
 | |
| // ESINT64VAL - A negative number within long long range
 | |
| %token <SInt64Val> ESINT64VAL
 | |
| 
 | |
| // EUINT64VAL - A positive number within uns. long long range
 | |
| %token <UInt64Val> EUINT64VAL
 | |
| %type  <SInt64Val> EINT64VAL
 | |
| 
 | |
| %token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
 | |
| %token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
 | |
| %type   <SIntVal>   INTVAL
 | |
| %token  <FPVal>     FPVAL     // Float or Double constant
 | |
| 
 | |
| // Built in types...
 | |
| %type  <TypeVal> Types TypesV UpRTypes UpRTypesV
 | |
| %type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
 | |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
 | |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL
 | |
| 
 | |
| %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
 | |
| %type  <StrVal> Name OptName OptAssign
 | |
| %type  <UIntVal> OptAlign OptCAlign
 | |
| %type <StrVal> OptSection SectionString
 | |
| 
 | |
| %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
 | |
| %token DECLARE GLOBAL CONSTANT SECTION VOLATILE
 | |
| %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
 | |
| %token DLLIMPORT DLLEXPORT EXTERN_WEAK
 | |
| %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
 | |
| %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
 | |
| %token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
 | |
| %token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
 | |
| %token DATALAYOUT
 | |
| %type <UIntVal> OptCallingConv
 | |
| 
 | |
| // Basic Block Terminating Operators
 | |
| %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
 | |
| 
 | |
| // Binary Operators
 | |
| %type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
 | |
| %token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
 | |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comparators
 | |
| %token <OtherOpVal> ICMP FCMP
 | |
| %type  <IPredicate> IPredicates
 | |
| %type  <FPredicate> FPredicates
 | |
| %token  EQ NE SLT SGT SLE SGE ULT UGT ULE UGE 
 | |
| %token  OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
 | |
| 
 | |
| // Memory Instructions
 | |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
 | |
| 
 | |
| // Cast Operators
 | |
| %type <CastOpVal> CastOps
 | |
| %token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
 | |
| %token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
 | |
| 
 | |
| // Other Operators
 | |
| %type  <OtherOpVal> ShiftOps
 | |
| %token <OtherOpVal> PHI_TOK SELECT SHL LSHR ASHR VAARG
 | |
| %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
 | |
| 
 | |
| 
 | |
| %start Module
 | |
| %%
 | |
| 
 | |
| // Handle constant integer size restriction and conversion...
 | |
| //
 | |
| INTVAL : SINTVAL;
 | |
| INTVAL : UINTVAL {
 | |
|   if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
 | |
|     GEN_ERROR("Value too large for type!");
 | |
|   $$ = (int32_t)$1;
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| 
 | |
| EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems...
 | |
| EINT64VAL : EUINT64VAL {
 | |
|   if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
 | |
|     GEN_ERROR("Value too large for type!");
 | |
|   $$ = (int64_t)$1;
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| // Operations that are notably excluded from this list include:
 | |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially.
 | |
| //
 | |
| ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
 | |
| LogicalOps   : AND | OR | XOR;
 | |
| SetCondOps   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
 | |
| CastOps      : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST | 
 | |
|                UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
 | |
| ShiftOps     : SHL | LSHR | ASHR;
 | |
| IPredicates  
 | |
|   : EQ   { $$ = ICmpInst::ICMP_EQ; }  | NE   { $$ = ICmpInst::ICMP_NE; }
 | |
|   | SLT  { $$ = ICmpInst::ICMP_SLT; } | SGT  { $$ = ICmpInst::ICMP_SGT; }
 | |
|   | SLE  { $$ = ICmpInst::ICMP_SLE; } | SGE  { $$ = ICmpInst::ICMP_SGE; }
 | |
|   | ULT  { $$ = ICmpInst::ICMP_ULT; } | UGT  { $$ = ICmpInst::ICMP_UGT; }
 | |
|   | ULE  { $$ = ICmpInst::ICMP_ULE; } | UGE  { $$ = ICmpInst::ICMP_UGE; } 
 | |
|   ;
 | |
| 
 | |
| FPredicates  
 | |
|   : OEQ  { $$ = FCmpInst::FCMP_OEQ; } | ONE  { $$ = FCmpInst::FCMP_ONE; }
 | |
|   | OLT  { $$ = FCmpInst::FCMP_OLT; } | OGT  { $$ = FCmpInst::FCMP_OGT; }
 | |
|   | OLE  { $$ = FCmpInst::FCMP_OLE; } | OGE  { $$ = FCmpInst::FCMP_OGE; }
 | |
|   | ORD  { $$ = FCmpInst::FCMP_ORD; } | UNO  { $$ = FCmpInst::FCMP_UNO; }
 | |
|   | UEQ  { $$ = FCmpInst::FCMP_UEQ; } | UNE  { $$ = FCmpInst::FCMP_UNE; }
 | |
|   | ULT  { $$ = FCmpInst::FCMP_ULT; } | UGT  { $$ = FCmpInst::FCMP_UGT; }
 | |
|   | ULE  { $$ = FCmpInst::FCMP_ULE; } | UGE  { $$ = FCmpInst::FCMP_UGE; }
 | |
|   | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
 | |
|   | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
 | |
|   ;
 | |
| 
 | |
| // These are some types that allow classification if we only want a particular 
 | |
| // thing... for example, only a signed, unsigned, or integral type.
 | |
| SIntType :  LONG |  INT |  SHORT | SBYTE;
 | |
| UIntType : ULONG | UINT | USHORT | UBYTE;
 | |
| IntType  : SIntType | UIntType;
 | |
| FPType   : FLOAT | DOUBLE;
 | |
| 
 | |
| // OptAssign - Value producing statements have an optional assignment component
 | |
| OptAssign : Name '=' {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | /*empty*/ {
 | |
|     $$ = 0;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| OptLinkage : INTERNAL    { $$ = GlobalValue::InternalLinkage; } |
 | |
|              LINKONCE    { $$ = GlobalValue::LinkOnceLinkage; } |
 | |
|              WEAK        { $$ = GlobalValue::WeakLinkage; } |
 | |
|              APPENDING   { $$ = GlobalValue::AppendingLinkage; } |
 | |
|              DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } |
 | |
|              DLLEXPORT   { $$ = GlobalValue::DLLExportLinkage; } |
 | |
|              EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } |
 | |
|              /*empty*/   { $$ = GlobalValue::ExternalLinkage; };
 | |
| 
 | |
| OptCallingConv : /*empty*/          { $$ = CallingConv::C; } |
 | |
|                  CCC_TOK            { $$ = CallingConv::C; } |
 | |
|                  CSRETCC_TOK        { $$ = CallingConv::CSRet; } |
 | |
|                  FASTCC_TOK         { $$ = CallingConv::Fast; } |
 | |
|                  COLDCC_TOK         { $$ = CallingConv::Cold; } |
 | |
|                  X86_STDCALLCC_TOK  { $$ = CallingConv::X86_StdCall; } |
 | |
|                  X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
 | |
|                  CC_TOK EUINT64VAL  {
 | |
|                    if ((unsigned)$2 != $2)
 | |
|                      GEN_ERROR("Calling conv too large!");
 | |
|                    $$ = $2;
 | |
|                   CHECK_FOR_ERROR
 | |
|                  };
 | |
| 
 | |
| // OptAlign/OptCAlign - An optional alignment, and an optional alignment with
 | |
| // a comma before it.
 | |
| OptAlign : /*empty*/        { $$ = 0; } |
 | |
|            ALIGN EUINT64VAL {
 | |
|   $$ = $2;
 | |
|   if ($$ != 0 && !isPowerOf2_32($$))
 | |
|     GEN_ERROR("Alignment must be a power of two!");
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| OptCAlign : /*empty*/            { $$ = 0; } |
 | |
|             ',' ALIGN EUINT64VAL {
 | |
|   $$ = $3;
 | |
|   if ($$ != 0 && !isPowerOf2_32($$))
 | |
|     GEN_ERROR("Alignment must be a power of two!");
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| 
 | |
| SectionString : SECTION STRINGCONSTANT {
 | |
|   for (unsigned i = 0, e = strlen($2); i != e; ++i)
 | |
|     if ($2[i] == '"' || $2[i] == '\\')
 | |
|       GEN_ERROR("Invalid character in section name!");
 | |
|   $$ = $2;
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| OptSection : /*empty*/ { $$ = 0; } |
 | |
|              SectionString { $$ = $1; };
 | |
| 
 | |
| // GlobalVarAttributes - Used to pass the attributes string on a global.  CurGV
 | |
| // is set to be the global we are processing.
 | |
| //
 | |
| GlobalVarAttributes : /* empty */ {} |
 | |
|                      ',' GlobalVarAttribute GlobalVarAttributes {};
 | |
| GlobalVarAttribute : SectionString {
 | |
|     CurGV->setSection($1);
 | |
|     free($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   } 
 | |
|   | ALIGN EUINT64VAL {
 | |
|     if ($2 != 0 && !isPowerOf2_32($2))
 | |
|       GEN_ERROR("Alignment must be a power of two!");
 | |
|     CurGV->setAlignment($2);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Types includes all predefined types... except void, because it can only be
 | |
| // used in specific contexts (function returning void for example).  To have
 | |
| // access to it, a user must explicitly use TypesV.
 | |
| //
 | |
| 
 | |
| // TypesV includes all of 'Types', but it also includes the void type.
 | |
| TypesV    : Types    | VOID { $$ = new PATypeHolder($1); };
 | |
| UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
 | |
| 
 | |
| Types     : UpRTypes {
 | |
|     if (!UpRefs.empty())
 | |
|       GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Derived types are added later...
 | |
| //
 | |
| PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ;
 | |
| PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL;
 | |
| UpRTypes : OPAQUE {
 | |
|     $$ = new PATypeHolder(OpaqueType::get());
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | PrimType {
 | |
|     $$ = new PATypeHolder($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| UpRTypes : SymbolicValueRef {            // Named types are also simple types...
 | |
|   const Type* tmp = getTypeVal($1);
 | |
|   CHECK_FOR_ERROR
 | |
|   $$ = new PATypeHolder(tmp);
 | |
| };
 | |
| 
 | |
| // Include derived types in the Types production.
 | |
| //
 | |
| UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
 | |
|     if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range!");
 | |
|     OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
 | |
|     UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
 | |
|     $$ = new PATypeHolder(OT);
 | |
|     UR_OUT("New Upreference!\n");
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
 | |
|     std::vector<const Type*> Params;
 | |
|     for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
 | |
|            E = $3->end(); I != E; ++I)
 | |
|       Params.push_back(*I);
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
 | |
|     delete $3;      // Delete the argument list
 | |
|     delete $1;      // Delete the return type handle
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
 | |
|     $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
 | |
|     delete $4;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | '<' EUINT64VAL 'x' UpRTypes '>' {          // Packed array type?
 | |
|      const llvm::Type* ElemTy = $4->get();
 | |
|      if ((unsigned)$2 != $2)
 | |
|         GEN_ERROR("Unsigned result not equal to signed result");
 | |
|      if (!ElemTy->isPrimitiveType())
 | |
|         GEN_ERROR("Elemental type of a PackedType must be primitive");
 | |
|      if (!isPowerOf2_32($2))
 | |
|        GEN_ERROR("Vector length should be a power of 2!");
 | |
|      $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
 | |
|      delete $4;
 | |
|      CHECK_FOR_ERROR
 | |
|   }
 | |
|   | '{' TypeListI '}' {                        // Structure type?
 | |
|     std::vector<const Type*> Elements;
 | |
|     for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
 | |
|            E = $2->end(); I != E; ++I)
 | |
|       Elements.push_back(*I);
 | |
| 
 | |
|     $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
 | |
|     delete $2;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | '{' '}' {                                  // Empty structure type?
 | |
|     $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | UpRTypes '*' {                             // Pointer type?
 | |
|     if (*$1 == Type::LabelTy)
 | |
|       GEN_ERROR("Cannot form a pointer to a basic block");
 | |
|     $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // TypeList - Used for struct declarations and as a basis for function type 
 | |
| // declaration type lists
 | |
| //
 | |
| TypeListI : UpRTypes {
 | |
|     $$ = new std::list<PATypeHolder>();
 | |
|     $$->push_back(*$1); delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | TypeListI ',' UpRTypes {
 | |
|     ($$=$1)->push_back(*$3); delete $3;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // ArgTypeList - List of types for a function type declaration...
 | |
| ArgTypeListI : TypeListI
 | |
|   | TypeListI ',' DOTDOTDOT {
 | |
|     ($$=$1)->push_back(Type::VoidTy);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | /*empty*/ {
 | |
|     $$ = new std::list<PATypeHolder>();
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // ConstVal - The various declarations that go into the constant pool.  This
 | |
| // production is used ONLY to represent constants that show up AFTER a 'const',
 | |
| // 'constant' or 'global' token at global scope.  Constants that can be inlined
 | |
| // into other expressions (such as integers and constexprs) are handled by the
 | |
| // ResolvedVal, ValueRef and ConstValueRef productions.
 | |
| //
 | |
| ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       GEN_ERROR("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     int NumElements = ATy->getNumElements();
 | |
| 
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       GEN_ERROR("Type mismatch: constant sized array initialized with " +
 | |
|                      utostr($3->size()) +  " arguments, but has size of " + 
 | |
|                      itostr(NumElements) + "!");
 | |
| 
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       if (ETy != (*$3)[i]->getType())
 | |
|         GEN_ERROR("Element #" + utostr(i) + " is not of type '" + 
 | |
|                        ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
|                        (*$3)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ConstantArray::get(ATy, *$3);
 | |
|     delete $1; delete $3;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types '[' ']' {
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       GEN_ERROR("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     if (NumElements != -1 && NumElements != 0) 
 | |
|       GEN_ERROR("Type mismatch: constant sized array initialized with 0"
 | |
|                      " arguments, but has size of " + itostr(NumElements) +"!");
 | |
|     $$ = ConstantArray::get(ATy, std::vector<Constant*>());
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types 'c' STRINGCONSTANT {
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       GEN_ERROR("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     char *EndStr = UnEscapeLexed($3, true);
 | |
|     if (NumElements != -1 && NumElements != (EndStr-$3))
 | |
|       GEN_ERROR("Can't build string constant of size " + 
 | |
|                      itostr((int)(EndStr-$3)) +
 | |
|                      " when array has size " + itostr(NumElements) + "!");
 | |
|     std::vector<Constant*> Vals;
 | |
|     if (ETy == Type::SByteTy) {
 | |
|       for (signed char *C = (signed char *)$3; C != (signed char *)EndStr; ++C)
 | |
|         Vals.push_back(ConstantInt::get(ETy, *C));
 | |
|     } else if (ETy == Type::UByteTy) {
 | |
|       for (unsigned char *C = (unsigned char *)$3; 
 | |
|            C != (unsigned char*)EndStr; ++C)
 | |
|         Vals.push_back(ConstantInt::get(ETy, *C));
 | |
|     } else {
 | |
|       free($3);
 | |
|       GEN_ERROR("Cannot build string arrays of non byte sized elements!");
 | |
|     }
 | |
|     free($3);
 | |
|     $$ = ConstantArray::get(ATy, Vals);
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types '<' ConstVector '>' { // Nonempty unsized arr
 | |
|     const PackedType *PTy = dyn_cast<PackedType>($1->get());
 | |
|     if (PTy == 0)
 | |
|       GEN_ERROR("Cannot make packed constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
|     const Type *ETy = PTy->getElementType();
 | |
|     int NumElements = PTy->getNumElements();
 | |
| 
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       GEN_ERROR("Type mismatch: constant sized packed initialized with " +
 | |
|                      utostr($3->size()) +  " arguments, but has size of " + 
 | |
|                      itostr(NumElements) + "!");
 | |
| 
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       if (ETy != (*$3)[i]->getType())
 | |
|         GEN_ERROR("Element #" + utostr(i) + " is not of type '" + 
 | |
|            ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
|            (*$3)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ConstantPacked::get(PTy, *$3);
 | |
|     delete $1; delete $3;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types '{' ConstVector '}' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1->get());
 | |
|     if (STy == 0)
 | |
|       GEN_ERROR("Cannot make struct constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     if ($3->size() != STy->getNumContainedTypes())
 | |
|       GEN_ERROR("Illegal number of initializers for structure type!");
 | |
| 
 | |
|     // Check to ensure that constants are compatible with the type initializer!
 | |
|     for (unsigned i = 0, e = $3->size(); i != e; ++i)
 | |
|       if ((*$3)[i]->getType() != STy->getElementType(i))
 | |
|         GEN_ERROR("Expected type '" +
 | |
|                        STy->getElementType(i)->getDescription() +
 | |
|                        "' for element #" + utostr(i) +
 | |
|                        " of structure initializer!");
 | |
| 
 | |
|     $$ = ConstantStruct::get(STy, *$3);
 | |
|     delete $1; delete $3;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types '{' '}' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1->get());
 | |
|     if (STy == 0)
 | |
|       GEN_ERROR("Cannot make struct constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     if (STy->getNumContainedTypes() != 0)
 | |
|       GEN_ERROR("Illegal number of initializers for structure type!");
 | |
| 
 | |
|     $$ = ConstantStruct::get(STy, std::vector<Constant*>());
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types NULL_TOK {
 | |
|     const PointerType *PTy = dyn_cast<PointerType>($1->get());
 | |
|     if (PTy == 0)
 | |
|       GEN_ERROR("Cannot make null pointer constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     $$ = ConstantPointerNull::get(PTy);
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types UNDEF {
 | |
|     $$ = UndefValue::get($1->get());
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types SymbolicValueRef {
 | |
|     const PointerType *Ty = dyn_cast<PointerType>($1->get());
 | |
|     if (Ty == 0)
 | |
|       GEN_ERROR("Global const reference must be a pointer type!");
 | |
| 
 | |
|     // ConstExprs can exist in the body of a function, thus creating
 | |
|     // GlobalValues whenever they refer to a variable.  Because we are in
 | |
|     // the context of a function, getValNonImprovising will search the functions
 | |
|     // symbol table instead of the module symbol table for the global symbol,
 | |
|     // which throws things all off.  To get around this, we just tell
 | |
|     // getValNonImprovising that we are at global scope here.
 | |
|     //
 | |
|     Function *SavedCurFn = CurFun.CurrentFunction;
 | |
|     CurFun.CurrentFunction = 0;
 | |
| 
 | |
|     Value *V = getValNonImprovising(Ty, $2);
 | |
|     CHECK_FOR_ERROR
 | |
| 
 | |
|     CurFun.CurrentFunction = SavedCurFn;
 | |
| 
 | |
|     // If this is an initializer for a constant pointer, which is referencing a
 | |
|     // (currently) undefined variable, create a stub now that shall be replaced
 | |
|     // in the future with the right type of variable.
 | |
|     //
 | |
|     if (V == 0) {
 | |
|       assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
 | |
|       const PointerType *PT = cast<PointerType>(Ty);
 | |
| 
 | |
|       // First check to see if the forward references value is already created!
 | |
|       PerModuleInfo::GlobalRefsType::iterator I =
 | |
|         CurModule.GlobalRefs.find(std::make_pair(PT, $2));
 | |
|     
 | |
|       if (I != CurModule.GlobalRefs.end()) {
 | |
|         V = I->second;             // Placeholder already exists, use it...
 | |
|         $2.destroy();
 | |
|       } else {
 | |
|         std::string Name;
 | |
|         if ($2.Type == ValID::NameVal) Name = $2.Name;
 | |
| 
 | |
|         // Create the forward referenced global.
 | |
|         GlobalValue *GV;
 | |
|         if (const FunctionType *FTy = 
 | |
|                  dyn_cast<FunctionType>(PT->getElementType())) {
 | |
|           GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
 | |
|                             CurModule.CurrentModule);
 | |
|         } else {
 | |
|           GV = new GlobalVariable(PT->getElementType(), false,
 | |
|                                   GlobalValue::ExternalLinkage, 0,
 | |
|                                   Name, CurModule.CurrentModule);
 | |
|         }
 | |
| 
 | |
|         // Keep track of the fact that we have a forward ref to recycle it
 | |
|         CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
 | |
|         V = GV;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     $$ = cast<GlobalValue>(V);
 | |
|     delete $1;            // Free the type handle
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types ConstExpr {
 | |
|     if ($1->get() != $2->getType())
 | |
|       GEN_ERROR("Mismatched types for constant expression!");
 | |
|     $$ = $2;
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Types ZEROINITIALIZER {
 | |
|     const Type *Ty = $1->get();
 | |
|     if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
 | |
|       GEN_ERROR("Cannot create a null initialized value of this type!");
 | |
|     $$ = Constant::getNullValue(Ty);
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SIntType EINT64VAL {      // integral constants
 | |
|     if (!ConstantInt::isValueValidForType($1, $2))
 | |
|       GEN_ERROR("Constant value doesn't fit in type!");
 | |
|     $$ = ConstantInt::get($1, $2);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | UIntType EUINT64VAL {            // integral constants
 | |
|     if (!ConstantInt::isValueValidForType($1, $2))
 | |
|       GEN_ERROR("Constant value doesn't fit in type!");
 | |
|     $$ = ConstantInt::get($1, $2);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | BOOL TRUETOK {                      // Boolean constants
 | |
|     $$ = ConstantBool::getTrue();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | BOOL FALSETOK {                     // Boolean constants
 | |
|     $$ = ConstantBool::getFalse();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | FPType FPVAL {                   // Float & Double constants
 | |
|     if (!ConstantFP::isValueValidForType($1, $2))
 | |
|       GEN_ERROR("Floating point constant invalid for type!!");
 | |
|     $$ = ConstantFP::get($1, $2);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| ConstExpr: CastOps '(' ConstVal TO Types ')' {
 | |
|     Constant *Val = $3;
 | |
|     const Type *Ty = $5->get();
 | |
|     if (!Val->getType()->isFirstClassType())
 | |
|       GEN_ERROR("cast constant expression from a non-primitive type: '" +
 | |
|                      Val->getType()->getDescription() + "'!");
 | |
|     if (!Ty->isFirstClassType())
 | |
|       GEN_ERROR("cast constant expression to a non-primitive type: '" +
 | |
|                 Ty->getDescription() + "'!");
 | |
|     $$ = ConstantExpr::getCast($1, $3, $5->get());
 | |
|     delete $5;
 | |
|   }
 | |
|   | GETELEMENTPTR '(' ConstVal IndexList ')' {
 | |
|     if (!isa<PointerType>($3->getType()))
 | |
|       GEN_ERROR("GetElementPtr requires a pointer operand!");
 | |
| 
 | |
|     const Type *IdxTy =
 | |
|       GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
 | |
|     if (!IdxTy)
 | |
|       GEN_ERROR("Index list invalid for constant getelementptr!");
 | |
| 
 | |
|     std::vector<Constant*> IdxVec;
 | |
|     for (unsigned i = 0, e = $4->size(); i != e; ++i)
 | |
|       if (Constant *C = dyn_cast<Constant>((*$4)[i]))
 | |
|         IdxVec.push_back(C);
 | |
|       else
 | |
|         GEN_ERROR("Indices to constant getelementptr must be constants!");
 | |
| 
 | |
|     delete $4;
 | |
| 
 | |
|     $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != Type::BoolTy)
 | |
|       GEN_ERROR("Select condition must be of boolean type!");
 | |
|     if ($5->getType() != $7->getType())
 | |
|       GEN_ERROR("Select operand types must match!");
 | |
|     $$ = ConstantExpr::getSelect($3, $5, $7);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != $5->getType())
 | |
|       GEN_ERROR("Binary operator types must match!");
 | |
|     CHECK_FOR_ERROR;
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|   }
 | |
|   | LogicalOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != $5->getType())
 | |
|       GEN_ERROR("Logical operator types must match!");
 | |
|     if (!$3->getType()->isIntegral()) {
 | |
|       if (!isa<PackedType>($3->getType()) || 
 | |
|           !cast<PackedType>($3->getType())->getElementType()->isIntegral())
 | |
|         GEN_ERROR("Logical operator requires integral operands!");
 | |
|     }
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SetCondOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != $5->getType())
 | |
|       GEN_ERROR("setcc operand types must match!");
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($4->getType() != $6->getType())
 | |
|       GEN_ERROR("icmp operand types must match!");
 | |
|     $$ = ConstantExpr::getICmp($2, $4, $6);
 | |
|   }
 | |
|   | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($4->getType() != $6->getType())
 | |
|       GEN_ERROR("fcmp operand types must match!");
 | |
|     $$ = ConstantExpr::getFCmp($2, $4, $6);
 | |
|   }
 | |
|   | ShiftOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($5->getType() != Type::UByteTy)
 | |
|       GEN_ERROR("Shift count for shift constant must be unsigned byte!");
 | |
|     if (!$3->getType()->isInteger())
 | |
|       GEN_ERROR("Shift constant expression requires integer operand!");
 | |
|     CHECK_FOR_ERROR;
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
 | |
|     if (!ExtractElementInst::isValidOperands($3, $5))
 | |
|       GEN_ERROR("Invalid extractelement operands!");
 | |
|     $$ = ConstantExpr::getExtractElement($3, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if (!InsertElementInst::isValidOperands($3, $5, $7))
 | |
|       GEN_ERROR("Invalid insertelement operands!");
 | |
|     $$ = ConstantExpr::getInsertElement($3, $5, $7);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
 | |
|       GEN_ERROR("Invalid shufflevector operands!");
 | |
|     $$ = ConstantExpr::getShuffleVector($3, $5, $7);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| // ConstVector - A list of comma separated constants.
 | |
| ConstVector : ConstVector ',' ConstVal {
 | |
|     ($$ = $1)->push_back($3);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstVal {
 | |
|     $$ = new std::vector<Constant*>();
 | |
|     $$->push_back($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
 | |
| GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Rules to match Modules
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Module rule: Capture the result of parsing the whole file into a result
 | |
| // variable...
 | |
| //
 | |
| Module : FunctionList {
 | |
|   $$ = ParserResult = $1;
 | |
|   CurModule.ModuleDone();
 | |
|   CHECK_FOR_ERROR;
 | |
| };
 | |
| 
 | |
| // FunctionList - A list of functions, preceeded by a constant pool.
 | |
| //
 | |
| FunctionList : FunctionList Function {
 | |
|     $$ = $1;
 | |
|     CurFun.FunctionDone();
 | |
|     CHECK_FOR_ERROR
 | |
|   } 
 | |
|   | FunctionList FunctionProto {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | FunctionList MODULE ASM_TOK AsmBlock {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }  
 | |
|   | FunctionList IMPLEMENTATION {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool {
 | |
|     $$ = CurModule.CurrentModule;
 | |
|     // Emit an error if there are any unresolved types left.
 | |
|     if (!CurModule.LateResolveTypes.empty()) {
 | |
|       const ValID &DID = CurModule.LateResolveTypes.begin()->first;
 | |
|       if (DID.Type == ValID::NameVal) {
 | |
|         GEN_ERROR("Reference to an undefined type: '"+DID.getName() + "'");
 | |
|       } else {
 | |
|         GEN_ERROR("Reference to an undefined type: #" + itostr(DID.Num));
 | |
|       }
 | |
|     }
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // ConstPool - Constants with optional names assigned to them.
 | |
| ConstPool : ConstPool OptAssign TYPE TypesV {
 | |
|     // Eagerly resolve types.  This is not an optimization, this is a
 | |
|     // requirement that is due to the fact that we could have this:
 | |
|     //
 | |
|     // %list = type { %list * }
 | |
|     // %list = type { %list * }    ; repeated type decl
 | |
|     //
 | |
|     // If types are not resolved eagerly, then the two types will not be
 | |
|     // determined to be the same type!
 | |
|     //
 | |
|     ResolveTypeTo($2, *$4);
 | |
| 
 | |
|     if (!setTypeName(*$4, $2) && !$2) {
 | |
|       CHECK_FOR_ERROR
 | |
|       // If this is a named type that is not a redefinition, add it to the slot
 | |
|       // table.
 | |
|       CurModule.Types.push_back(*$4);
 | |
|     }
 | |
| 
 | |
|     delete $4;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool FunctionProto {       // Function prototypes can be in const pool
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool MODULE ASM_TOK AsmBlock {  // Asm blocks can be in the const pool
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool OptAssign OptLinkage GlobalType ConstVal {
 | |
|     if ($5 == 0) 
 | |
|       GEN_ERROR("Global value initializer is not a constant!");
 | |
|     CurGV = ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
 | |
|     CHECK_FOR_ERROR
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|   }
 | |
|   | ConstPool OptAssign EXTERNAL GlobalType Types {
 | |
|     CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, *$5, 0);
 | |
|     CHECK_FOR_ERROR
 | |
|     delete $5;
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool OptAssign DLLIMPORT GlobalType Types {
 | |
|     CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, *$5, 0);
 | |
|     CHECK_FOR_ERROR
 | |
|     delete $5;
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool OptAssign EXTERN_WEAK GlobalType Types {
 | |
|     CurGV = 
 | |
|       ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, *$5, 0);
 | |
|     CHECK_FOR_ERROR
 | |
|     delete $5;
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool TARGET TargetDefinition { 
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstPool DEPLIBS '=' LibrariesDefinition {
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | /* empty: end of list */ { 
 | |
|   };
 | |
| 
 | |
| 
 | |
| AsmBlock : STRINGCONSTANT {
 | |
|   const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
 | |
|   char *EndStr = UnEscapeLexed($1, true);
 | |
|   std::string NewAsm($1, EndStr);
 | |
|   free($1);
 | |
| 
 | |
|   if (AsmSoFar.empty())
 | |
|     CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
 | |
|   else
 | |
|     CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| BigOrLittle : BIG    { $$ = Module::BigEndian; };
 | |
| BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
 | |
| 
 | |
| TargetDefinition : ENDIAN '=' BigOrLittle {
 | |
|     CurModule.CurrentModule->setEndianness($3);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | POINTERSIZE '=' EUINT64VAL {
 | |
|     if ($3 == 32)
 | |
|       CurModule.CurrentModule->setPointerSize(Module::Pointer32);
 | |
|     else if ($3 == 64)
 | |
|       CurModule.CurrentModule->setPointerSize(Module::Pointer64);
 | |
|     else
 | |
|       GEN_ERROR("Invalid pointer size: '" + utostr($3) + "'!");
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | TRIPLE '=' STRINGCONSTANT {
 | |
|     CurModule.CurrentModule->setTargetTriple($3);
 | |
|     free($3);
 | |
|   }
 | |
|   | DATALAYOUT '=' STRINGCONSTANT {
 | |
|     CurModule.CurrentModule->setDataLayout($3);
 | |
|     free($3);
 | |
|   };
 | |
| 
 | |
| LibrariesDefinition : '[' LibList ']';
 | |
| 
 | |
| LibList : LibList ',' STRINGCONSTANT {
 | |
|           CurModule.CurrentModule->addLibrary($3);
 | |
|           free($3);
 | |
|           CHECK_FOR_ERROR
 | |
|         }
 | |
|         | STRINGCONSTANT {
 | |
|           CurModule.CurrentModule->addLibrary($1);
 | |
|           free($1);
 | |
|           CHECK_FOR_ERROR
 | |
|         }
 | |
|         | /* empty: end of list */ {
 | |
|           CHECK_FOR_ERROR
 | |
|         }
 | |
|         ;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       Rules to match Function Headers
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Name : VAR_ID | STRINGCONSTANT;
 | |
| OptName : Name | /*empty*/ { $$ = 0; };
 | |
| 
 | |
| ArgVal : Types OptName {
 | |
|   if (*$1 == Type::VoidTy)
 | |
|     GEN_ERROR("void typed arguments are invalid!");
 | |
|   $$ = new std::pair<PATypeHolder*, char*>($1, $2);
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| ArgListH : ArgListH ',' ArgVal {
 | |
|     $$ = $1;
 | |
|     $1->push_back(*$3);
 | |
|     delete $3;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ArgVal {
 | |
|     $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
 | |
|     $$->push_back(*$1);
 | |
|     delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| ArgList : ArgListH {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ArgListH ',' DOTDOTDOT {
 | |
|     $$ = $1;
 | |
|     $$->push_back(std::pair<PATypeHolder*,
 | |
|                             char*>(new PATypeHolder(Type::VoidTy), 0));
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
 | |
|     $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = 0;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')' 
 | |
|                   OptSection OptAlign {
 | |
|   UnEscapeLexed($3);
 | |
|   std::string FunctionName($3);
 | |
|   free($3);  // Free strdup'd memory!
 | |
|   
 | |
|   if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy)
 | |
|     GEN_ERROR("LLVM functions cannot return aggregate types!");
 | |
| 
 | |
|   std::vector<const Type*> ParamTypeList;
 | |
|   if ($5) {   // If there are arguments...
 | |
|     for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
 | |
|          I != $5->end(); ++I)
 | |
|       ParamTypeList.push_back(I->first->get());
 | |
|   }
 | |
| 
 | |
|   bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
 | |
|   if (isVarArg) ParamTypeList.pop_back();
 | |
| 
 | |
|   const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
 | |
|   const PointerType *PFT = PointerType::get(FT);
 | |
|   delete $2;
 | |
| 
 | |
|   ValID ID;
 | |
|   if (!FunctionName.empty()) {
 | |
|     ID = ValID::create((char*)FunctionName.c_str());
 | |
|   } else {
 | |
|     ID = ValID::create((int)CurModule.Values[PFT].size());
 | |
|   }
 | |
| 
 | |
|   Function *Fn = 0;
 | |
|   // See if this function was forward referenced.  If so, recycle the object.
 | |
|   if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
 | |
|     // Move the function to the end of the list, from whereever it was 
 | |
|     // previously inserted.
 | |
|     Fn = cast<Function>(FWRef);
 | |
|     CurModule.CurrentModule->getFunctionList().remove(Fn);
 | |
|     CurModule.CurrentModule->getFunctionList().push_back(Fn);
 | |
|   } else if (!FunctionName.empty() &&     // Merge with an earlier prototype?
 | |
|              (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
 | |
|     // If this is the case, either we need to be a forward decl, or it needs 
 | |
|     // to be.
 | |
|     if (!CurFun.isDeclare && !Fn->isExternal())
 | |
|       GEN_ERROR("Redefinition of function '" + FunctionName + "'!");
 | |
|     
 | |
|     // Make sure to strip off any argument names so we can't get conflicts.
 | |
|     if (Fn->isExternal())
 | |
|       for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
 | |
|            AI != AE; ++AI)
 | |
|         AI->setName("");
 | |
|   } else  {  // Not already defined?
 | |
|     Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
 | |
|                       CurModule.CurrentModule);
 | |
| 
 | |
|     InsertValue(Fn, CurModule.Values);
 | |
|   }
 | |
| 
 | |
|   CurFun.FunctionStart(Fn);
 | |
| 
 | |
|   if (CurFun.isDeclare) {
 | |
|     // If we have declaration, always overwrite linkage.  This will allow us to
 | |
|     // correctly handle cases, when pointer to function is passed as argument to
 | |
|     // another function.
 | |
|     Fn->setLinkage(CurFun.Linkage);
 | |
|   }
 | |
|   Fn->setCallingConv($1);
 | |
|   Fn->setAlignment($8);
 | |
|   if ($7) {
 | |
|     Fn->setSection($7);
 | |
|     free($7);
 | |
|   }
 | |
| 
 | |
|   // Add all of the arguments we parsed to the function...
 | |
|   if ($5) {                     // Is null if empty...
 | |
|     if (isVarArg) {  // Nuke the last entry
 | |
|       assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
 | |
|              "Not a varargs marker!");
 | |
|       delete $5->back().first;
 | |
|       $5->pop_back();  // Delete the last entry
 | |
|     }
 | |
|     Function::arg_iterator ArgIt = Fn->arg_begin();
 | |
|     for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
 | |
|          I != $5->end(); ++I, ++ArgIt) {
 | |
|       delete I->first;                          // Delete the typeholder...
 | |
| 
 | |
|       setValueName(ArgIt, I->second);           // Insert arg into symtab...
 | |
|       CHECK_FOR_ERROR
 | |
|       InsertValue(ArgIt);
 | |
|     }
 | |
| 
 | |
|     delete $5;                     // We're now done with the argument list
 | |
|   }
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function
 | |
| 
 | |
| FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
 | |
|   $$ = CurFun.CurrentFunction;
 | |
| 
 | |
|   // Make sure that we keep track of the linkage type even if there was a
 | |
|   // previous "declare".
 | |
|   $$->setLinkage($1);
 | |
| };
 | |
| 
 | |
| END : ENDTOK | '}';                    // Allow end of '}' to end a function
 | |
| 
 | |
| Function : BasicBlockList END {
 | |
|   $$ = $1;
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| FnDeclareLinkage: /*default*/ |
 | |
|                   DLLIMPORT   { CurFun.Linkage = GlobalValue::DLLImportLinkage; } |
 | |
|                   EXTERN_WEAK { CurFun.Linkage = GlobalValue::ExternalWeakLinkage; };
 | |
|   
 | |
| FunctionProto : DECLARE { CurFun.isDeclare = true; } FnDeclareLinkage FunctionHeaderH {
 | |
|     $$ = CurFun.CurrentFunction;
 | |
|     CurFun.FunctionDone();
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Rules to match Basic Blocks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| OptSideEffect : /* empty */ {
 | |
|     $$ = false;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SIDEEFFECT {
 | |
|     $$ = true;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| ConstValueRef : ESINT64VAL {    // A reference to a direct constant
 | |
|     $$ = ValID::create($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | EUINT64VAL {
 | |
|     $$ = ValID::create($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | FPVAL {                     // Perhaps it's an FP constant?
 | |
|     $$ = ValID::create($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | TRUETOK {
 | |
|     $$ = ValID::create(ConstantBool::getTrue());
 | |
|     CHECK_FOR_ERROR
 | |
|   } 
 | |
|   | FALSETOK {
 | |
|     $$ = ValID::create(ConstantBool::getFalse());
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | NULL_TOK {
 | |
|     $$ = ValID::createNull();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | UNDEF {
 | |
|     $$ = ValID::createUndef();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ZEROINITIALIZER {     // A vector zero constant.
 | |
|     $$ = ValID::createZeroInit();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | '<' ConstVector '>' { // Nonempty unsized packed vector
 | |
|     const Type *ETy = (*$2)[0]->getType();
 | |
|     int NumElements = $2->size(); 
 | |
|     
 | |
|     PackedType* pt = PackedType::get(ETy, NumElements);
 | |
|     PATypeHolder* PTy = new PATypeHolder(
 | |
|                                          HandleUpRefs(
 | |
|                                             PackedType::get(
 | |
|                                                 ETy, 
 | |
|                                                 NumElements)
 | |
|                                             )
 | |
|                                          );
 | |
|     
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $2->size(); i++) {
 | |
|       if (ETy != (*$2)[i]->getType())
 | |
|         GEN_ERROR("Element #" + utostr(i) + " is not of type '" + 
 | |
|                      ETy->getDescription() +"' as required!\nIt is of type '" +
 | |
|                      (*$2)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ValID::create(ConstantPacked::get(pt, *$2));
 | |
|     delete PTy; delete $2;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ConstExpr {
 | |
|     $$ = ValID::create($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
 | |
|     char *End = UnEscapeLexed($3, true);
 | |
|     std::string AsmStr = std::string($3, End);
 | |
|     End = UnEscapeLexed($5, true);
 | |
|     std::string Constraints = std::string($5, End);
 | |
|     $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
 | |
|     free($3);
 | |
|     free($5);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to
 | |
| // another value.
 | |
| //
 | |
| SymbolicValueRef : INTVAL {  // Is it an integer reference...?
 | |
|     $$ = ValID::create($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | Name {                   // Is it a named reference...?
 | |
|     $$ = ValID::create($1);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // ValueRef - A reference to a definition... either constant or symbolic
 | |
| ValueRef : SymbolicValueRef | ConstValueRef;
 | |
| 
 | |
| 
 | |
| // ResolvedVal - a <type> <value> pair.  This is used only in cases where the
 | |
| // type immediately preceeds the value reference, and allows complex constant
 | |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
 | |
| ResolvedVal : Types ValueRef {
 | |
|     $$ = getVal(*$1, $2); delete $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| BasicBlockList : BasicBlockList BasicBlock {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Basic blocks are terminated by branching instructions: 
 | |
| // br, br/cc, switch, ret
 | |
| //
 | |
| BasicBlock : InstructionList OptAssign BBTerminatorInst  {
 | |
|     setValueName($3, $2);
 | |
|     CHECK_FOR_ERROR
 | |
|     InsertValue($3);
 | |
| 
 | |
|     $1->getInstList().push_back($3);
 | |
|     InsertValue($1);
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| InstructionList : InstructionList Inst {
 | |
|     if (CastInst *CI1 = dyn_cast<CastInst>($2))
 | |
|       if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
 | |
|         if (CI2->getParent() == 0)
 | |
|           $1->getInstList().push_back(CI2);
 | |
|     $1->getInstList().push_back($2);
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
 | |
|     CHECK_FOR_ERROR
 | |
| 
 | |
|     // Make sure to move the basic block to the correct location in the
 | |
|     // function, instead of leaving it inserted wherever it was first
 | |
|     // referenced.
 | |
|     Function::BasicBlockListType &BBL = 
 | |
|       CurFun.CurrentFunction->getBasicBlockList();
 | |
|     BBL.splice(BBL.end(), BBL, $$);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | LABELSTR {
 | |
|     $$ = getBBVal(ValID::create($1), true);
 | |
|     CHECK_FOR_ERROR
 | |
| 
 | |
|     // Make sure to move the basic block to the correct location in the
 | |
|     // function, instead of leaving it inserted wherever it was first
 | |
|     // referenced.
 | |
|     Function::BasicBlockListType &BBL = 
 | |
|       CurFun.CurrentFunction->getBasicBlockList();
 | |
|     BBL.splice(BBL.end(), BBL, $$);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| BBTerminatorInst : RET ResolvedVal {              // Return with a result...
 | |
|     $$ = new ReturnInst($2);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | RET VOID {                                       // Return with no result...
 | |
|     $$ = new ReturnInst();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | BR LABEL ValueRef {                         // Unconditional Branch...
 | |
|     BasicBlock* tmpBB = getBBVal($3);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new BranchInst(tmpBB);
 | |
|   }                                                  // Conditional Branch...
 | |
|   | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
 | |
|     BasicBlock* tmpBBA = getBBVal($6);
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock* tmpBBB = getBBVal($9);
 | |
|     CHECK_FOR_ERROR
 | |
|     Value* tmpVal = getVal(Type::BoolTy, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
 | |
|     Value* tmpVal = getVal($2, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     CHECK_FOR_ERROR
 | |
|     SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
 | |
|     $$ = S;
 | |
| 
 | |
|     std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
 | |
|       E = $8->end();
 | |
|     for (; I != E; ++I) {
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
 | |
|           S->addCase(CI, I->second);
 | |
|       else
 | |
|         GEN_ERROR("Switch case is constant, but not a simple integer!");
 | |
|     }
 | |
|     delete $8;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
 | |
|     Value* tmpVal = getVal($2, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     CHECK_FOR_ERROR
 | |
|     SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
 | |
|     $$ = S;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
 | |
|     TO LABEL ValueRef UNWIND LABEL ValueRef {
 | |
|     const PointerType *PFTy;
 | |
|     const FunctionType *Ty;
 | |
| 
 | |
|     if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       std::vector<const Type*> ParamTypes;
 | |
|       if ($6) {
 | |
|         for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
 | |
|              I != E; ++I)
 | |
|           ParamTypes.push_back((*I)->getType());
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
 | |
|       PFTy = PointerType::get(Ty);
 | |
|     }
 | |
| 
 | |
|     Value *V = getVal(PFTy, $4);   // Get the function we're calling...
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock *Normal = getBBVal($10);
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock *Except = getBBVal($13);
 | |
|     CHECK_FOR_ERROR
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$6) {                                   // Has no arguments?
 | |
|       $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::param_iterator I = Ty->param_begin();
 | |
|       FunctionType::param_iterator E = Ty->param_end();
 | |
|       std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
 | |
| 
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
|         if ((*ArgI)->getType() != *I)
 | |
|           GEN_ERROR("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | |
|                          (*I)->getDescription() + "'!");
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
|         GEN_ERROR("Invalid number of parameters detected!");
 | |
| 
 | |
|       $$ = new InvokeInst(V, Normal, Except, *$6);
 | |
|     }
 | |
|     cast<InvokeInst>($$)->setCallingConv($2);
 | |
|   
 | |
|     delete $3;
 | |
|     delete $6;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | UNWIND {
 | |
|     $$ = new UnwindInst();
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | UNREACHABLE {
 | |
|     $$ = new UnreachableInst();
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| 
 | |
| JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = $1;
 | |
|     Constant *V = cast<Constant>(getValNonImprovising($2, $3));
 | |
|     CHECK_FOR_ERROR
 | |
|     if (V == 0)
 | |
|       GEN_ERROR("May only switch on a constant pool value!");
 | |
| 
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$->push_back(std::make_pair(V, tmpBB));
 | |
|   }
 | |
|   | IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
 | |
|     Constant *V = cast<Constant>(getValNonImprovising($1, $2));
 | |
|     CHECK_FOR_ERROR
 | |
| 
 | |
|     if (V == 0)
 | |
|       GEN_ERROR("May only switch on a constant pool value!");
 | |
| 
 | |
|     BasicBlock* tmpBB = getBBVal($5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$->push_back(std::make_pair(V, tmpBB)); 
 | |
|   };
 | |
| 
 | |
| Inst : OptAssign InstVal {
 | |
|   // Is this definition named?? if so, assign the name...
 | |
|   setValueName($2, $1);
 | |
|   CHECK_FOR_ERROR
 | |
|   InsertValue($2);
 | |
|   $$ = $2;
 | |
|   CHECK_FOR_ERROR
 | |
| };
 | |
| 
 | |
| PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
 | |
|     $$ = new std::list<std::pair<Value*, BasicBlock*> >();
 | |
|     Value* tmpVal = getVal(*$1, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock* tmpBB = getBBVal($5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$->push_back(std::make_pair(tmpVal, tmpBB));
 | |
|     delete $1;
 | |
|   }
 | |
|   | PHIList ',' '[' ValueRef ',' ValueRef ']' {
 | |
|     $$ = $1;
 | |
|     Value* tmpVal = getVal($1->front().first->getType(), $4);
 | |
|     CHECK_FOR_ERROR
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     CHECK_FOR_ERROR
 | |
|     $1->push_back(std::make_pair(tmpVal, tmpBB));
 | |
|   };
 | |
| 
 | |
| 
 | |
| ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
 | |
|     $$ = new std::vector<Value*>();
 | |
|     $$->push_back($1);
 | |
|   }
 | |
|   | ValueRefList ',' ResolvedVal {
 | |
|     $$ = $1;
 | |
|     $1->push_back($3);
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty!
 | |
| ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
 | |
| 
 | |
| OptTailCall : TAIL CALL {
 | |
|     $$ = true;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | CALL {
 | |
|     $$ = false;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
 | |
|     if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && 
 | |
|         !isa<PackedType>((*$2).get()))
 | |
|       GEN_ERROR(
 | |
|         "Arithmetic operator requires integer, FP, or packed operands!");
 | |
|     if (isa<PackedType>((*$2).get()) && 
 | |
|         ($1 == Instruction::URem || 
 | |
|          $1 == Instruction::SRem ||
 | |
|          $1 == Instruction::FRem))
 | |
|       GEN_ERROR("U/S/FRem not supported on packed types!");
 | |
|     Value* val1 = getVal(*$2, $3); 
 | |
|     CHECK_FOR_ERROR
 | |
|     Value* val2 = getVal(*$2, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = BinaryOperator::create($1, val1, val2);
 | |
|     if ($$ == 0)
 | |
|       GEN_ERROR("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | LogicalOps Types ValueRef ',' ValueRef {
 | |
|     if (!(*$2)->isIntegral()) {
 | |
|       if (!isa<PackedType>($2->get()) ||
 | |
|           !cast<PackedType>($2->get())->getElementType()->isIntegral())
 | |
|         GEN_ERROR("Logical operator requires integral operands!");
 | |
|     }
 | |
|     Value* tmpVal1 = getVal(*$2, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     Value* tmpVal2 = getVal(*$2, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
 | |
|     if ($$ == 0)
 | |
|       GEN_ERROR("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | SetCondOps Types ValueRef ',' ValueRef {
 | |
|     if(isa<PackedType>((*$2).get())) {
 | |
|       GEN_ERROR(
 | |
|         "PackedTypes currently not supported in setcc instructions!");
 | |
|     }
 | |
|     Value* tmpVal1 = getVal(*$2, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     Value* tmpVal2 = getVal(*$2, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new SetCondInst($1, tmpVal1, tmpVal2);
 | |
|     if ($$ == 0)
 | |
|       GEN_ERROR("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | ICMP IPredicates Types ValueRef ',' ValueRef  {
 | |
|     if (isa<PackedType>((*$3).get()))
 | |
|       GEN_ERROR("Packed types not supported by icmp instruction");
 | |
|     Value* tmpVal1 = getVal(*$3, $4);
 | |
|     CHECK_FOR_ERROR
 | |
|     Value* tmpVal2 = getVal(*$3, $6);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
 | |
|     if ($$ == 0)
 | |
|       GEN_ERROR("icmp operator returned null!");
 | |
|   }
 | |
|   | FCMP FPredicates Types ValueRef ',' ValueRef  {
 | |
|     if (isa<PackedType>((*$3).get()))
 | |
|       GEN_ERROR("Packed types not supported by fcmp instruction");
 | |
|     Value* tmpVal1 = getVal(*$3, $4);
 | |
|     CHECK_FOR_ERROR
 | |
|     Value* tmpVal2 = getVal(*$3, $6);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
 | |
|     if ($$ == 0)
 | |
|       GEN_ERROR("fcmp operator returned null!");
 | |
|   }
 | |
|   | NOT ResolvedVal {
 | |
|     llvm_cerr << "WARNING: Use of eliminated 'not' instruction:"
 | |
|               << " Replacing with 'xor'.\n";
 | |
| 
 | |
|     Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
 | |
|     if (Ones == 0)
 | |
|       GEN_ERROR("Expected integral type for not instruction!");
 | |
| 
 | |
|     $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
 | |
|     if ($$ == 0)
 | |
|       GEN_ERROR("Could not create a xor instruction!");
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ShiftOps ResolvedVal ',' ResolvedVal {
 | |
|     if ($4->getType() != Type::UByteTy)
 | |
|       GEN_ERROR("Shift amount must be ubyte!");
 | |
|     if (!$2->getType()->isInteger())
 | |
|       GEN_ERROR("Shift constant expression requires integer operand!");
 | |
|     CHECK_FOR_ERROR;
 | |
|     $$ = new ShiftInst($1, $2, $4);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | CastOps ResolvedVal TO Types {
 | |
|     Value* Val = $2;
 | |
|     const Type* Ty = $4->get();
 | |
|     if (!Val->getType()->isFirstClassType())
 | |
|       GEN_ERROR("cast from a non-primitive type: '" +
 | |
|                 Val->getType()->getDescription() + "'!");
 | |
|     if (!Ty->isFirstClassType())
 | |
|       GEN_ERROR("cast to a non-primitive type: '" + Ty->getDescription() +"'!");
 | |
|     $$ = CastInst::create($1, $2, $4->get());
 | |
|     delete $4;
 | |
|   }
 | |
|   | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if ($2->getType() != Type::BoolTy)
 | |
|       GEN_ERROR("select condition must be boolean!");
 | |
|     if ($4->getType() != $6->getType())
 | |
|       GEN_ERROR("select value types should match!");
 | |
|     $$ = new SelectInst($2, $4, $6);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | VAARG ResolvedVal ',' Types {
 | |
|     $$ = new VAArgInst($2, *$4);
 | |
|     delete $4;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
 | |
|     if (!ExtractElementInst::isValidOperands($2, $4))
 | |
|       GEN_ERROR("Invalid extractelement operands!");
 | |
|     $$ = new ExtractElementInst($2, $4);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if (!InsertElementInst::isValidOperands($2, $4, $6))
 | |
|       GEN_ERROR("Invalid insertelement operands!");
 | |
|     $$ = new InsertElementInst($2, $4, $6);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
 | |
|       GEN_ERROR("Invalid shufflevector operands!");
 | |
|     $$ = new ShuffleVectorInst($2, $4, $6);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | PHI_TOK PHIList {
 | |
|     const Type *Ty = $2->front().first->getType();
 | |
|     if (!Ty->isFirstClassType())
 | |
|       GEN_ERROR("PHI node operands must be of first class type!");
 | |
|     $$ = new PHINode(Ty);
 | |
|     ((PHINode*)$$)->reserveOperandSpace($2->size());
 | |
|     while ($2->begin() != $2->end()) {
 | |
|       if ($2->front().first->getType() != Ty) 
 | |
|         GEN_ERROR("All elements of a PHI node must be of the same type!");
 | |
|       cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
 | |
|       $2->pop_front();
 | |
|     }
 | |
|     delete $2;  // Free the list...
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')'  {
 | |
|     const PointerType *PFTy = 0;
 | |
|     const FunctionType *Ty = 0;
 | |
| 
 | |
|     if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       std::vector<const Type*> ParamTypes;
 | |
|       if ($6) {
 | |
|         for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
 | |
|              I != E; ++I)
 | |
|           ParamTypes.push_back((*I)->getType());
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy)
 | |
|         GEN_ERROR("LLVM functions cannot return aggregate types!");
 | |
| 
 | |
|       Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
 | |
|       PFTy = PointerType::get(Ty);
 | |
|     }
 | |
| 
 | |
|     Value *V = getVal(PFTy, $4);   // Get the function we're calling...
 | |
|     CHECK_FOR_ERROR
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$6) {                                   // Has no arguments?
 | |
|       // Make sure no arguments is a good thing!
 | |
|       if (Ty->getNumParams() != 0)
 | |
|         GEN_ERROR("No arguments passed to a function that "
 | |
|                        "expects arguments!");
 | |
| 
 | |
|       $$ = new CallInst(V, std::vector<Value*>());
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::param_iterator I = Ty->param_begin();
 | |
|       FunctionType::param_iterator E = Ty->param_end();
 | |
|       std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
 | |
| 
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
|         if ((*ArgI)->getType() != *I)
 | |
|           GEN_ERROR("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | |
|                          (*I)->getDescription() + "'!");
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
|         GEN_ERROR("Invalid number of parameters detected!");
 | |
| 
 | |
|       $$ = new CallInst(V, *$6);
 | |
|     }
 | |
|     cast<CallInst>($$)->setTailCall($1);
 | |
|     cast<CallInst>($$)->setCallingConv($2);
 | |
|     delete $3;
 | |
|     delete $6;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | MemoryInst {
 | |
|     $$ = $1;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| // IndexList - List of indices for GEP based instructions...
 | |
| IndexList : ',' ValueRefList { 
 | |
|     $$ = $2; 
 | |
|     CHECK_FOR_ERROR
 | |
|   } | /* empty */ { 
 | |
|     $$ = new std::vector<Value*>(); 
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| OptVolatile : VOLATILE {
 | |
|     $$ = true;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = false;
 | |
|     CHECK_FOR_ERROR
 | |
|   };
 | |
| 
 | |
| 
 | |
| 
 | |
| MemoryInst : MALLOC Types OptCAlign {
 | |
|     $$ = new MallocInst(*$2, 0, $3);
 | |
|     delete $2;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | MALLOC Types ',' UINT ValueRef OptCAlign {
 | |
|     Value* tmpVal = getVal($4, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new MallocInst(*$2, tmpVal, $6);
 | |
|     delete $2;
 | |
|   }
 | |
|   | ALLOCA Types OptCAlign {
 | |
|     $$ = new AllocaInst(*$2, 0, $3);
 | |
|     delete $2;
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
|   | ALLOCA Types ',' UINT ValueRef OptCAlign {
 | |
|     Value* tmpVal = getVal($4, $5);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new AllocaInst(*$2, tmpVal, $6);
 | |
|     delete $2;
 | |
|   }
 | |
|   | FREE ResolvedVal {
 | |
|     if (!isa<PointerType>($2->getType()))
 | |
|       GEN_ERROR("Trying to free nonpointer type " + 
 | |
|                      $2->getType()->getDescription() + "!");
 | |
|     $$ = new FreeInst($2);
 | |
|     CHECK_FOR_ERROR
 | |
|   }
 | |
| 
 | |
|   | OptVolatile LOAD Types ValueRef {
 | |
|     if (!isa<PointerType>($3->get()))
 | |
|       GEN_ERROR("Can't load from nonpointer type: " +
 | |
|                      (*$3)->getDescription());
 | |
|     if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
 | |
|       GEN_ERROR("Can't load from pointer of non-first-class type: " +
 | |
|                      (*$3)->getDescription());
 | |
|     Value* tmpVal = getVal(*$3, $4);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new LoadInst(tmpVal, "", $1);
 | |
|     delete $3;
 | |
|   }
 | |
|   | OptVolatile STORE ResolvedVal ',' Types ValueRef {
 | |
|     const PointerType *PT = dyn_cast<PointerType>($5->get());
 | |
|     if (!PT)
 | |
|       GEN_ERROR("Can't store to a nonpointer type: " +
 | |
|                      (*$5)->getDescription());
 | |
|     const Type *ElTy = PT->getElementType();
 | |
|     if (ElTy != $3->getType())
 | |
|       GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
 | |
|                      "' into space of type '" + ElTy->getDescription() + "'!");
 | |
| 
 | |
|     Value* tmpVal = getVal(*$5, $6);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new StoreInst($3, tmpVal, $1);
 | |
|     delete $5;
 | |
|   }
 | |
|   | GETELEMENTPTR Types ValueRef IndexList {
 | |
|     if (!isa<PointerType>($2->get()))
 | |
|       GEN_ERROR("getelementptr insn requires pointer operand!");
 | |
| 
 | |
|     if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
 | |
|       GEN_ERROR("Invalid getelementptr indices for type '" +
 | |
|                      (*$2)->getDescription()+ "'!");
 | |
|     Value* tmpVal = getVal(*$2, $3);
 | |
|     CHECK_FOR_ERROR
 | |
|     $$ = new GetElementPtrInst(tmpVal, *$4);
 | |
|     delete $2; 
 | |
|     delete $4;
 | |
|   };
 | |
| 
 | |
| 
 | |
| %%
 | |
| 
 | |
| void llvm::GenerateError(const std::string &message, int LineNo) {
 | |
|   if (LineNo == -1) LineNo = llvmAsmlineno;
 | |
|   // TODO: column number in exception
 | |
|   if (TheParseError)
 | |
|     TheParseError->setError(CurFilename, message, LineNo);
 | |
|   TriggerError = 1;
 | |
| }
 | |
| 
 | |
| int yyerror(const char *ErrorMsg) {
 | |
|   std::string where 
 | |
|     = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
 | |
|                   + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
 | |
|   std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
 | |
|   if (yychar == YYEMPTY || yychar == 0)
 | |
|     errMsg += "end-of-file.";
 | |
|   else
 | |
|     errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
 | |
|   GenerateError(errMsg);
 | |
|   return 0;
 | |
| }
 |